A new bias-corrected estimator method in extreme value distributions with small sample size

This paper proposes a bias-corrected expression for maximum likelihood estimators using the sequential number-theoretic method for optimization (SNTO) to improve the efficiency and accuracy of the estimators in three extreme value distributions (EVDs). It is well known that the widely used maximum l...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of statistical computation and simulation Ročník 92; číslo 18; s. 3862 - 3884
Hlavní autori: Wang, Sirao, Fang, Kai-Tai, Ye, Huajun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 12.12.2022
Taylor & Francis Ltd
Predmet:
ISSN:0094-9655, 1563-5163
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a bias-corrected expression for maximum likelihood estimators using the sequential number-theoretic method for optimization (SNTO) to improve the efficiency and accuracy of the estimators in three extreme value distributions (EVDs). It is well known that the widely used maximum likelihood estimation (MLE) could be often biased for small-size samples in EVDs. Meanwhile, numerical simulation results reveal that maximum likelihood estimators are suffered from high variance when the sample size is small and the impact is non-negligible. A comprehensive comparison study which includes classical bias-corrected methods and more recent ones is presented. Based on the simulation studies, the bias-correction estimator via SNTO is highly recommended to reduce the bias and variance of estimators. In addition, a real data set is illustrated to employ different techniques.
AbstractList This paper proposes a bias-corrected expression for maximum likelihood estimators using the sequential number-theoretic method for optimization (SNTO) to improve the efficiency and accuracy of the estimators in three extreme value distributions (EVDs). It is well known that the widely used maximum likelihood estimation (MLE) could be often biased for small-size samples in EVDs. Meanwhile, numerical simulation results reveal that maximum likelihood estimators are suffered from high variance when the sample size is small and the impact is non-negligible. A comprehensive comparison study which includes classical bias-corrected methods and more recent ones is presented. Based on the simulation studies, the bias-correction estimator via SNTO is highly recommended to reduce the bias and variance of estimators. In addition, a real data set is illustrated to employ different techniques.
This paper proposes a bias-corrected expression for maximum likelihood estimators using the sequential number-theoretic method for optimization (SNTO) to improve the efficiency and accuracy of the estimators in three extreme value distributions (EVDs). It is well known that the widely used maximum likelihood estimation (MLE) could be often biased for small-size samples in EVDs. Meanwhile, numerical simulation results reveal that maximum likelihood estimators are suffered from high variance when the sample size is small and the impact is non-negligible. A comprehensive comparison study which includes classical bias-corrected methods and more recent ones is presented. Based on the simulation studies, the bias-correction estimator via SNTO is highly recommended to reduce the bias and variance of estimators. In addition, a real data set is illustrated to employ different techniques.
Author Ye, Huajun
Wang, Sirao
Fang, Kai-Tai
Author_xml – sequence: 1
  givenname: Sirao
  surname: Wang
  fullname: Wang, Sirao
  organization: Hong Kong Baptist University
– sequence: 2
  givenname: Kai-Tai
  surname: Fang
  fullname: Fang, Kai-Tai
  organization: The Chinese Academy of Sciences
– sequence: 3
  givenname: Huajun
  surname: Ye
  fullname: Ye, Huajun
  email: hjye@uic.edu.cn
  organization: BNU-HKBU United International College
BookMark eNqFkD9PwzAQxS1UJNrCR0CyxJxiJ7XdiIWq4p9UiQUmBst2zqqrJC62SymfnkQtCwMsd8vvvbv3RmjQ-hYQuqRkQsmMXBNSTkvO2CQned6NGROEn6AhZbzIGOXFAA17JuuhMzSKcU0IoZTlQ_Q2xy3ssHYqZsaHACZBhSEm16jkA24grXyFXYvhMwVoAH-oegu4cjEFp7fJ-TbinUsrHBtV1ziqZlMDju4LztGpVXWEi-Meo9f7u5fFY7Z8fnhazJeZyfksZZUtWWHLkglNhS6N5lVBWM4EnyleckuNqBRoDWZaMaDAciuEtooUU05A22KMrg6-m-Dft93vcu23oe1OylwUomSM02lHsQNlgo8xgJWb0IUMe0mJ7HuUPz3Kvkd57LHT3fzSGZdUnzsF5ep_1bcHtWutD43a-VBXMql97YMNqjUuyuJvi2-zS48f
CitedBy_id crossref_primary_10_1080_03610918_2024_2391871
crossref_primary_10_3390_math11132930
Cites_doi 10.1080/03610918.2018.1433838
10.1093/biomet/80.1.27
10.1007/978-1-4899-3095-8
10.1016/0022-1694(91)90183-I
10.1109/14.192241
10.1093/comjnl/7.4.308
10.1016/0022-1694(87)90070-9
10.6028/jres.057.033
10.1080/03610928208828412
10.1016/0022-1694(84)90031-3
10.1080/00401706.1977.10489555
10.1201/9780203738535-8
10.2307/2683591
10.1017/S0305004100015681
10.1109/94.485511
10.1214/aos/1176344552
10.1080/00401706.1969.10490706
10.1109/94.300257
10.1080/01621459.1979.10481038
10.1007/BF01386213
10.1214/ss/1177010392
10.1080/00401706.1974.10489148
10.1007/978-1-4899-4541-9
10.1214/aoms/1177728182
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949655.2022.2085706
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 3884
ExternalDocumentID 10_1080_00949655_2022_2085706
2085706
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c268t-df953f9957b17b9cb6d30525768a696f1c7daebbec4d5e1e52f77bfa03460ebf3
IEDL.DBID TFW
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000811165300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-9655
IngestDate Sun Nov 30 04:46:39 EST 2025
Tue Nov 18 22:35:01 EST 2025
Sat Nov 29 06:28:00 EST 2025
Mon Oct 20 23:47:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-df953f9957b17b9cb6d30525768a696f1c7daebbec4d5e1e52f77bfa03460ebf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2737955614
PQPubID 53118
PageCount 23
ParticipantIDs proquest_journals_2737955614
crossref_primary_10_1080_00949655_2022_2085706
informaworld_taylorfrancis_310_1080_00949655_2022_2085706
crossref_citationtrail_10_1080_00949655_2022_2085706
PublicationCentury 2000
PublicationDate 2022-12-12
PublicationDateYYYYMMDD 2022-12-12
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-12
  day: 12
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Shenton LR (CIT0002) 1977
CIT0010
CIT0011
Loganathan A (CIT0012) 2017; 4
CIT0014
CIT0013
CIT0016
CIT0015
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Nash JC (CIT0018) 1987
CIT0003
CIT0025
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0006
CIT0028
CIT0009
CIT0008
Kai-tai F (CIT0017) 1991; 9
References_xml – volume: 4
  start-page: 83
  year: 2017
  ident: CIT0012
  publication-title: Global Stoch Anal
– ident: CIT0013
  doi: 10.1080/03610918.2018.1433838
– ident: CIT0006
  doi: 10.1093/biomet/80.1.27
– ident: CIT0021
  doi: 10.1007/978-1-4899-3095-8
– ident: CIT0004
  doi: 10.1016/0022-1694(91)90183-I
– ident: CIT0008
  doi: 10.1109/14.192241
– ident: CIT0016
  doi: 10.1093/comjnl/7.4.308
– ident: CIT0015
  doi: 10.1016/0022-1694(87)90070-9
– volume: 9
  start-page: 9
  year: 1991
  ident: CIT0017
  publication-title: J Comput Math
– ident: CIT0027
  doi: 10.6028/jres.057.033
– ident: CIT0003
  doi: 10.1080/03610928208828412
– ident: CIT0014
  doi: 10.1016/0022-1694(84)90031-3
– ident: CIT0010
  doi: 10.1080/00401706.1977.10489555
– ident: CIT0025
  doi: 10.1201/9780203738535-8
– ident: CIT0024
  doi: 10.2307/2683591
– ident: CIT0001
  doi: 10.1017/S0305004100015681
– ident: CIT0011
  doi: 10.1109/94.485511
– ident: CIT0026
  doi: 10.1214/aos/1176344552
– ident: CIT0022
  doi: 10.1080/00401706.1969.10490706
– ident: CIT0007
  doi: 10.1109/94.300257
– volume-title: Nonlinear parameter estimation: an integrated system in BASIC
  year: 1987
  ident: CIT0018
– ident: CIT0023
  doi: 10.1080/01621459.1979.10481038
– ident: CIT0020
  doi: 10.1007/BF01386213
– volume-title: Maximum likelihood estimation in small samples
  year: 1977
  ident: CIT0002
– ident: CIT0019
  doi: 10.1214/ss/1177010392
– ident: CIT0009
  doi: 10.1080/00401706.1974.10489148
– ident: CIT0028
  doi: 10.1007/978-1-4899-4541-9
– ident: CIT0005
  doi: 10.1214/aoms/1177728182
SSID ssj0001152
Score 2.3082633
Snippet This paper proposes a bias-corrected expression for maximum likelihood estimators using the sequential number-theoretic method for optimization (SNTO) to...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3862
SubjectTerms Bias
Bias correction
extreme value distribution
Extreme values
Maximum likelihood estimation
Maximum likelihood estimators
monte carlo simulation
Optimization
sequential number-theoretic algorithm
Title A new bias-corrected estimator method in extreme value distributions with small sample size
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2022.2085706
https://www.proquest.com/docview/2737955614
Volume 92
WOSCitedRecordID wos000811165300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1563-5163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001152
  issn: 0094-9655
  databaseCode: TFW
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPMyD06k4nZKD1-ratElzHOLw4vAwceCh5BMG25RlevCvN69Ni0NkBz2W8kJ4eXlfvPx-CF1JnRvOiI1iK4gvUJiOckHSSPvYmA4UozaRJdkEG4_z6ZQ_hmlCF8YqoYa2FVBE6avhcgvp6om4G5iG4zTLfHWXwFsqwGgH0G2f2YONT0bPjS-OK84dkIhApH7D89sqG9FpA7v0h68uA9Co8w9bP0D7IfvEw8pcDtGOWXZRp2Z2wOGid9HeQ4Pm6rqoDRlpBeh8hF6G2GfiWM6EixRQeyifs2LA6lhA_Y4rSmo8W2Lv9qH5iAFP3GANCL2BXMthaP9itxDzOXYCAIqxm32aY_Q0upvc3keBoSFSCc3XkbY8I5bzjMmYSa4k1aQkxqO5oJzaWDEtjPR2kurMxCZLLGPSigFJ6cBIS05Qa_m6NKcIe1-jDM2tTryK0pwLZkhGVEyp9D-U6KG0PplCBfhyYNGYF3GDclrptgDdFkG3PXTdiL1V-B3bBPj3Yy_WZePEViwnBdki269tpAiuwBU-P2QcSEjTsz8sfY7a8AmDNHHSR6316t1coF314Y9_dVka_RekI_1g
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB58gXrwURXf5uB1tbvZTTbHIpaK2lNFwUPIEwptFbd68Neb2UdRRDzoOUwIk8m8mHwfwKm2uROc-ij2ioYChdsoVzSNbIiNadtw5hNdkk3wfj9_eBCf_8LgWCXW0L4Ciih9NT5ubEY3I3HnOA4nWJaF8i7Bz1QI0s7mYTELsRbH-gbd-5k3jivWHRSJUKb5xfPTNl_i0xf00m_eugxB3fX_OPwGrNUJKOlUFrMJc27SgvWG3IHUb70Fq7czQNeiBSuYlFaYzlvw2CEhGSd6qIrIILuHCWkrQbiOMZbwpGKlJsMJCZ4f-48EIcUdsQjSW_NrFQQ7wKQYq9GIFAoxikkxfHfbcNe9HFz0opqkITIJy6eR9SKjXoiM65hrYTSztOTGY7ligvnYcKucDqaS2szFLks859qrNk1Z22lPd2Bh8jRxu0CCuzGO5d4mQUVpLhR3NKMmZkyHBaP2IG2uRpoawRyJNEYyngGdVrqVqFtZ63YPzmZizxWEx28C4vO9y2nZO_EV0Ymkv8geNkYia29QyJAicoE8pOn-H7Y-geXe4PZG3lz1rw9gBZdwriZODmFh-vLqjmDJvAVTeDkuX8AHmRsBkA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB6VtEJwgBJAvEp94Lolu96118cIGlG1RDmkAqkHy08pUgiIDRz49Xh2vVEjVOVQztZY1ng8L42_D-BM29IJTn2SekVDgcJtUiqaJzbExrxnOPOZrskm-HBY3t6KUZwmrOJYJdbQvgGKqH01Pu4H69uJuHOchhOsKEJ1l-FfKsRoZ2vwsQbHCiY9HtwsnHHakO6gSIIy7Seef22zFJ6WwEvfOOs6Ag223-Hsn2Erpp-k39jLDnxwsy5st9QOJL70LmxeL-Bcqy5sYEraIDrvwp8-Cak40RNVJQa5PUxIWgmCddxhAU8aTmoymZHg97H7SBBQ3BGLEL2RXasi2P8l1Z2aTkmlEKGYVJMXtwe_B9_HF1dJpGhITMbKeWK9KKgXouA65VoYzSytmfFYqZhgPjXcKqeDoeS2cKkrMs-59qpHc9Zz2tN96MzuZ-4ASHA2xrHS2yyoKC-F4o4W1KSM6bBg1CHk7c1IE_HLkUZjKtMFzGmjW4m6lVG3h_BtIfbQAHisEhB_X7uc150T39CcSLpC9qS1ERl9QSVDgsgFspDmR_-x9VdYH10O5K8fw5_HsIErOFSTZifQmT8-uS_wyTwHS3g8re3_FV6MADQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+bias-corrected+estimator+method+in+extreme+value+distributions+with+small+sample+size&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Wang%2C+Sirao&rft.au=Kai-Tai%2C+Fang&rft.au=Ye%2C+Huajun&rft.date=2022-12-12&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=92&rft.issue=18&rft.spage=3862&rft.epage=3884&rft_id=info:doi/10.1080%2F00949655.2022.2085706&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon