Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
The large-scale multi-objective optimization algorithm (LSMOA), based on the grouping of decision variables, is an advanced method for handling high-dimensional decision variables. However, in practical problems, the interaction among decision variables is intricate, leading to large group sizes and...
Uloženo v:
| Vydáno v: | Computer modeling in engineering & sciences Ročník 140; číslo 1; s. 363 - 383 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Henderson
Tech Science Press
2024
|
| Témata: | |
| ISSN: | 1526-1506, 1526-1492, 1526-1506 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The large-scale multi-objective optimization algorithm (LSMOA), based on the grouping of decision variables, is an advanced method for handling high-dimensional decision variables. However, in practical problems, the interaction among decision variables is intricate, leading to large group sizes and suboptimal optimization effects; hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables (MOEAWOD) is proposed in this paper. Initially, the decision variables are perturbed and categorized into convergence and diversity variables; subsequently, the convergence variables are subdivided into groups based on the interactions among different decision variables. If the size of a group surpasses the set threshold, that group undergoes a process of weighting and overlapping grouping. Specifically, the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables. The decision variable with the highest interaction in the group is identified and disregarded, and the remaining variables are then reclassified into subgroups. Finally, the decision variable with the strongest interaction is added to each subgroup. MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups, which contributed to the optimized direction of convergence and diversity exploration with different groups. MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems, and the experimental results demonstrate the effectiveness of our methods. Compared with the other algorithms, our method is still at an advantage. |
|---|---|
| AbstractList | The large-scale multi-objective optimization algorithm (LSMOA), based on the grouping of decision variables, is an advanced method for handling high-dimensional decision variables. However, in practical problems, the interaction among decision variables is intricate, leading to large group sizes and suboptimal optimization effects; hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables (MOEAWOD) is proposed in this paper. Initially, the decision variables are perturbed and categorized into convergence and diversity variables; subsequently, the convergence variables are subdivided into groups based on the interactions among different decision variables. If the size of a group surpasses the set threshold, that group undergoes a process of weighting and overlapping grouping. Specifically, the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables. The decision variable with the highest interaction in the group is identified and disregarded, and the remaining variables are then reclassified into subgroups. Finally, the decision variable with the strongest interaction is added to each subgroup. MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups, which contributed to the optimized direction of convergence and diversity exploration with different groups. MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems, and the experimental results demonstrate the effectiveness of our methods. Compared with the other algorithms, our method is still at an advantage. |
| Author | Zhang, Jingbo Xu, Yubin Chen, Liang Cai, Xingjuan Wu, Linjie |
| Author_xml | – sequence: 1 givenname: Liang surname: Chen fullname: Chen, Liang – sequence: 2 givenname: Jingbo surname: Zhang fullname: Zhang, Jingbo – sequence: 3 givenname: Linjie surname: Wu fullname: Wu, Linjie – sequence: 4 givenname: Xingjuan surname: Cai fullname: Cai, Xingjuan – sequence: 5 givenname: Yubin surname: Xu fullname: Xu, Yubin |
| BookMark | eNpNkE1PwzAMhiMEEtvgB3CrxLkjXy3tcQwYSEM9MMExSlOny9Q2JUknwa-n2zhw8iPrtS0_U3Te2Q4QuiF4zmiK-Z1qwc8ppnyOeY45P0MTktA0JglOz__xJZp6v8OYpSzLJ8iupashfleygehtaIKJi3IHKpg9REUfTGt-ZDC2ixZNbZ0J2zZ6kB6qaGx9gqm3YeRiD66RfW-6Olo5OxzB6ugRlPGH4Q_pjCwb8FfoQsvGw_VfnaHN89Nm-RKvi9XrcrGOFU2zEAPGpcpTyqpSca64TDTNKS5zkvNMZyRnUGmSlbTCWmslMUjCpITxQ1nxis3Q7Wlt7-zXAD6InR1cN14UjGJMKEmS-zFFTinlrPcOtOidaaX7FgSLo1Zx0CoOWsVJK_sF67dvYw |
| Cites_doi | 10.1109/TEVC.2021.3118593 10.1080/0305215X.2022.2152805 10.1007/s10489-023-04822-y 10.1016/j.eswa.2023.120402 10.23919/CSMS.2022.0018 10.1109/JIOT.2023.3290793 10.1007/s10489-023-04596-3 10.1016/j.ins.2023.03.111 10.1016/j.ins.2023.119221 10.1016/j.ins.2023.119533 10.23919/CSMS.2022.0004 10.1504/IJCSM.2023.134557 10.1109/TEVC.2005.861417 10.1109/TEVC.2015.2455812 10.1504/IJCSM.2023.134568 10.1109/TEVC.2023.3250350 10.1016/j.swevo.2019.100626 10.1504/IJBIC.2022.128094 10.23919/CSMS.2022.0006 10.1504/IJBIC.2022.124333 10.1504/IJBIC.2023.131918 10.1061/(ASCE)CO.1943-7862.0001870 10.1109/TEVC.2013.2281535 10.1504/IJBIC.2023.133508 10.23919/CSMS.2023.0006 10.1504/IJCSM.2022.122145 10.1016/j.jobe.2021.103767 10.1016/j.neucom.2022.10.075 10.1016/j.swevo.2023.101360 10.1504/IJCSM.2022.122160 10.1504/IJCSM.2023.133641 10.1109/TITS.2023.3296002 10.23919/CSMS.2023.0011 10.23919/CSMS.2022.0026 10.1016/j.ins.2018.10.007 10.23919/CSMS.2023.0012 10.1016/j.ins.2022.05.050 10.1109/TII.2021.3093715 10.1109/TEVC.2022.3213006 10.1109/TCC.2023.3315014 10.1109/TEVC.2022.3222844 10.1016/j.ins.2023.119867 10.23919/CSMS.2023.0008 10.1109/TEVC.2016.2600642 10.1504/IJBIC.2022.123129 10.3390/app13074643 10.1016/j.swevo.2022.101181 |
| ContentType | Journal Article |
| Copyright | 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.32604/cmes.2024.049044 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1526-1506 |
| EndPage | 383 |
| ExternalDocumentID | 10_32604_cmes_2024_049044 |
| GroupedDBID | -~X AAFWJ AAYXX ABJCF ACIWK ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION EBS EJD F5P HCIFZ IPNFZ J9A K7- M7S OK1 PHGZM PHGZT PIMPY PQGLB PTHSS RIG RTS 7SC 7TB 8FD 8FE 8FG ABUWG AZQEC DWQXO FR3 GNUQQ JQ2 KR7 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c268t-e00bc9623dbc44c4a5f2920b91948f8193edf18b2d0fffca0ea13aae150ad4d3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001223020700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1526-1506 1526-1492 |
| IngestDate | Sat Sep 06 07:33:22 EDT 2025 Sat Nov 29 08:09:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-e00bc9623dbc44c4a5f2920b91948f8193edf18b2d0fffca0ea13aae150ad4d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3200121557?pq-origsite=%requestingapplication% |
| PQID | 3200121557 |
| PQPubID | 2048798 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_3200121557 crossref_primary_10_32604_cmes_2024_049044 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computer modeling in engineering & sciences |
| PublicationYear | 2024 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Tian (ref54) 2023; 518 Chen (ref41) 2020; 509 Yan (ref5) 2023; 3 Cui (ref20) 2023; 648 George (ref48) 2023; 22 Shen (ref23) 2023; 3 Li (ref38) 2023 Ma (ref39) 2016; 20 Wu (ref9) 2023; 636 Wang (ref34) 2023; 13 Tian (ref1) 2021; 54 Yao (ref6) 2022; 20 Huband (ref49) 2006; 10 Cao (ref43) 2020; 53 Liu (ref29) 2023; 27 Chen (ref57) 2023 Ishibuchi (ref55) 2019 Wang (ref8) 2023; 3 Filipkovska (ref21) 2022; 15 Guo (ref47) 2023; 3 Xie (ref33) 2023; 228 Deb (ref17) 2013; 18 Shu (ref18) 2023; 3 Zhang (ref19) 2023; 24 Suman (ref11) 2023; 21 Li (ref44) 2023; 82 Li (ref27) 2023 Ma (ref28) 2023; 18 Guo (ref24) 2023; 18 Chen (ref12) 2022; 606 Verma (ref16) 2022; 19 He (ref52) 2022; 28 Khoshoo (ref3) 2023; 56 Zheng (ref7) 2022; 15 Ren (ref10) 2023; 18 Antonio (ref42) 2013 Guo (ref56) 2022; 27 Sander (ref35) 2018 Cui (ref14) 2023; 11 Yang (ref36) 2021; 27 Sonmez (ref2) 2020; 146 Gao (ref40) 2023; 53 Azad (ref4) 2022; 46 Zille (ref51) 2019 Bai (ref22) 2022; 2 Gong (ref32) 2022; 19 Wang (ref37) 2023; 643 Hu (ref31) 2023; 11 Li (ref53) 2022; 75 Song (ref45) 2016 Qiao (ref30) 2022; 2 Zhang (ref50) 2016; 22 Cai (ref13) 2021; 19 Li (ref46) 2018 Cai (ref15) 2024; 654 Deng (ref25) 2023; 53 Li (ref26) 2022; 2 |
| References_xml | – start-page: 729 year: 2018 ident: ref35 article-title: Transfer strategies from single-to multi-objective grouping mechanisms – volume: 27 start-page: 445 year: 2021 ident: ref36 article-title: A fuzzy decision variables framework for large-scale multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2021.3118593 – volume: 56 start-page: 274 year: 2023 ident: ref3 article-title: Optimal design of electric machine with efficient handling of constraints and surrogate assistance publication-title: Engineering Optimization doi: 10.1080/0305215X.2022.2152805 – volume: 53 start-page: 24034 year: 2023 ident: ref25 article-title: LTCSO/D: A large-scale tri-particle competitive swarm optimizer based on decomposition for multiobjective optimization publication-title: Applied Intelligence doi: 10.1007/s10489-023-04822-y – volume: 228 start-page: 120402 year: 2023 ident: ref33 article-title: A decomposition-based multi-objective Jaya algorithm for lot-streaming job shop scheduling with variable sublots and intermingling setting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.120402 – volume: 2 start-page: 288 year: 2022 ident: ref26 article-title: Dual-stage hybrid learning particle swarm optimization algorithm for global optimization problems publication-title: Complex System Modeling and Simulation doi: 10.23919/CSMS.2022.0018 – volume: 11 start-page: 1190 year: 2023 ident: ref31 article-title: Many-objective optimization based-content popularity prediction for cache-assisted cloud-edge-end collaborative IoT networks publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2023.3290793 – volume: 53 start-page: 21576 year: 2023 ident: ref40 article-title: A large-scale multiobjective evolutionary algorithm with overlapping decomposition and adaptive reference point selection publication-title: Applied Intelligence doi: 10.1007/s10489-023-04596-3 – volume: 636 start-page: 118886 year: 2023 ident: ref9 article-title: Dynamic multi-objective evolutionary algorithm based on knowledge transfer publication-title: Information Sciences doi: 10.1016/j.ins.2023.03.111 – volume: 643 start-page: 119221 year: 2023 ident: ref37 article-title: An extended fuzzy decision variables framework for solving large-scale multiobjective optimization problems publication-title: Information Sciences doi: 10.1016/j.ins.2023.119221 – start-page: 468 year: 2016 ident: ref45 article-title: A random-based dynamic grouping strategy for large scale multi-objective optimization – volume: 648 start-page: 119533 year: 2023 ident: ref20 article-title: An interval multi-objective optimization algorithm based on elite genetic strategy publication-title: Information Sciences doi: 10.1016/j.ins.2023.119533 – year: 2023 ident: ref57 article-title: Evolutionary dynamic constrained multiobjective optimization: Test suite and algorithm publication-title: IEEE Transactions on Evolutionary Computation – volume: 2 start-page: 35 year: 2022 ident: ref30 article-title: Differential evolution with level-based learning mechanism publication-title: Complex System Modeling and Simulation doi: 10.23919/CSMS.2022.0004 – volume: 18 start-page: 276 year: 2023 ident: ref10 article-title: Non-destructive diagnosis of knee osteoarthritis based on sparse coding of MRI publication-title: International Journal of Computing Science and Mathematics doi: 10.1504/IJCSM.2023.134557 – volume: 10 start-page: 477 year: 2006 ident: ref49 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.861417 – volume: 20 start-page: 275 year: 2016 ident: ref39 article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2015.2455812 – volume: 18 start-page: 235 year: 2023 ident: ref28 article-title: Multi-population artificial bee colony algorithm based on the nearest neighbour partition publication-title: International Journal of Computing Science and Mathematics doi: 10.1504/IJCSM.2023.134568 – volume: 27 start-page: 1941 year: 2023 ident: ref29 article-title: A survey on learnable evolutionary algorithms for scalable multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2023.3250350 – volume: 53 start-page: 100626 year: 2020 ident: ref43 article-title: Applying graph-based differential grouping for multiobjective large-scale optimization publication-title: Swarm Evolutionary Computation doi: 10.1016/j.swevo.2019.100626 – volume: 20 start-page: 256 year: 2022 ident: ref6 article-title: Artificial leaf-vein network optimisation algorithm for urban transportation network design publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2022.128094 – volume: 2 start-page: 130 year: 2022 ident: ref22 article-title: Multi-UAV cooperative trajectory planning based on many-objective evolutionary algorithm publication-title: Complex System Modeling and Simulation doi: 10.23919/CSMS.2022.0006 – volume: 19 start-page: 238 year: 2022 ident: ref16 article-title: Solving systems of nonlinear equations with real world problems using an advanced hybrid algorithm publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2022.124333 – volume: 21 start-page: 123 year: 2023 ident: ref11 article-title: Power quality improvement for microgrid-connected PV-based converters under partial shading conditions using mixed optimisation algorithms publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2023.131918 – volume: 146 start-page: 04020084 year: 2020 ident: ref2 article-title: Activity uncrashing heuristic with noncritical activity rescheduling method for the discrete time-cost trade-off problem publication-title: Journal of Construction Engineering Management doi: 10.1061/(ASCE)CO.1943-7862.0001870 – volume: 18 start-page: 577 year: 2013 ident: ref17 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281535 – volume: 22 start-page: 40 year: 2023 ident: ref48 article-title: Improved whale social optimisation algorithm and deep fuzzy clustering for optimal and QoS-aware load balancing in cloud computing publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2023.133508 – volume: 3 start-page: 83 year: 2023 ident: ref18 article-title: Variable reduction strategy integrated variable neighborhood search and NSGA-II hybrid algorithm for emergency material scheduling publication-title: Complex System Modeling and Simulation doi: 10.23919/CSMS.2023.0006 – volume: 15 start-page: 1 year: 2022 ident: ref21 article-title: Two combined methods for the global solution of implicit semilinear differential equations with the use of spectral projectors and Taylor expansions publication-title: International Journal of Computing Science and Mathematics doi: 10.1504/IJCSM.2022.122145 – volume: 46 start-page: 103767 year: 2022 ident: ref4 article-title: ε-constraint guided stochastic search with successive seeding for multi-objective optimization of large-scale steel double-layer grids publication-title: Journal of Building Engineering doi: 10.1016/j.jobe.2021.103767 – volume: 518 start-page: 190 year: 2023 ident: ref54 article-title: A practical tutorial on solving optimization problems via PlatEMO publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.075 – start-page: 2758 year: 2013 ident: ref42 article-title: Use of cooperative coevolution for solving large scale multiobjective optimization problems – volume: 82 start-page: 101360 year: 2023 ident: ref44 article-title: Redefined decision variable analysis method for large-scale optimization and its application to feature selection publication-title: Swarm Evolutionary Computation doi: 10.1016/j.swevo.2023.101360 – volume: 54 start-page: 1 year: 2021 ident: ref1 article-title: Evolutionary large-scale multi-objective optimization: A survey publication-title: ACM Computing Surveys – volume: 15 start-page: 30 year: 2022 ident: ref7 article-title: Research on localisation algorithm of large irregular workpiece for industrial robot publication-title: International Journal of Computing Science and Mathematics doi: 10.1504/IJCSM.2022.122160 – year: 2019 ident: ref51 publication-title: Large-scale multi-objective optimisation: New approaches and a classification of the state-of-the-art (Dissertation) – volume: 18 start-page: 113 year: 2023 ident: ref24 article-title: Application of particle swarm optimisation algorithm in manipulator compliance control publication-title: International Journal of Computing Science and Mathematics doi: 10.1504/IJCSM.2023.133641 – volume: 24 start-page: 15051 year: 2023 ident: ref19 article-title: Many-objective optimization based intrusion detection for in-vehicle network security publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2023.3296002 – volume: 3 start-page: 169 year: 2023 ident: ref47 article-title: Low-carbon routing based on improved artificial bee colony algorithm for electric trackless rubber-tyred vehicles publication-title: Complex System Modeling and Simulation doi: 10.23919/CSMS.2023.0011 – year: 2023 ident: ref38 article-title: Neural net-enhanced competitive swarm optimizer for large-scale multiobjective optimization publication-title: IEEE Transactions on Cybernetics – start-page: 1716 year: 2018 ident: ref46 article-title: A cooperative co-evolutionary algorithm for large-scale multi-objective optimization problems – volume: 3 start-page: 1 year: 2023 ident: ref5 article-title: Load optimization scheduling of chip mounter based on hybrid adaptive optimization algorithm publication-title: Complex System Modeling and Simulation doi: 10.23919/CSMS.2022.0026 – volume: 509 start-page: 457 year: 2020 ident: ref41 article-title: Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations publication-title: Information Sciences doi: 10.1016/j.ins.2018.10.007 – volume: 3 start-page: 191 year: 2023 ident: ref8 article-title: I ε+ LGEA a learning-guided evolutionary algorithm based on I ε+ indicator for portfolio optimization publication-title: Complex System Modeling and Simulation doi: 10.23919/CSMS.2023.0012 – start-page: 332 year: 2019 ident: ref55 article-title: Comparison of hypervolume, IGD and IGD+ from the viewpoint of optimal distributions of solutions – volume: 606 start-page: 328 year: 2022 ident: ref12 article-title: A domain adaptation learning strategy for dynamic multiobjective optimization publication-title: Information Sciences doi: 10.1016/j.ins.2022.05.050 – year: 2023 ident: ref27 article-title: A two-population algorithm for large-scale multi-objective optimization based on fitness-aware operator and adaptive environmental selection publication-title: IEEE Transactions on Evolutionary Computation – volume: 19 start-page: 561 year: 2021 ident: ref13 article-title: A many-objective optimization based federal deep generation model for enhancing data processing capability in IoT publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2021.3093715 – volume: 28 start-page: 47 year: 2022 ident: ref52 article-title: Large-scale multiobjective optimization via reformulated decision variable analysis publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2022.3213006 – volume: 11 start-page: 3685 year: 2023 ident: ref14 article-title: Multi-objective cloud task scheduling optimization based on evolutionary multi-factor algorithm publication-title: IEEE Transactions on Cloud Computing doi: 10.1109/TCC.2023.3315014 – volume: 27 start-page: 1750 year: 2022 ident: ref56 article-title: A knowledge guided transfer strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2022.3222844 – volume: 654 start-page: 119867 year: 2024 ident: ref15 article-title: Dynamic adaptive multi-objective optimization algorithm based on type detection publication-title: Information Sciences doi: 10.1016/j.ins.2023.119867 – volume: 3 start-page: 202 year: 2023 ident: ref23 article-title: Energy-efficient multi-trip routing for municipal solid waste collection by contribution-based adaptive particle swarm optimization publication-title: Complex System Modeling and Simulation doi: 10.23919/CSMS.2023.0008 – volume: 22 start-page: 97 year: 2016 ident: ref50 article-title: A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2016.2600642 – volume: 19 start-page: 169 year: 2022 ident: ref32 article-title: An ensemble-surrogate assisted cooperative particle swarm optimisation algorithm for water contamination source identification publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2022.123129 – volume: 13 start-page: 4643 year: 2023 ident: ref34 article-title: A survey on search strategy of evolutionary multi-objective optimization algorithms publication-title: Applied Sciences doi: 10.3390/app13074643 – volume: 75 start-page: 101181 year: 2022 ident: ref53 article-title: A fast sampling based evolutionary algorithm for million-dimensional multiobjective optimization publication-title: Swarm Evolutionary Computation doi: 10.1016/j.swevo.2022.101181 |
| SSID | ssj0036389 |
| Score | 2.359074 |
| Snippet | The large-scale multi-objective optimization algorithm (LSMOA), based on the grouping of decision variables, is an advanced method for handling... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 363 |
| SubjectTerms | Algorithms Convergence Multiple objective analysis Optimization Optimization algorithms Subgroups Variables |
| Title | Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables |
| URI | https://www.proquest.com/docview/3200121557 |
| Volume | 140 |
| WOSCitedRecordID | wos001223020700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: P5Z dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: K7- dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: M7S dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: PIMPY dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZg6aEXHi1Vea186KmSixM7m-SEeAoE3Y0KaqGXyM8tiN2F3YXfz4zjCHHphUtkxZITzYxnPo_t-Qj5ltjUe8MVK6xSTAovWGm4Y0Ih2s9ysBsdyCbyfr-4vi6rmHCbxWOVrU8MjtpODObId0Uayo9lWb738MiQNQp3VyOFxiJZwkplYOdLB8f96lfriwXG41AxNe0xWAukzb4mQBYud83IYb3uVP7A3S8p30amt445RJuTlff-5ypZjjiT7jeGsUYW3PgTWWk5HGic0p_J5AKPgrNLUJWj4TYuG-i7xgvSAfiTUbyoSffvh_Cd-b8RPYDIZym8-hPyqtAePGNaEEs9DGnIZmFj4ulRZPChv2FJjpe0Zuvk6uT46vCURRIGZtJeMWeOc21KAElWGymNVJlHgitdJqUsPOAJ4axPCp1a7kHrijuVCKUcAE1lpRVfSGc8GbuvhArXUxngUc01lzbLS-6QVdxnRaFdYtQG-d7Kv35oSm3UsEQJyqpRWTUqq26UtUG2W_HXcdbN6lfZb_6_e4t8xLGaVMo26cynT26HfDDP89vZtBuNqEsWz3PWxdOgl_Cssr_QU539rG5eAOvI1mU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAkulKcoFPABLkimju1Ndg8IFUrVqGkSiQjKyfKztGqS0oQifhT_kRnvrlAv3HrgZu1Klrzz7TcP2_MBvOwGmZIXlpfBWq5VUrzyInJlKdov-ogbl8Um-qNReXRUTdbgd3sXho5VtpyYiTosPNXIt5XM7ceKov_u_Dsn1SjaXW0lNGpYHMRfPzFlW74d7KJ9X0m593H6YZ83qgLcy1654lEI5yv0-sF5rb22RSLFJldhOl8mdJAqhtQtnQwi4TKsiLarrI0YOdmgg8Jpb8C6RqyLDqxPBoeTry31K3L_uUGr7HFMPWS9jYoRktDbfhapPbjUb2izTeurjvCqH8jObW_jP_ssd-FOE0WznRr292Atzu_DRqtQwRrCegCLIR10558QiJHlu8Z87E5rjmdjZMtZcw2V7Zwd47JW32bsPfr1wPDRl1w1xvH4koqe1MjimOVaHQ0Wie02-kTss8Xf2J3F5UOYXseqH0FnvpjHx8BU7NkCo20nnNCh6FcikmZ6KsrSxa63m_C6Nbc5rxuJGEzAMjYMYcMQNkyNjU3Yaq1tGk5Zmr-mfvLv1y_g1v70cGiGg9HBU7hN89ZFoy3orC5-xGdw01-uTpYXzxv8MjDXDI0_DnIwqw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Multi-Objective+Optimization+Algorithm+Based+on+Weighted+Overlapping+Grouping+of+Decision+Variables&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Chen%2C+Liang&rft.au=Zhang%2C+Jingbo&rft.au=Wu%2C+Linjie&rft.au=Cai%2C+Xingjuan&rft.date=2024&rft.issn=1526-1506&rft.eissn=1526-1506&rft.volume=140&rft.issue=1&rft.spage=363&rft.epage=383&rft_id=info:doi/10.32604%2Fcmes.2024.049044&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2024_049044 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon |