Toward a Systems Theory of Algorithms
Traditionally, numerical algorithms are seen as isolated pieces of code confined to an in silico existence. However, this perspective is inappropriate for many modern computational approaches in control, learning, or optimization, wherein in vivo algorithms interact with their environment. Examples...
Uložené v:
| Vydané v: | IEEE control systems letters Ročník 8; s. 1198 - 1210 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2024
|
| Predmet: | |
| ISSN: | 2475-1456, 2475-1456 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Traditionally, numerical algorithms are seen as isolated pieces of code confined to an in silico existence. However, this perspective is inappropriate for many modern computational approaches in control, learning, or optimization, wherein in vivo algorithms interact with their environment. Examples of such open algorithms include various real-time optimization-based control strategies, reinforcement learning, decision-making architectures, online optimization, and many more. Further, even closed algorithms in learning or optimization are increasingly abstracted in block diagrams with interacting dynamic modules and pipelines. In this opinion letter, we state our vision on a to-be-cultivated systems theory of algorithms and argue in favor of viewing algorithms as open dynamical systems interacting with other algorithms, physical systems, humans, or databases. Remarkably, the manifold tools developed under the umbrella of systems theory are well suited for addressing a rangeofchallenges in the algorithmic domain. We survey various instances where the principles of algorithmic systems theory are being developed and outline pertinent modeling, analysis, and design challenges. |
|---|---|
| AbstractList | Traditionally, numerical algorithms are seen as isolated pieces of code confined to an in silico existence. However, this perspective is inappropriate for many modern computational approaches in control, learning, or optimization, wherein in vivo algorithms interact with their environment. Examples of such open algorithms include various real-time optimization-based control strategies, reinforcement learning, decision-making architectures, online optimization, and many more. Further, even closed algorithms in learning or optimization are increasingly abstracted in block diagrams with interacting dynamic modules and pipelines. In this opinion letter, we state our vision on a to-be-cultivated systems theory of algorithms and argue in favor of viewing algorithms as open dynamical systems interacting with other algorithms, physical systems, humans, or databases. Remarkably, the manifold tools developed under the umbrella of systems theory are well suited for addressing a rangeofchallenges in the algorithmic domain. We survey various instances where the principles of algorithmic systems theory are being developed and outline pertinent modeling, analysis, and design challenges. |
| Author | Dorfler, Florian Lygeros, John Bolognani, Saverio He, Zhiyu Muehlebach, Michael Belgioioso, Giuseppe |
| Author_xml | – sequence: 1 givenname: Florian orcidid: 0000-0002-9649-5305 surname: Dorfler fullname: Dorfler, Florian email: dorfler@ethz.ch organization: Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland – sequence: 2 givenname: Zhiyu orcidid: 0000-0001-9413-5333 surname: He fullname: He, Zhiyu email: zhiyhe@ethz.ch organization: Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland – sequence: 3 givenname: Giuseppe orcidid: 0000-0002-8892-1466 surname: Belgioioso fullname: Belgioioso, Giuseppe email: gbelgioioso@ethz.ch organization: Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland – sequence: 4 givenname: Saverio orcidid: 0000-0002-7935-1385 surname: Bolognani fullname: Bolognani, Saverio email: bsaverio@ethz.ch organization: Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland – sequence: 5 givenname: John orcidid: 0000-0002-6159-1962 surname: Lygeros fullname: Lygeros, John email: jlygeros@ethz.ch organization: Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland – sequence: 6 givenname: Michael orcidid: 0000-0002-7764-3069 surname: Muehlebach fullname: Muehlebach, Michael email: michael.muehlebach@tuebingen.mpg.de organization: Max Planck Institute for Intelligent Systems, Tübingen, Germany |
| BookMark | eNp9zz1PwzAQgGELFYlS-gcQQxbGhPP5I_ZYVVCQKjE0DEyR4zo0qImRbQn139PSDhUD093ynO69JqPBD46QWwoFpaAflvPV-6pAQF4wDlJzdkHGyEuRUy7k6Gy_ItMYPwGAKiwB9ZjcV_7bhHVmstUuJtfHrNo4H3aZb7PZ9sOHLm36eEMuW7ONbnqaE_L29FjNn_Pl6-JlPlvmFqVKuaMClZEMJbWldagN41SDFoohSLVmpRENbdDqVgNTZWObxtl2_zQKjVawCVHHuzb4GINra9slkzo_pGC6bU2hPhTXv8X1obg-Fe8p_qFfoetN2P2P7o6oc86dAcFByJL9AOz5YiA |
| CODEN | ICSLBO |
| CitedBy_id | crossref_primary_10_1109_TCSI_2024_3426313 crossref_primary_10_1109_LCSYS_2024_3516632 crossref_primary_10_1109_LCSYS_2025_3589177 crossref_primary_10_1515_auto_2024_0164 crossref_primary_10_1007_s13198_024_02652_w crossref_primary_10_1109_LCSYS_2024_3406967 crossref_primary_10_1109_LCSYS_2024_3400701 |
| Cites_doi | 10.1145/3617694.3623227 10.1109/ISGTEUROPE56780.2023.10408057 10.1016/j.automatica.2020.108973 10.1017/9781009051873 10.1109/TAC.2024.3410890 10.1145/3523227.3546769 10.1109/TAC.2022.3176795 10.1109/TAC.2020.3005922 10.1109/CDC.2011.6161503 10.1016/j.ifacol.2023.10.1295 10.1109/MCS.2024.3382376 10.3166/ejc.9.159-176 10.1109/CDC49753.2023.10384074 10.1109/TAC.2020.3000182 10.1561/2300000053 10.1109/TAC.2012.2225513 10.1016/j.arcontrol.2024.100941 10.1016/0024-3795(91)90021-N 10.1109/TAC.2011.2108450 10.1016/j.automatica.2009.10.021 10.1109/CDC40024.2019.9029824 10.1109/FIE49875.2021.9637441 10.1109/CDC49753.2023.10383957 10.1137/S0363012902400713 10.1109/MCS.2023.3291885 10.1109/MCS.2022.3157115 10.1137/1.9780898718669 10.1016/j.automatica.2006.12.028 10.1016/S0005-1098(03)00179-1 10.1109/MCS.2023.3310302 10.1109/CDC49753.2023.10384170 10.1016/0005-1098(85)90110-4 10.1109/37.257890 10.1016/j.ejor.2024.03.020 10.1007/BF00992696 10.1109/MPE.2020.3014540 10.1109/LCSYS.2017.2722406 10.1109/43.898830 10.1023/A:1008739929481 10.1017/S0962492906340019 10.1109/TCNS.2020.2988009 10.1109/JPROC.2006.887322 10.1561/2600000014 10.1007/978-1-4471-0507-7 10.1016/j.automatica.2004.11.021 10.1093/imamat/11.2.171 10.1109/MCS.2021.3139745 10.1109/JPROC.2020.3003156 10.1109/MCS.2023.3291638 10.1137/16M1084316 10.1109/37.980245 10.1002/rnc.7475 10.1007/978-1-4471-3037-6 10.1017/9781139061759 10.1109/MCS.2022.3157119 10.1002/0471200611 10.48550/ARXIV.1706.03762 10.1109/CDC49753.2023.10384198 10.1109/jproc.1996.503147 10.1016/j.automatica.2023.111481 10.1109/CDC49753.2023.10383282 10.1109/TSG.2016.2571982 10.1146/annurev-control-070220-100858 10.1002/0471669784 10.1145/3604915.3608778 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/LCSYS.2024.3406943 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2475-1456 |
| EndPage | 1210 |
| ExternalDocumentID | 10_1109_LCSYS_2024_3406943 10540567 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Swiss National Science Foundation under the NCCR Automation – fundername: Max Planck ETH Center for Learning Systems funderid: 10.13039/501100022491 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c268t-e1528a63261c7ce29a3419095832068d37a5b1b2c9f90387bcbbecf3402592c53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001252660000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2475-1456 |
| IngestDate | Sat Nov 29 06:11:00 EST 2025 Tue Nov 18 22:49:31 EST 2025 Wed Aug 27 02:06:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-e1528a63261c7ce29a3419095832068d37a5b1b2c9f90387bcbbecf3402592c53 |
| ORCID | 0000-0002-9649-5305 0000-0001-9413-5333 0000-0002-7935-1385 0000-0002-8892-1466 0000-0002-6159-1962 0000-0002-7764-3069 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_LCSYS_2024_3406943 crossref_primary_10_1109_LCSYS_2024_3406943 ieee_primary_10540567 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE control systems letters |
| PublicationTitleAbbrev | LCSYS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 Carnevale (ref59) 2024 ref12 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref19 ref18 Annaswamy (ref74) Berner (ref44) Alonso (ref45) 2024 Annaswamy (ref24) 1989 Stuart (ref16) 1998; 2 ref51 ref50 ref90 Liu (ref7) 2019 ref46 Van der Schaft (ref48) 2000 Hardt (ref69) 2023 ref89 ref42 ref86 Šlijak (ref49) 2007; 129 Matni (ref84) 2024 ref88 ref87 Åstrom (ref25) 1995 Srikanthan (ref85) 2023 Kailath (ref1) 2000 ref4 ref3 ref6 ref5 Li (ref9) 2020 ref82 ref81 Zhao (ref91) 2022 ref83 ref80 ref35 ref34 ref78 ref36 ref31 ref75 ref30 ref77 ref32 ref76 ref2 ref39 ref38 Padoan (ref93) Belgioioso (ref56) 2024 Khalil (ref29) 2002 (ref94) 2022 ref71 Novikoff (ref40) ref70 ref73 ref72 Muehlebach (ref33) Tzen (ref43) ref68 Mandi (ref79) 2024 ref23 ref67 ref26 Gu (ref47) 2024 ref20 ref64 ref63 ref22 ref66 ref21 ref65 LeCun (ref41) Lee (ref8) Arrow (ref27) 1958 ref60 ref62 Redman (ref92) 2023 Nesterov (ref37) 1983; 27 ref61 Muehlebach (ref28) 2021; 22 |
| References_xml | – ident: ref70 doi: 10.1145/3617694.3623227 – ident: ref66 doi: 10.1109/ISGTEUROPE56780.2023.10408057 – ident: ref53 doi: 10.1016/j.automatica.2020.108973 – volume-title: Dynamical systems and machine learning year: 2020 ident: ref9 – ident: ref10 doi: 10.1017/9781009051873 – ident: ref63 doi: 10.1109/TAC.2024.3410890 – ident: ref51 doi: 10.1145/3523227.3546769 – ident: ref39 doi: 10.1109/TAC.2022.3176795 – volume: 22 start-page: 3407 issue: 1 year: 2021 ident: ref28 article-title: Optimization with momentum: Dynamical, control-theoretic, and symplectic perspectives publication-title: J. Mach. Learn. Res. – ident: ref60 doi: 10.1109/TAC.2020.3005922 – year: 2024 ident: ref47 article-title: Mamba: Linear-time sequence modeling with selective state spaces publication-title: arXiv:2312.00752 – volume: 2 volume-title: Dynamical Systems and Numerical Analysis year: 1998 ident: ref16 – ident: ref36 doi: 10.1109/CDC.2011.6161503 – ident: ref65 doi: 10.1016/j.ifacol.2023.10.1295 – ident: ref74 article-title: Control for societal-scale challenges: Roadmap 2030 doi: 10.1109/MCS.2024.3382376 – ident: ref82 doi: 10.3166/ejc.9.159-176 – ident: ref30 doi: 10.1109/CDC49753.2023.10384074 – ident: ref72 doi: 10.1109/TAC.2020.3000182 – ident: ref77 doi: 10.1561/2300000053 – year: 2023 ident: ref85 article-title: Augmented lagrangian methods as layered control architectures publication-title: arXiv:2311.06404 – ident: ref12 doi: 10.1109/TAC.2012.2225513 – ident: ref55 doi: 10.1016/j.arcontrol.2024.100941 – ident: ref6 doi: 10.1016/0024-3795(91)90021-N – year: 2019 ident: ref7 article-title: Deep learning theory review: An optimal control and dynamical systems perspective publication-title: arXiv:1908.10920 – ident: ref54 doi: 10.1109/TAC.2011.2108450 – volume-title: Symposium—Systems theory of algorithms—Part I year: 2022 ident: ref94 – ident: ref57 doi: 10.1016/j.automatica.2009.10.021 – start-page: 1 volume-title: Proc. 34th NeurIPS ident: ref8 article-title: A unified switching system perspective and convergence analysis of Q-learning algorithms – ident: ref64 doi: 10.1109/CDC40024.2019.9029824 – ident: ref2 doi: 10.1109/FIE49875.2021.9637441 – ident: ref89 doi: 10.1109/CDC49753.2023.10383957 – ident: ref17 doi: 10.1137/S0363012902400713 – volume-title: Linear Estimation year: 2000 ident: ref1 – ident: ref76 doi: 10.1109/MCS.2023.3291885 – ident: ref4 doi: 10.1109/MCS.2022.3157115 – ident: ref11 doi: 10.1137/1.9780898718669 – ident: ref13 doi: 10.1016/j.automatica.2006.12.028 – year: 2022 ident: ref91 article-title: An automatic system to detect equivalence between iterative algorithms publication-title: arXiv:2105.04684 – year: 2024 ident: ref84 article-title: Towards a theory of control architecture: A quantitative framework for layered multi-rate control publication-title: arXiv:2401.15185 – ident: ref20 doi: 10.1016/S0005-1098(03)00179-1 – volume-title: Proc. IEEE Conf. Decision Control ident: ref93 article-title: Data-driven dissipativity analysis of optimization algorithms – ident: ref73 doi: 10.1109/MCS.2023.3310302 – ident: ref32 doi: 10.1109/CDC49753.2023.10384170 – ident: ref23 doi: 10.1016/0005-1098(85)90110-4 – ident: ref62 doi: 10.1109/37.257890 – ident: ref80 doi: 10.1016/j.ejor.2024.03.020 – year: 2023 ident: ref69 article-title: Performative prediction: Past and future publication-title: arXiv:2310.16608 – ident: ref61 doi: 10.1007/BF00992696 – ident: ref67 doi: 10.1109/MPE.2020.3014540 – ident: ref35 doi: 10.1109/LCSYS.2017.2722406 – ident: ref88 doi: 10.1109/43.898830 – ident: ref87 doi: 10.1023/A:1008739929481 – start-page: 21 volume-title: Proc. Connect. Models Summer School ident: ref41 article-title: A theoretical framework for back-propagation – start-page: 1 volume-title: Proc. NeurIPS Workshop Score-Based Methods ident: ref44 article-title: An optimal control perspective on diffusion-based generative modeling – ident: ref14 doi: 10.1017/S0962492906340019 – volume-title: Nonlinear Systems year: 2002 ident: ref29 – ident: ref34 doi: 10.1109/TCNS.2020.2988009 – ident: ref83 doi: 10.1109/JPROC.2006.887322 – year: 2024 ident: ref59 article-title: A unifying system theory framework for distributed optimization and games publication-title: arXiv:2401.12623 – year: 2024 ident: ref79 article-title: Decision-focused learning: Foundations, state of the art, benchmark and future opportunities publication-title: arXiv:2307.13565 – volume: 129 start-page: 130 volume-title: Large-Scale Dynamic Systems: Stability and Structure year: 2007 ident: ref49 – ident: ref75 doi: 10.1561/2600000014 – volume-title: L2-Gain and Passivity Techniques in Nonlinear Control year: 2000 ident: ref48 doi: 10.1007/978-1-4471-0507-7 – ident: ref78 doi: 10.1016/j.automatica.2004.11.021 – ident: ref15 doi: 10.1093/imamat/11.2.171 – ident: ref50 doi: 10.1109/MCS.2021.3139745 – year: 2023 ident: ref92 article-title: On equivalent optimization of machine learning methods publication-title: arXiv:2302.09160 – ident: ref38 doi: 10.1109/JPROC.2020.3003156 – ident: ref71 doi: 10.1109/MCS.2023.3291638 – ident: ref58 doi: 10.1137/16M1084316 – ident: ref81 doi: 10.1109/37.980245 – ident: ref86 doi: 10.1002/rnc.7475 – volume-title: Adaptive Control year: 1995 ident: ref25 – ident: ref19 doi: 10.1007/978-1-4471-3037-6 – ident: ref18 doi: 10.1017/9781139061759 – ident: ref26 doi: 10.1109/MCS.2022.3157119 – start-page: 7088 volume-title: Proc. ICML ident: ref33 article-title: Continuous-time lower bounds for gradient-based algorithms – ident: ref42 doi: 10.1002/0471200611 – ident: ref46 doi: 10.48550/ARXIV.1706.03762 – ident: ref3 doi: 10.1109/CDC49753.2023.10384198 – ident: ref5 doi: 10.1109/jproc.1996.503147 – ident: ref22 doi: 10.1016/j.automatica.2023.111481 – ident: ref31 doi: 10.1109/CDC49753.2023.10383282 – ident: ref68 doi: 10.1109/TSG.2016.2571982 – ident: ref90 doi: 10.1146/annurev-control-070220-100858 – volume-title: Stable Adaptive Systems year: 1989 ident: ref24 – ident: ref21 doi: 10.1002/0471669784 – year: 2024 ident: ref45 article-title: State space models as foundation models: A control theoretic overview publication-title: arXiv:2403.16899 – start-page: 3084 volume-title: Proc. Conf. Learn. Theory ident: ref43 article-title: Theoretical guarantees for sampling and inference in generative models with latent diffusions – start-page: 615 volume-title: Proc. Symp. Math. Theory Automata ident: ref40 article-title: On convergence proofs on perceptrons – year: 2024 ident: ref56 article-title: Online feedback equilibrium seeking publication-title: arXiv:2210.12088 – volume: 27 start-page: 367 issue: 2 year: 1983 ident: ref37 article-title: A method for solving a convex programming problem with convergence rate O(1/K^{2}) publication-title: Sov. Math. Doklady – ident: ref52 doi: 10.1145/3604915.3608778 – volume-title: Studies in Linear and Nonlinear Programming year: 1958 ident: ref27 |
| SSID | ssj0001827029 |
| Score | 2.3676562 |
| Snippet | Traditionally, numerical algorithms are seen as isolated pieces of code confined to an in silico existence. However, this perspective is inappropriate for many... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1198 |
| SubjectTerms | Codes decision-making architectures Dynamical systems Heuristic algorithms Machine learning algorithms online optimization and learning Optimization Pipelines Real-time systems Systems theory of algorithms |
| Title | Toward a Systems Theory of Algorithms |
| URI | https://ieeexplore.ieee.org/document/10540567 |
| Volume | 8 |
| WOSCitedRecordID | wos001252660000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2475-1456 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001827029 issn: 2475-1456 databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-44cGLHzhxfpGDniQzadqmOY7h8CBD2IR5Kmk-VJirbJ1_v0na6TwoeCslCe3vEd77veT3HsClYxQipVZiLRTHsRQWC2EpzgxRmmuqrJSh2QQfjbLpVDw0YvWghTHGhMtnpucfw1m-LtXKp8rcDvfxRcpb0OKc12Kt74RK5qVVYi2MIeLmfjB-GjsKGMU9FgSe7Ifz2eimEpzJcO-fn7EPu03UiPq1mQ9gy8wP4WoSrrwiiZqy46gW2qPSov7suXS0_-Vt2YHH4e1kcIebrgdYRWlWYeM8aiZTF1ZRxZWJhPQl11wk5PYeSTPNuEwKWkRKWOHPngtVODtY94eOyUQqYUfQnpdzcwyIJUVBEkncEr4oC5PERtbIOBE60bFiXaBrOHLVlAT3nSlmeaAGROQBwtxDmDcQduH6a857XRDjz9Edj9_GyBq6k1_en8KOn17nOM6gXS1W5hy21Uf1ulxcBIN_Aknjp8w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFPTFC06c1zzok2Q2adM2j2MoE-cQNmE-lTQXFeYqu_j7TdJO54OCb6Ukof0O4VyS7zsA5zaj4DExAisuExwJbjDnhuBUB1IlikgjhG82kfR66XDIHyqyuufCaK395TPddI_-LF8Vcu5KZXaHu_giTlZhjUURJSVd67ukkjpyFV9QYwJ-1W33n_o2CaRRM_QUz_CH-1nqp-Ldyc32Pz9kB7aquBG1SkPvwooe78HFwF96RQJVwuOopNqjwqDW6Lmwif_L27QOjzfXg3YHV30PsKRxOsPa-tRUxDawIjKRmnLhRNdsLGR3XxCnKkwEy0lOJTfcnT7nMreWMPYPbS5DJQv3oTYuxvoAUMjyPGAisEs4WZZQBIYaLSLGFVORDBtAFnBkshIFd70pRplPDgKeeQgzB2FWQdiAy68576Ukxp-j6w6_pZEldIe_vD-Djc7gvpt1b3t3R7DpliorHsdQm03m-gTW5cfsdTo59cb_BDh_qxM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+Systems+Theory+of+Algorithms&rft.jtitle=IEEE+control+systems+letters&rft.au=Dorfler%2C+Florian&rft.au=He%2C+Zhiyu&rft.au=Belgioioso%2C+Giuseppe&rft.au=Bolognani%2C+Saverio&rft.date=2024&rft.pub=IEEE&rft.eissn=2475-1456&rft.volume=8&rft.spage=1198&rft.epage=1210&rft_id=info:doi/10.1109%2FLCSYS.2024.3406943&rft.externalDocID=10540567 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon |