A new bias-corrected estimator method in extreme value distributions with small sample size

This paper proposes a bias-corrected expression for maximum likelihood estimators using the sequential number-theoretic method for optimization (SNTO) to improve the efficiency and accuracy of the estimators in three extreme value distributions (EVDs). It is well known that the widely used maximum l...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of statistical computation and simulation Ročník 92; číslo 18; s. 3862 - 3884
Hlavní autori: Wang, Sirao, Fang, Kai-Tai, Ye, Huajun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 12.12.2022
Taylor & Francis Ltd
Predmet:
ISSN:0094-9655, 1563-5163
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper proposes a bias-corrected expression for maximum likelihood estimators using the sequential number-theoretic method for optimization (SNTO) to improve the efficiency and accuracy of the estimators in three extreme value distributions (EVDs). It is well known that the widely used maximum likelihood estimation (MLE) could be often biased for small-size samples in EVDs. Meanwhile, numerical simulation results reveal that maximum likelihood estimators are suffered from high variance when the sample size is small and the impact is non-negligible. A comprehensive comparison study which includes classical bias-corrected methods and more recent ones is presented. Based on the simulation studies, the bias-correction estimator via SNTO is highly recommended to reduce the bias and variance of estimators. In addition, a real data set is illustrated to employ different techniques.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0094-9655
1563-5163
DOI:10.1080/00949655.2022.2085706