Toward a Systems Theory of Algorithms

Traditionally, numerical algorithms are seen as isolated pieces of code confined to an in silico existence. However, this perspective is inappropriate for many modern computational approaches in control, learning, or optimization, wherein in vivo algorithms interact with their environment. Examples...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE control systems letters Ročník 8; s. 1198 - 1210
Hlavní autori: Dorfler, Florian, He, Zhiyu, Belgioioso, Giuseppe, Bolognani, Saverio, Lygeros, John, Muehlebach, Michael
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2024
Predmet:
ISSN:2475-1456, 2475-1456
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Traditionally, numerical algorithms are seen as isolated pieces of code confined to an in silico existence. However, this perspective is inappropriate for many modern computational approaches in control, learning, or optimization, wherein in vivo algorithms interact with their environment. Examples of such open algorithms include various real-time optimization-based control strategies, reinforcement learning, decision-making architectures, online optimization, and many more. Further, even closed algorithms in learning or optimization are increasingly abstracted in block diagrams with interacting dynamic modules and pipelines. In this opinion letter, we state our vision on a to-be-cultivated systems theory of algorithms and argue in favor of viewing algorithms as open dynamical systems interacting with other algorithms, physical systems, humans, or databases. Remarkably, the manifold tools developed under the umbrella of systems theory are well suited for addressing a rangeofchallenges in the algorithmic domain. We survey various instances where the principles of algorithmic systems theory are being developed and outline pertinent modeling, analysis, and design challenges.
AbstractList Traditionally, numerical algorithms are seen as isolated pieces of code confined to an in silico existence. However, this perspective is inappropriate for many modern computational approaches in control, learning, or optimization, wherein in vivo algorithms interact with their environment. Examples of such open algorithms include various real-time optimization-based control strategies, reinforcement learning, decision-making architectures, online optimization, and many more. Further, even closed algorithms in learning or optimization are increasingly abstracted in block diagrams with interacting dynamic modules and pipelines. In this opinion letter, we state our vision on a to-be-cultivated systems theory of algorithms and argue in favor of viewing algorithms as open dynamical systems interacting with other algorithms, physical systems, humans, or databases. Remarkably, the manifold tools developed under the umbrella of systems theory are well suited for addressing a rangeofchallenges in the algorithmic domain. We survey various instances where the principles of algorithmic systems theory are being developed and outline pertinent modeling, analysis, and design challenges.
Author Dorfler, Florian
Lygeros, John
Bolognani, Saverio
He, Zhiyu
Muehlebach, Michael
Belgioioso, Giuseppe
Author_xml – sequence: 1
  givenname: Florian
  orcidid: 0000-0002-9649-5305
  surname: Dorfler
  fullname: Dorfler, Florian
  email: dorfler@ethz.ch
  organization: Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland
– sequence: 2
  givenname: Zhiyu
  orcidid: 0000-0001-9413-5333
  surname: He
  fullname: He, Zhiyu
  email: zhiyhe@ethz.ch
  organization: Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland
– sequence: 3
  givenname: Giuseppe
  orcidid: 0000-0002-8892-1466
  surname: Belgioioso
  fullname: Belgioioso, Giuseppe
  email: gbelgioioso@ethz.ch
  organization: Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland
– sequence: 4
  givenname: Saverio
  orcidid: 0000-0002-7935-1385
  surname: Bolognani
  fullname: Bolognani, Saverio
  email: bsaverio@ethz.ch
  organization: Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland
– sequence: 5
  givenname: John
  orcidid: 0000-0002-6159-1962
  surname: Lygeros
  fullname: Lygeros, John
  email: jlygeros@ethz.ch
  organization: Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland
– sequence: 6
  givenname: Michael
  orcidid: 0000-0002-7764-3069
  surname: Muehlebach
  fullname: Muehlebach, Michael
  email: michael.muehlebach@tuebingen.mpg.de
  organization: Max Planck Institute for Intelligent Systems, Tübingen, Germany
BookMark eNp9zz1PwzAQgGELFYlS-gcQQxbGhPP5I_ZYVVCQKjE0DEyR4zo0qImRbQn139PSDhUD093ynO69JqPBD46QWwoFpaAflvPV-6pAQF4wDlJzdkHGyEuRUy7k6Gy_ItMYPwGAKiwB9ZjcV_7bhHVmstUuJtfHrNo4H3aZb7PZ9sOHLm36eEMuW7ONbnqaE_L29FjNn_Pl6-JlPlvmFqVKuaMClZEMJbWldagN41SDFoohSLVmpRENbdDqVgNTZWObxtl2_zQKjVawCVHHuzb4GINra9slkzo_pGC6bU2hPhTXv8X1obg-Fe8p_qFfoetN2P2P7o6oc86dAcFByJL9AOz5YiA
CODEN ICSLBO
CitedBy_id crossref_primary_10_1109_TCSI_2024_3426313
crossref_primary_10_1109_LCSYS_2024_3516632
crossref_primary_10_1109_LCSYS_2025_3589177
crossref_primary_10_1515_auto_2024_0164
crossref_primary_10_1007_s13198_024_02652_w
crossref_primary_10_1109_LCSYS_2024_3406967
crossref_primary_10_1109_LCSYS_2024_3400701
Cites_doi 10.1145/3617694.3623227
10.1109/ISGTEUROPE56780.2023.10408057
10.1016/j.automatica.2020.108973
10.1017/9781009051873
10.1109/TAC.2024.3410890
10.1145/3523227.3546769
10.1109/TAC.2022.3176795
10.1109/TAC.2020.3005922
10.1109/CDC.2011.6161503
10.1016/j.ifacol.2023.10.1295
10.1109/MCS.2024.3382376
10.3166/ejc.9.159-176
10.1109/CDC49753.2023.10384074
10.1109/TAC.2020.3000182
10.1561/2300000053
10.1109/TAC.2012.2225513
10.1016/j.arcontrol.2024.100941
10.1016/0024-3795(91)90021-N
10.1109/TAC.2011.2108450
10.1016/j.automatica.2009.10.021
10.1109/CDC40024.2019.9029824
10.1109/FIE49875.2021.9637441
10.1109/CDC49753.2023.10383957
10.1137/S0363012902400713
10.1109/MCS.2023.3291885
10.1109/MCS.2022.3157115
10.1137/1.9780898718669
10.1016/j.automatica.2006.12.028
10.1016/S0005-1098(03)00179-1
10.1109/MCS.2023.3310302
10.1109/CDC49753.2023.10384170
10.1016/0005-1098(85)90110-4
10.1109/37.257890
10.1016/j.ejor.2024.03.020
10.1007/BF00992696
10.1109/MPE.2020.3014540
10.1109/LCSYS.2017.2722406
10.1109/43.898830
10.1023/A:1008739929481
10.1017/S0962492906340019
10.1109/TCNS.2020.2988009
10.1109/JPROC.2006.887322
10.1561/2600000014
10.1007/978-1-4471-0507-7
10.1016/j.automatica.2004.11.021
10.1093/imamat/11.2.171
10.1109/MCS.2021.3139745
10.1109/JPROC.2020.3003156
10.1109/MCS.2023.3291638
10.1137/16M1084316
10.1109/37.980245
10.1002/rnc.7475
10.1007/978-1-4471-3037-6
10.1017/9781139061759
10.1109/MCS.2022.3157119
10.1002/0471200611
10.48550/ARXIV.1706.03762
10.1109/CDC49753.2023.10384198
10.1109/jproc.1996.503147
10.1016/j.automatica.2023.111481
10.1109/CDC49753.2023.10383282
10.1109/TSG.2016.2571982
10.1146/annurev-control-070220-100858
10.1002/0471669784
10.1145/3604915.3608778
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LCSYS.2024.3406943
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1456
EndPage 1210
ExternalDocumentID 10_1109_LCSYS_2024_3406943
10540567
Genre orig-research
GrantInformation_xml – fundername: Swiss National Science Foundation under the NCCR Automation
– fundername: Max Planck ETH Center for Learning Systems
  funderid: 10.13039/501100022491
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c268t-e1528a63261c7ce29a3419095832068d37a5b1b2c9f90387bcbbecf3402592c53
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001252660000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2475-1456
IngestDate Sat Nov 29 06:11:00 EST 2025
Tue Nov 18 22:49:31 EST 2025
Wed Aug 27 02:06:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-e1528a63261c7ce29a3419095832068d37a5b1b2c9f90387bcbbecf3402592c53
ORCID 0000-0002-9649-5305
0000-0001-9413-5333
0000-0002-7935-1385
0000-0002-8892-1466
0000-0002-6159-1962
0000-0002-7764-3069
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_LCSYS_2024_3406943
crossref_primary_10_1109_LCSYS_2024_3406943
ieee_primary_10540567
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationTitle IEEE control systems letters
PublicationTitleAbbrev LCSYS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
Carnevale (ref59) 2024
ref12
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref19
ref18
Annaswamy (ref74)
Berner (ref44)
Alonso (ref45) 2024
Annaswamy (ref24) 1989
Stuart (ref16) 1998; 2
ref51
ref50
ref90
Liu (ref7) 2019
ref46
Van der Schaft (ref48) 2000
Hardt (ref69) 2023
ref89
ref42
ref86
Šlijak (ref49) 2007; 129
Matni (ref84) 2024
ref88
ref87
Åstrom (ref25) 1995
Srikanthan (ref85) 2023
Kailath (ref1) 2000
ref4
ref3
ref6
ref5
Li (ref9) 2020
ref82
ref81
Zhao (ref91) 2022
ref83
ref80
ref35
ref34
ref78
ref36
ref31
ref75
ref30
ref77
ref32
ref76
ref2
ref39
ref38
Padoan (ref93)
Belgioioso (ref56) 2024
Khalil (ref29) 2002
(ref94) 2022
ref71
Novikoff (ref40)
ref70
ref73
ref72
Muehlebach (ref33)
Tzen (ref43)
ref68
Mandi (ref79) 2024
ref23
ref67
ref26
Gu (ref47) 2024
ref20
ref64
ref63
ref22
ref66
ref21
ref65
LeCun (ref41)
Lee (ref8)
Arrow (ref27) 1958
ref60
ref62
Redman (ref92) 2023
Nesterov (ref37) 1983; 27
ref61
Muehlebach (ref28) 2021; 22
References_xml – ident: ref70
  doi: 10.1145/3617694.3623227
– ident: ref66
  doi: 10.1109/ISGTEUROPE56780.2023.10408057
– ident: ref53
  doi: 10.1016/j.automatica.2020.108973
– volume-title: Dynamical systems and machine learning
  year: 2020
  ident: ref9
– ident: ref10
  doi: 10.1017/9781009051873
– ident: ref63
  doi: 10.1109/TAC.2024.3410890
– ident: ref51
  doi: 10.1145/3523227.3546769
– ident: ref39
  doi: 10.1109/TAC.2022.3176795
– volume: 22
  start-page: 3407
  issue: 1
  year: 2021
  ident: ref28
  article-title: Optimization with momentum: Dynamical, control-theoretic, and symplectic perspectives
  publication-title: J. Mach. Learn. Res.
– ident: ref60
  doi: 10.1109/TAC.2020.3005922
– year: 2024
  ident: ref47
  article-title: Mamba: Linear-time sequence modeling with selective state spaces
  publication-title: arXiv:2312.00752
– volume: 2
  volume-title: Dynamical Systems and Numerical Analysis
  year: 1998
  ident: ref16
– ident: ref36
  doi: 10.1109/CDC.2011.6161503
– ident: ref65
  doi: 10.1016/j.ifacol.2023.10.1295
– ident: ref74
  article-title: Control for societal-scale challenges: Roadmap 2030
  doi: 10.1109/MCS.2024.3382376
– ident: ref82
  doi: 10.3166/ejc.9.159-176
– ident: ref30
  doi: 10.1109/CDC49753.2023.10384074
– ident: ref72
  doi: 10.1109/TAC.2020.3000182
– ident: ref77
  doi: 10.1561/2300000053
– year: 2023
  ident: ref85
  article-title: Augmented lagrangian methods as layered control architectures
  publication-title: arXiv:2311.06404
– ident: ref12
  doi: 10.1109/TAC.2012.2225513
– ident: ref55
  doi: 10.1016/j.arcontrol.2024.100941
– ident: ref6
  doi: 10.1016/0024-3795(91)90021-N
– year: 2019
  ident: ref7
  article-title: Deep learning theory review: An optimal control and dynamical systems perspective
  publication-title: arXiv:1908.10920
– ident: ref54
  doi: 10.1109/TAC.2011.2108450
– volume-title: Symposium—Systems theory of algorithms—Part I
  year: 2022
  ident: ref94
– ident: ref57
  doi: 10.1016/j.automatica.2009.10.021
– start-page: 1
  volume-title: Proc. 34th NeurIPS
  ident: ref8
  article-title: A unified switching system perspective and convergence analysis of Q-learning algorithms
– ident: ref64
  doi: 10.1109/CDC40024.2019.9029824
– ident: ref2
  doi: 10.1109/FIE49875.2021.9637441
– ident: ref89
  doi: 10.1109/CDC49753.2023.10383957
– ident: ref17
  doi: 10.1137/S0363012902400713
– volume-title: Linear Estimation
  year: 2000
  ident: ref1
– ident: ref76
  doi: 10.1109/MCS.2023.3291885
– ident: ref4
  doi: 10.1109/MCS.2022.3157115
– ident: ref11
  doi: 10.1137/1.9780898718669
– ident: ref13
  doi: 10.1016/j.automatica.2006.12.028
– year: 2022
  ident: ref91
  article-title: An automatic system to detect equivalence between iterative algorithms
  publication-title: arXiv:2105.04684
– year: 2024
  ident: ref84
  article-title: Towards a theory of control architecture: A quantitative framework for layered multi-rate control
  publication-title: arXiv:2401.15185
– ident: ref20
  doi: 10.1016/S0005-1098(03)00179-1
– volume-title: Proc. IEEE Conf. Decision Control
  ident: ref93
  article-title: Data-driven dissipativity analysis of optimization algorithms
– ident: ref73
  doi: 10.1109/MCS.2023.3310302
– ident: ref32
  doi: 10.1109/CDC49753.2023.10384170
– ident: ref23
  doi: 10.1016/0005-1098(85)90110-4
– ident: ref62
  doi: 10.1109/37.257890
– ident: ref80
  doi: 10.1016/j.ejor.2024.03.020
– year: 2023
  ident: ref69
  article-title: Performative prediction: Past and future
  publication-title: arXiv:2310.16608
– ident: ref61
  doi: 10.1007/BF00992696
– ident: ref67
  doi: 10.1109/MPE.2020.3014540
– ident: ref35
  doi: 10.1109/LCSYS.2017.2722406
– ident: ref88
  doi: 10.1109/43.898830
– ident: ref87
  doi: 10.1023/A:1008739929481
– start-page: 21
  volume-title: Proc. Connect. Models Summer School
  ident: ref41
  article-title: A theoretical framework for back-propagation
– start-page: 1
  volume-title: Proc. NeurIPS Workshop Score-Based Methods
  ident: ref44
  article-title: An optimal control perspective on diffusion-based generative modeling
– ident: ref14
  doi: 10.1017/S0962492906340019
– volume-title: Nonlinear Systems
  year: 2002
  ident: ref29
– ident: ref34
  doi: 10.1109/TCNS.2020.2988009
– ident: ref83
  doi: 10.1109/JPROC.2006.887322
– year: 2024
  ident: ref59
  article-title: A unifying system theory framework for distributed optimization and games
  publication-title: arXiv:2401.12623
– year: 2024
  ident: ref79
  article-title: Decision-focused learning: Foundations, state of the art, benchmark and future opportunities
  publication-title: arXiv:2307.13565
– volume: 129
  start-page: 130
  volume-title: Large-Scale Dynamic Systems: Stability and Structure
  year: 2007
  ident: ref49
– ident: ref75
  doi: 10.1561/2600000014
– volume-title: L2-Gain and Passivity Techniques in Nonlinear Control
  year: 2000
  ident: ref48
  doi: 10.1007/978-1-4471-0507-7
– ident: ref78
  doi: 10.1016/j.automatica.2004.11.021
– ident: ref15
  doi: 10.1093/imamat/11.2.171
– ident: ref50
  doi: 10.1109/MCS.2021.3139745
– year: 2023
  ident: ref92
  article-title: On equivalent optimization of machine learning methods
  publication-title: arXiv:2302.09160
– ident: ref38
  doi: 10.1109/JPROC.2020.3003156
– ident: ref71
  doi: 10.1109/MCS.2023.3291638
– ident: ref58
  doi: 10.1137/16M1084316
– ident: ref81
  doi: 10.1109/37.980245
– ident: ref86
  doi: 10.1002/rnc.7475
– volume-title: Adaptive Control
  year: 1995
  ident: ref25
– ident: ref19
  doi: 10.1007/978-1-4471-3037-6
– ident: ref18
  doi: 10.1017/9781139061759
– ident: ref26
  doi: 10.1109/MCS.2022.3157119
– start-page: 7088
  volume-title: Proc. ICML
  ident: ref33
  article-title: Continuous-time lower bounds for gradient-based algorithms
– ident: ref42
  doi: 10.1002/0471200611
– ident: ref46
  doi: 10.48550/ARXIV.1706.03762
– ident: ref3
  doi: 10.1109/CDC49753.2023.10384198
– ident: ref5
  doi: 10.1109/jproc.1996.503147
– ident: ref22
  doi: 10.1016/j.automatica.2023.111481
– ident: ref31
  doi: 10.1109/CDC49753.2023.10383282
– ident: ref68
  doi: 10.1109/TSG.2016.2571982
– ident: ref90
  doi: 10.1146/annurev-control-070220-100858
– volume-title: Stable Adaptive Systems
  year: 1989
  ident: ref24
– ident: ref21
  doi: 10.1002/0471669784
– year: 2024
  ident: ref45
  article-title: State space models as foundation models: A control theoretic overview
  publication-title: arXiv:2403.16899
– start-page: 3084
  volume-title: Proc. Conf. Learn. Theory
  ident: ref43
  article-title: Theoretical guarantees for sampling and inference in generative models with latent diffusions
– start-page: 615
  volume-title: Proc. Symp. Math. Theory Automata
  ident: ref40
  article-title: On convergence proofs on perceptrons
– year: 2024
  ident: ref56
  article-title: Online feedback equilibrium seeking
  publication-title: arXiv:2210.12088
– volume: 27
  start-page: 367
  issue: 2
  year: 1983
  ident: ref37
  article-title: A method for solving a convex programming problem with convergence rate O(1/K^{2})
  publication-title: Sov. Math. Doklady
– ident: ref52
  doi: 10.1145/3604915.3608778
– volume-title: Studies in Linear and Nonlinear Programming
  year: 1958
  ident: ref27
SSID ssj0001827029
Score 2.3676562
Snippet Traditionally, numerical algorithms are seen as isolated pieces of code confined to an in silico existence. However, this perspective is inappropriate for many...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1198
SubjectTerms Codes
decision-making architectures
Dynamical systems
Heuristic algorithms
Machine learning algorithms
online optimization and learning
Optimization
Pipelines
Real-time systems
Systems theory of algorithms
Title Toward a Systems Theory of Algorithms
URI https://ieeexplore.ieee.org/document/10540567
Volume 8
WOSCitedRecordID wos001252660000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2475-1456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001827029
  issn: 2475-1456
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-44cGLHzhxfpGDniQzadqmOY7h8CBD2IR5Kmk-VJirbJ1_v0na6TwoeCslCe3vEd77veT3HsClYxQipVZiLRTHsRQWC2EpzgxRmmuqrJSh2QQfjbLpVDw0YvWghTHGhMtnpucfw1m-LtXKp8rcDvfxRcpb0OKc12Kt74RK5qVVYi2MIeLmfjB-GjsKGMU9FgSe7Ifz2eimEpzJcO-fn7EPu03UiPq1mQ9gy8wP4WoSrrwiiZqy46gW2qPSov7suXS0_-Vt2YHH4e1kcIebrgdYRWlWYeM8aiZTF1ZRxZWJhPQl11wk5PYeSTPNuEwKWkRKWOHPngtVODtY94eOyUQqYUfQnpdzcwyIJUVBEkncEr4oC5PERtbIOBE60bFiXaBrOHLVlAT3nSlmeaAGROQBwtxDmDcQduH6a857XRDjz9Edj9_GyBq6k1_en8KOn17nOM6gXS1W5hy21Uf1ulxcBIN_Aknjp8w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFPTFC06c1zzok2Q2adM2j2MoE-cQNmE-lTQXFeYqu_j7TdJO54OCb6Ukof0O4VyS7zsA5zaj4DExAisuExwJbjDnhuBUB1IlikgjhG82kfR66XDIHyqyuufCaK395TPddI_-LF8Vcu5KZXaHu_giTlZhjUURJSVd67ukkjpyFV9QYwJ-1W33n_o2CaRRM_QUz_CH-1nqp-Ldyc32Pz9kB7aquBG1SkPvwooe78HFwF96RQJVwuOopNqjwqDW6Lmwif_L27QOjzfXg3YHV30PsKRxOsPa-tRUxDawIjKRmnLhRNdsLGR3XxCnKkwEy0lOJTfcnT7nMreWMPYPbS5DJQv3oTYuxvoAUMjyPGAisEs4WZZQBIYaLSLGFVORDBtAFnBkshIFd70pRplPDgKeeQgzB2FWQdiAy68576Ukxp-j6w6_pZEldIe_vD-Djc7gvpt1b3t3R7DpliorHsdQm03m-gTW5cfsdTo59cb_BDh_qxM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+Systems+Theory+of+Algorithms&rft.jtitle=IEEE+control+systems+letters&rft.au=Dorfler%2C+Florian&rft.au=He%2C+Zhiyu&rft.au=Belgioioso%2C+Giuseppe&rft.au=Bolognani%2C+Saverio&rft.date=2024&rft.pub=IEEE&rft.eissn=2475-1456&rft.volume=8&rft.spage=1198&rft.epage=1210&rft_id=info:doi/10.1109%2FLCSYS.2024.3406943&rft.externalDocID=10540567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon