A new bias-corrected estimator method in extreme value distributions with small sample size
This paper proposes a bias-corrected expression for maximum likelihood estimators using the sequential number-theoretic method for optimization (SNTO) to improve the efficiency and accuracy of the estimators in three extreme value distributions (EVDs). It is well known that the widely used maximum l...
Uložené v:
| Vydané v: | Journal of statistical computation and simulation Ročník 92; číslo 18; s. 3862 - 3884 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
12.12.2022
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0094-9655, 1563-5163 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper proposes a bias-corrected expression for maximum likelihood estimators using the sequential number-theoretic method for optimization (SNTO) to improve the efficiency and accuracy of the estimators in three extreme value distributions (EVDs). It is well known that the widely used maximum likelihood estimation (MLE) could be often biased for small-size samples in EVDs. Meanwhile, numerical simulation results reveal that maximum likelihood estimators are suffered from high variance when the sample size is small and the impact is non-negligible. A comprehensive comparison study which includes classical bias-corrected methods and more recent ones is presented. Based on the simulation studies, the bias-correction estimator via SNTO is highly recommended to reduce the bias and variance of estimators. In addition, a real data set is illustrated to employ different techniques. |
|---|---|
| AbstractList | This paper proposes a bias-corrected expression for maximum likelihood estimators using the sequential number-theoretic method for optimization (SNTO) to improve the efficiency and accuracy of the estimators in three extreme value distributions (EVDs). It is well known that the widely used maximum likelihood estimation (MLE) could be often biased for small-size samples in EVDs. Meanwhile, numerical simulation results reveal that maximum likelihood estimators are suffered from high variance when the sample size is small and the impact is non-negligible. A comprehensive comparison study which includes classical bias-corrected methods and more recent ones is presented. Based on the simulation studies, the bias-correction estimator via SNTO is highly recommended to reduce the bias and variance of estimators. In addition, a real data set is illustrated to employ different techniques. This paper proposes a bias-corrected expression for maximum likelihood estimators using the sequential number-theoretic method for optimization (SNTO) to improve the efficiency and accuracy of the estimators in three extreme value distributions (EVDs). It is well known that the widely used maximum likelihood estimation (MLE) could be often biased for small-size samples in EVDs. Meanwhile, numerical simulation results reveal that maximum likelihood estimators are suffered from high variance when the sample size is small and the impact is non-negligible. A comprehensive comparison study which includes classical bias-corrected methods and more recent ones is presented. Based on the simulation studies, the bias-correction estimator via SNTO is highly recommended to reduce the bias and variance of estimators. In addition, a real data set is illustrated to employ different techniques. |
| Author | Ye, Huajun Wang, Sirao Fang, Kai-Tai |
| Author_xml | – sequence: 1 givenname: Sirao surname: Wang fullname: Wang, Sirao organization: Hong Kong Baptist University – sequence: 2 givenname: Kai-Tai surname: Fang fullname: Fang, Kai-Tai organization: The Chinese Academy of Sciences – sequence: 3 givenname: Huajun surname: Ye fullname: Ye, Huajun email: hjye@uic.edu.cn organization: BNU-HKBU United International College |
| BookMark | eNqFkD9PwzAQxS1UJNrCR0CyxJxiJ7XdiIWq4p9UiQUmBst2zqqrJC62SymfnkQtCwMsd8vvvbv3RmjQ-hYQuqRkQsmMXBNSTkvO2CQned6NGROEn6AhZbzIGOXFAA17JuuhMzSKcU0IoZTlQ_Q2xy3ssHYqZsaHACZBhSEm16jkA24grXyFXYvhMwVoAH-oegu4cjEFp7fJ-TbinUsrHBtV1ziqZlMDju4LztGpVXWEi-Meo9f7u5fFY7Z8fnhazJeZyfksZZUtWWHLkglNhS6N5lVBWM4EnyleckuNqBRoDWZaMaDAciuEtooUU05A22KMrg6-m-Dft93vcu23oe1OylwUomSM02lHsQNlgo8xgJWb0IUMe0mJ7HuUPz3Kvkd57LHT3fzSGZdUnzsF5ep_1bcHtWutD43a-VBXMql97YMNqjUuyuJvi2-zS48f |
| CitedBy_id | crossref_primary_10_1080_03610918_2024_2391871 crossref_primary_10_3390_math11132930 |
| Cites_doi | 10.1080/03610918.2018.1433838 10.1093/biomet/80.1.27 10.1007/978-1-4899-3095-8 10.1016/0022-1694(91)90183-I 10.1109/14.192241 10.1093/comjnl/7.4.308 10.1016/0022-1694(87)90070-9 10.6028/jres.057.033 10.1080/03610928208828412 10.1016/0022-1694(84)90031-3 10.1080/00401706.1977.10489555 10.1201/9780203738535-8 10.2307/2683591 10.1017/S0305004100015681 10.1109/94.485511 10.1214/aos/1176344552 10.1080/00401706.1969.10490706 10.1109/94.300257 10.1080/01621459.1979.10481038 10.1007/BF01386213 10.1214/ss/1177010392 10.1080/00401706.1974.10489148 10.1007/978-1-4899-4541-9 10.1214/aoms/1177728182 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/00949655.2022.2085706 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1563-5163 |
| EndPage | 3884 |
| ExternalDocumentID | 10_1080_00949655_2022_2085706 2085706 |
| Genre | Research Article |
| GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ZL0 ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c268t-df953f9957b17b9cb6d30525768a696f1c7daebbec4d5e1e52f77bfa03460ebf3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000811165300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-9655 |
| IngestDate | Sun Nov 30 04:46:39 EST 2025 Tue Nov 18 22:35:01 EST 2025 Sat Nov 29 06:28:00 EST 2025 Mon Oct 20 23:47:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-df953f9957b17b9cb6d30525768a696f1c7daebbec4d5e1e52f77bfa03460ebf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2737955614 |
| PQPubID | 53118 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2737955614 crossref_primary_10_1080_00949655_2022_2085706 informaworld_taylorfrancis_310_1080_00949655_2022_2085706 crossref_citationtrail_10_1080_00949655_2022_2085706 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-12 |
| PublicationDateYYYYMMDD | 2022-12-12 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Journal of statistical computation and simulation |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | Shenton LR (CIT0002) 1977 CIT0010 CIT0011 Loganathan A (CIT0012) 2017; 4 CIT0014 CIT0013 CIT0016 CIT0015 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Nash JC (CIT0018) 1987 CIT0003 CIT0025 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0006 CIT0028 CIT0009 CIT0008 Kai-tai F (CIT0017) 1991; 9 |
| References_xml | – volume: 4 start-page: 83 year: 2017 ident: CIT0012 publication-title: Global Stoch Anal – ident: CIT0013 doi: 10.1080/03610918.2018.1433838 – ident: CIT0006 doi: 10.1093/biomet/80.1.27 – ident: CIT0021 doi: 10.1007/978-1-4899-3095-8 – ident: CIT0004 doi: 10.1016/0022-1694(91)90183-I – ident: CIT0008 doi: 10.1109/14.192241 – ident: CIT0016 doi: 10.1093/comjnl/7.4.308 – ident: CIT0015 doi: 10.1016/0022-1694(87)90070-9 – volume: 9 start-page: 9 year: 1991 ident: CIT0017 publication-title: J Comput Math – ident: CIT0027 doi: 10.6028/jres.057.033 – ident: CIT0003 doi: 10.1080/03610928208828412 – ident: CIT0014 doi: 10.1016/0022-1694(84)90031-3 – ident: CIT0010 doi: 10.1080/00401706.1977.10489555 – ident: CIT0025 doi: 10.1201/9780203738535-8 – ident: CIT0024 doi: 10.2307/2683591 – ident: CIT0001 doi: 10.1017/S0305004100015681 – ident: CIT0011 doi: 10.1109/94.485511 – ident: CIT0026 doi: 10.1214/aos/1176344552 – ident: CIT0022 doi: 10.1080/00401706.1969.10490706 – ident: CIT0007 doi: 10.1109/94.300257 – volume-title: Nonlinear parameter estimation: an integrated system in BASIC year: 1987 ident: CIT0018 – ident: CIT0023 doi: 10.1080/01621459.1979.10481038 – ident: CIT0020 doi: 10.1007/BF01386213 – volume-title: Maximum likelihood estimation in small samples year: 1977 ident: CIT0002 – ident: CIT0019 doi: 10.1214/ss/1177010392 – ident: CIT0009 doi: 10.1080/00401706.1974.10489148 – ident: CIT0028 doi: 10.1007/978-1-4899-4541-9 – ident: CIT0005 doi: 10.1214/aoms/1177728182 |
| SSID | ssj0001152 |
| Score | 2.3082633 |
| Snippet | This paper proposes a bias-corrected expression for maximum likelihood estimators using the sequential number-theoretic method for optimization (SNTO) to... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3862 |
| SubjectTerms | Bias Bias correction extreme value distribution Extreme values Maximum likelihood estimation Maximum likelihood estimators monte carlo simulation Optimization sequential number-theoretic algorithm |
| Title | A new bias-corrected estimator method in extreme value distributions with small sample size |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00949655.2022.2085706 https://www.proquest.com/docview/2737955614 |
| Volume | 92 |
| WOSCitedRecordID | wos000811165300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1563-5163 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001152 issn: 0094-9655 databaseCode: TFW dateStart: 19720101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPMyD06k4nZKD1-ratElzHOLw4vAwceCh5BMG25RlevCvN69Ni0NkBz2W8kJ4eXlfvPx-CF1JnRvOiI1iK4gvUJiOckHSSPvYmA4UozaRJdkEG4_z6ZQ_hmlCF8YqoYa2FVBE6avhcgvp6om4G5iG4zTLfHWXwFsqwGgH0G2f2YONT0bPjS-OK84dkIhApH7D89sqG9FpA7v0h68uA9Co8w9bP0D7IfvEw8pcDtGOWXZRp2Z2wOGid9HeQ4Pm6rqoDRlpBeh8hF6G2GfiWM6EixRQeyifs2LA6lhA_Y4rSmo8W2Lv9qH5iAFP3GANCL2BXMthaP9itxDzOXYCAIqxm32aY_Q0upvc3keBoSFSCc3XkbY8I5bzjMmYSa4k1aQkxqO5oJzaWDEtjPR2kurMxCZLLGPSigFJ6cBIS05Qa_m6NKcIe1-jDM2tTryK0pwLZkhGVEyp9D-U6KG0PplCBfhyYNGYF3GDclrptgDdFkG3PXTdiL1V-B3bBPj3Yy_WZePEViwnBdki269tpAiuwBU-P2QcSEjTsz8sfY7a8AmDNHHSR6316t1coF314Y9_dVka_RekI_1g |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB58gXrwURXf5uB1tbvZTTbHIpaK2lNFwUPIEwptFbd68Neb2UdRRDzoOUwIk8m8mHwfwKm2uROc-ij2ioYChdsoVzSNbIiNadtw5hNdkk3wfj9_eBCf_8LgWCXW0L4Ciih9NT5ubEY3I3HnOA4nWJaF8i7Bz1QI0s7mYTELsRbH-gbd-5k3jivWHRSJUKb5xfPTNl_i0xf00m_eugxB3fX_OPwGrNUJKOlUFrMJc27SgvWG3IHUb70Fq7czQNeiBSuYlFaYzlvw2CEhGSd6qIrIILuHCWkrQbiOMZbwpGKlJsMJCZ4f-48EIcUdsQjSW_NrFQQ7wKQYq9GIFAoxikkxfHfbcNe9HFz0opqkITIJy6eR9SKjXoiM65hrYTSztOTGY7ligvnYcKucDqaS2szFLks859qrNk1Z22lPd2Bh8jRxu0CCuzGO5d4mQUVpLhR3NKMmZkyHBaP2IG2uRpoawRyJNEYyngGdVrqVqFtZ63YPzmZizxWEx28C4vO9y2nZO_EV0Ymkv8geNkYia29QyJAicoE8pOn-H7Y-geXe4PZG3lz1rw9gBZdwriZODmFh-vLqjmDJvAVTeDkuX8AHmRsBkA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB6VtEJwgBJAvEp94Lolu96118cIGlG1RDmkAqkHy08pUgiIDRz49Xh2vVEjVOVQztZY1ng8L42_D-BM29IJTn2SekVDgcJtUiqaJzbExrxnOPOZrskm-HBY3t6KUZwmrOJYJdbQvgGKqH01Pu4H69uJuHOchhOsKEJ1l-FfKsRoZ2vwsQbHCiY9HtwsnHHakO6gSIIy7Seef22zFJ6WwEvfOOs6Ag223-Hsn2Erpp-k39jLDnxwsy5st9QOJL70LmxeL-Bcqy5sYEraIDrvwp8-Cak40RNVJQa5PUxIWgmCddxhAU8aTmoymZHg97H7SBBQ3BGLEL2RXasi2P8l1Z2aTkmlEKGYVJMXtwe_B9_HF1dJpGhITMbKeWK9KKgXouA65VoYzSytmfFYqZhgPjXcKqeDoeS2cKkrMs-59qpHc9Zz2tN96MzuZ-4ASHA2xrHS2yyoKC-F4o4W1KSM6bBg1CHk7c1IE_HLkUZjKtMFzGmjW4m6lVG3h_BtIfbQAHisEhB_X7uc150T39CcSLpC9qS1ERl9QSVDgsgFspDmR_-x9VdYH10O5K8fw5_HsIErOFSTZifQmT8-uS_wyTwHS3g8re3_FV6MADQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+bias-corrected+estimator+method+in+extreme+value+distributions+with+small+sample+size&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Wang%2C+Sirao&rft.au=Kai-Tai%2C+Fang&rft.au=Ye%2C+Huajun&rft.date=2022-12-12&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=92&rft.issue=18&rft.spage=3862&rft.epage=3884&rft_id=info:doi/10.1080%2F00949655.2022.2085706&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon |