Exact Value of the Nonmonotone Complexity of Boolean Functions

We study the complexity of the realization of Boolean functions by circuits in infinite complete bases containing all monotone functions with zero weight (cost of use) and finitely many nonmonotone functions with unit weight. The complexity of the realization of Boolean functions in the case where t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical Notes Ročník 105; číslo 1-2; s. 28 - 35
Hlavní autoři: Kochergin, V. V., Mikhailovich, A. V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.01.2019
Springer Nature B.V
Témata:
ISSN:0001-4346, 1067-9073, 1573-8876
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study the complexity of the realization of Boolean functions by circuits in infinite complete bases containing all monotone functions with zero weight (cost of use) and finitely many nonmonotone functions with unit weight. The complexity of the realization of Boolean functions in the case where the only nonmonotone element of the basis is negation was completely described by A. A. Markov: the minimum number of negations sufficient for the realization of an arbitrary Boolean function f (the inversion complexity of the function f ) is equal to ⌈log 2 ( d ( f ) + 1)⌉, where d ( f ) is the maximum (over all increasing chains of sets of values of the variables) number of changes of the function value from 1 to 0. In the present paper, this result is generalized to the case of the computation of Boolean functions over an arbitrary basis B of prescribed form. It is shown that the minimum number of nonmonotone functions sufficient for computing an arbitrary Boolean function f is equal to ⌈log 2 ( d ( f )/ D ( B ) +1)⌉, where D ( B ) = max d ( ω ); the maximum is taken over all nonmonotone functions ω of the basis B .
AbstractList We study the complexity of the realization of Boolean functions by circuits in infinite complete bases containing all monotone functions with zero weight (cost of use) and finitely many nonmonotone functions with unit weight. The complexity of the realization of Boolean functions in the case where the only nonmonotone element of the basis is negation was completely described by A. A. Markov: the minimum number of negations sufficient for the realization of an arbitrary Boolean function f (the inversion complexity of the function f) is equal to ⌈log2(d(f) + 1)⌉, where d(f) is the maximum (over all increasing chains of sets of values of the variables) number of changes of the function value from 1 to 0. In the present paper, this result is generalized to the case of the computation of Boolean functions over an arbitrary basis B of prescribed form. It is shown that the minimum number of nonmonotone functions sufficient for computing an arbitrary Boolean function f is equal to ⌈log2(d(f)/D(B) +1)⌉, where D(B) = max d(ω); the maximum is taken over all nonmonotone functions ω of the basis B.
We study the complexity of the realization of Boolean functions by circuits in infinite complete bases containing all monotone functions with zero weight (cost of use) and finitely many nonmonotone functions with unit weight. The complexity of the realization of Boolean functions in the case where the only nonmonotone element of the basis is negation was completely described by A. A. Markov: the minimum number of negations sufficient for the realization of an arbitrary Boolean function f (the inversion complexity of the function f ) is equal to ⌈log 2 ( d ( f ) + 1)⌉, where d ( f ) is the maximum (over all increasing chains of sets of values of the variables) number of changes of the function value from 1 to 0. In the present paper, this result is generalized to the case of the computation of Boolean functions over an arbitrary basis B of prescribed form. It is shown that the minimum number of nonmonotone functions sufficient for computing an arbitrary Boolean function f is equal to ⌈log 2 ( d ( f )/ D ( B ) +1)⌉, where D ( B ) = max d ( ω ); the maximum is taken over all nonmonotone functions ω of the basis B .
Author Kochergin, V. V.
Mikhailovich, A. V.
Author_xml – sequence: 1
  givenname: V. V.
  surname: Kochergin
  fullname: Kochergin, V. V.
  email: vvkoch@yandex.ru
  organization: Lomonosov Moscow State University
– sequence: 2
  givenname: A. V.
  surname: Mikhailovich
  fullname: Mikhailovich, A. V.
  email: anna@mikhaylovich.com
  organization: National Research University Higher School of Economics
BookMark eNp1UMtKAzEUDVLBWv0AdwOuR-9NMmlmI2hpVSi68LEd0jTRlmlSkwy0f2-GCi7E1eVynpxTMnDeGUIuEK4QGb9-AQDkjAusAQG4PCJDrMaslHIsBmTYw2WPn5DTGNf5Q4EwJDfTndKpeFdtZwpvi_RpiifvNt75lBOKid9sW7NbpX2P3nnfGuWKWed0WnkXz8ixVW005z93RN5m09fJQzl_vn-c3M5LTYVM5XJRU7pgSleSAddWMg6yXkrBqBa8YpapXG1hham04lRrkKY2mqFkS16jZSNyefDdBv_VmZiate-Cy5ENpSAlIq9pZuGBpYOPMRjbbMNqo8K-QWj6mZo_M2UNPWhi5roPE36d_xd9A3YzaXQ
Cites_doi 10.4213/dm1394
10.1007/978-3-662-46494-6_3
10.1007/978-3-642-24508-4
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Pleiades Publishing, Ltd. 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1134/S0001434619010048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8876
EndPage 35
ExternalDocumentID 10_1134_S0001434619010048
GroupedDBID -EM
-~C
-~X
.86
.VR
06D
0R~
1SB
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8UJ
95-
95.
95~
96X
AABHQ
ABTAH
ACIWK
AEFIE
AEGNC
AEXYK
AFFNX
AHYZX
AIIXL
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
ARMRJ
ASPBG
AVWKF
AZFZN
B-.
B0M
BA0
CAG
COF
DL5
EAD
EAP
EBS
EJD
EMK
EPL
ESBYG
ESX
FNLPD
FWDCC
GGRSB
GJIRD
GQ6
GQ8
GXS
HG6
HMJXF
HQYDN
HRMNR
HZ~
H~9
IHE
IXC
IXD
IXE
IZIGR
I~X
I~Z
JBSCW
JCJTX
KOV
KOW
LAK
MA-
N2Q
NB0
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P9R
PF0
PT5
QOK
QOS
RHV
RNI
RPX
RSV
RZC
RZE
RZK
S16
S3B
SAP
SDD
SDH
SHX
SMT
SNE
SNX
SOJ
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
VC2
W23
WK8
XU3
ZY4
~A9
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
ID FETCH-LOGICAL-c268t-db922b3ac58304cf834089d8632c6453f3a346bf6e5ca42cc08e9ec3183d491f3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464727500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-4346
1067-9073
IngestDate Thu Sep 25 01:04:35 EDT 2025
Sat Nov 29 03:48:52 EST 2025
Fri Feb 21 02:38:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords circuit complexity
circuits of functional elements
Boolean (logical) circuits
inversion complexity
nonmonotone complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-db922b3ac58304cf834089d8632c6453f3a346bf6e5ca42cc08e9ec3183d491f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2208811492
PQPubID 2043561
PageCount 8
ParticipantIDs proquest_journals_2208811492
crossref_primary_10_1134_S0001434619010048
springer_journals_10_1134_S0001434619010048
PublicationCentury 2000
PublicationDate 20190100
2019-1-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 1
  year: 2019
  text: 20190100
PublicationDecade 2010
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Mathematical Notes
PublicationTitleAbbrev Math Notes
PublicationYear 2019
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Markov (CR1) 1957; 116
Nechiporuk (CR6) 1962
Fischer (CR7) 1975
Kochergin, Mikhailovich (CR12) 2015
Blais, Canonne, Oliveira, Servedio, Tan (CR10) 2015; 40
CR9
Guo, Malkin, Oliveira, Rosen (CR11) 2015; 9014
Kochergin, Mikhailovich (CR13) 2016; 28
Markov (CR4) 1963; 150
Savage (CR3) 1976
Kochergin, Mikhailovich (CR14) 2015
Morizumi (CR8) 2008
Kochergin, Mikhailovich (CR15) 2015; 4
Lupanov (CR2) 1984
Gilbert (CR5) 1960
J. E. Savage (1038_CR3) 1976
1038_CR9
S. Guo (1038_CR11) 2015; 9014
M. J. Fischer (1038_CR7) 1975
H. Morizumi (1038_CR8) 2008
V. V. Kochergin (1038_CR15) 2015; 4
V. V. Kochergin (1038_CR13) 2016; 28
O. B. Lupanov (1038_CR2) 1984
V. V. Kochergin (1038_CR12) 2015
É I. I. Nechiporuk (1038_CR6) 1962
A. A. Markov (1038_CR1) 1957; 116
A. A. Markov (1038_CR4) 1963; 150
E. N. Gilbert (1038_CR5) 1960
E. Blais (1038_CR10) 2015; 40
V. V. Kochergin (1038_CR14) 2015
References_xml – year: 1975
  ident: CR7
  article-title: The complexity of negation–limited networks–a brief survey
  publication-title: Automata Theory and Formal Languages, Lecture Notes in Comput. Sci.
– volume: 150
  start-page: 477
  issue: 3
  year: 1963
  end-page: 479
  ident: CR4
  article-title: On inversion complexity of a system of Boolean functions
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 28
  start-page: 80
  issue: 4
  year: 2016
  end-page: 90
  ident: CR13
  article-title: The minimum number of negations in circuits for systems of multi–valued functions
  publication-title: Diskret. Mat.
  doi: 10.4213/dm1394
– year: 2015
  ident: CR14
  publication-title: Some Extensions of the Inversion Complexity of Boolean Function
– volume: 9014
  start-page: 36
  year: 2015
  end-page: 65
  ident: CR11
  article-title: The power of negations in cryptography
  publication-title: Theory of Cryptography. Part I, Lecture Notes in Comput. Sci.
  doi: 10.1007/978-3-662-46494-6_3
– volume: 40
  start-page: 512
  year: 2015
  ident: CR10
  article-title: Learning circuits with few negations
  publication-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, LIPIcs. Leibniz Int. Proc. Inform.
– year: 1976
  ident: CR3
  publication-title: The Complexity of Computing
– year: 1984
  ident: CR2
  publication-title: Asymptotic Estimates of Complexity of Control Systems
– year: 1960
  ident: CR5
  article-title: Theoretical–structural properties of closing switching functions
  publication-title: Collection of Papers in Cybernetics
– ident: CR9
– year: 1962
  ident: CR6
  article-title: On complexity of circuits in some bases containing nontrivial elements with zero weights
  publication-title: Problems of Cybernetics
– volume: 4
  start-page: 24
  issue: 30
  year: 2015
  end-page: 31
  ident: CR15
  article-title: On the complexity of circuits in bases containing monotone elements with zero weights
  publication-title: Prikl. Diskret. Mat.
– year: 2008
  ident: CR8
  publication-title: A Note on the Inversion Complexity of Boolean Functions in Boolean Formulas
– year: 2015
  ident: CR12
  publication-title: Inversion Complexity of Functions of Multi–Valued Logic
– volume: 116
  start-page: 917
  issue: 6
  year: 1957
  end-page: 919
  ident: CR1
  article-title: On inversion complexity of systems of functions
  publication-title: Dokl. Akad. Nauk SSSR
– volume-title: Inversion Complexity of Functions of Multi–Valued Logic
  year: 2015
  ident: 1038_CR12
– volume-title: Problems of Cybernetics
  year: 1962
  ident: 1038_CR6
– volume: 116
  start-page: 917
  issue: 6
  year: 1957
  ident: 1038_CR1
  publication-title: Dokl. Akad. Nauk SSSR
– ident: 1038_CR9
  doi: 10.1007/978-3-642-24508-4
– volume: 40
  start-page: 512
  year: 2015
  ident: 1038_CR10
  publication-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, LIPIcs. Leibniz Int. Proc. Inform.
– volume-title: Some Extensions of the Inversion Complexity of Boolean Function
  year: 2015
  ident: 1038_CR14
– volume-title: The Complexity of Computing
  year: 1976
  ident: 1038_CR3
– volume: 4
  start-page: 24
  issue: 30
  year: 2015
  ident: 1038_CR15
  publication-title: Prikl. Diskret. Mat.
– volume: 150
  start-page: 477
  issue: 3
  year: 1963
  ident: 1038_CR4
  publication-title: Dokl. Akad. Nauk SSSR
– volume-title: Asymptotic Estimates of Complexity of Control Systems
  year: 1984
  ident: 1038_CR2
– volume-title: A Note on the Inversion Complexity of Boolean Functions in Boolean Formulas
  year: 2008
  ident: 1038_CR8
– volume: 28
  start-page: 80
  issue: 4
  year: 2016
  ident: 1038_CR13
  publication-title: Diskret. Mat.
  doi: 10.4213/dm1394
– volume-title: Automata Theory and Formal Languages, Lecture Notes in Comput. Sci.
  year: 1975
  ident: 1038_CR7
– volume-title: Collection of Papers in Cybernetics
  year: 1960
  ident: 1038_CR5
– volume: 9014
  start-page: 36
  year: 2015
  ident: 1038_CR11
  publication-title: Theory of Cryptography. Part I, Lecture Notes in Comput. Sci.
  doi: 10.1007/978-3-662-46494-6_3
SSID ssj0011610
ssj0039783
Score 2.1202588
Snippet We study the complexity of the realization of Boolean functions by circuits in infinite complete bases containing all monotone functions with zero weight (cost...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 28
SubjectTerms Boolean algebra
Boolean functions
Codes
Complexity
Markov processes
Mathematics
Mathematics and Statistics
Monotone functions
Weight
Title Exact Value of the Nonmonotone Complexity of Boolean Functions
URI https://link.springer.com/article/10.1134/S0001434619010048
https://www.proquest.com/docview/2208811492
Volume 105
WOSCitedRecordID wos000464727500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039783
  issn: 0001-4346
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH32J1lRw8KYVukjbJRVDZxYuL-Fj2VtI0AWFpZdsV_fcmfezi66DHMm2aDpOZb_I1MwCnjFkMj1nim0AGPtWY-jyJtG-w5KFmjGhaN5tgwyEfj8Vdc467aP92bynJylPXfUeoO9PratHRyIUwZ3jLsGKjHXf9Gu4fRnPqoFcBgvqCuI2NGgDbTMk-2_CaP473OTIt4OYXhrQKPIPNf015CzYanIkua8PYhiWd7cD67bxIa7ELF_03qUo0kpOZRrlBVoSGeWbtMncVupFzFa5cZvnupFd5PtEyQwMbCCtb3YOnQf_x-sZv2in4Cke89NNEYJwQqUJOAqoMJzTgIuURwSqiITFE2qkmJtKhkhQrFXAttHKLPqWiZ8g-dDL7-gNABKeaKm6_MRKUJYngwvAgdRQgD5kJPDhrVRm_1FUz4irbIDT-phQPuq2y42YBFTHG1v3ZXE1gD85b5S7Evw52-Ke7j2DNAiBRb6l0oVNOZ_oYVtVr-VxMTyq7-gAlW8E3
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-J0ah58UgpdkrbJi6CyobgV0Tn2Vto0AWG0snai_71JPzb8etDHcm2aHpe73-Wa3wGcep7G8NiLLGWHtkUlphaLXGkpHDJHeh6RtGw24fk-G434fXWOO6v_dq9LkoWnLvuOUHOm13DRUdeEMGN4i7BEdcAyhPkPj8NZ6aBdAILygpiNjRIA60xJP1vVNX8c73NkmsPNLxXSIvB0N_415U1Yr3AmuiwNYwsWZLINa_0ZSWu2Axedt1DkaBiOpxKlCmkR8tNE22VqGLqRcRWGLjN_N9KrNB3LMEFdHQgLW92Fp25ncH1jVe0ULIFdlltxxDGOSCgcRmwqFCPUZjxmLsHCpQ5RJNRTjZQrHRFSLITNJJfCLPqY8rYie9BI9Ov3AREcSyqY_kaXUy-KOOOK2bEpATLHU3YTzmpVBi8la0ZQZBuEBt-U0oRWreygWkBZgLF2fzpX47gJ57Vy5-JfBzv4090nsHIz6PeC3q1_dwirGgzxcnulBY18MpVHsCxe8-dsclzY2Ac-M8Qb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD3-J0ah98UopdkrbJi-DHiqKOgTr2VtI0AWG0Y-1E_3uTfmz49SA-lmvT9Lje_S6X_A7g2Pc1hkd-ZCuHOzaRiNg08qStEKeu9H0sSdlswu926WDAelWf06ze7V6XJMszDYalKcnPRrGqepAQc77X8NIRz4QzY4TzsEDMPnqTrj_2p2WEdgEOygtsFjlKMKyzJv1sVeP8cbzPUWoGPb9US4sgFKz9e_rrsFrhT-uiNJgNmJPJJqw8TMlbsy0477xxkVt9PpxIK1WWFlndNNH2mhrmbsu4EEOjmb8b6WWaDiVPrEAHyMKGt-E56Dxd3dhVmwVbII_mdhwxhCLMhUuxQ4SimDiUxdTDSHjExQpzPdVIedIVnCAhHCqZFMYZxIS1Fd6BRqJfvwsWRrEkgupv9Bjxo4hRpqgTm9IgdX3lNOGkVms4Ktk0wiILwST8ppQmtGrFh9WPlYUIabeocziGmnBaK3om_nWwvT_dfQRLvesgvL_t3u3DssZIrFx1aUEjH0_kASyK1_wlGx8W5vYBLpDM_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+Value+of+the+Nonmonotone+Complexity+of+Boolean+Functions&rft.jtitle=Mathematical+Notes&rft.au=Kochergin%2C+V.+V.&rft.au=Mikhailovich%2C+A.+V.&rft.date=2019-01-01&rft.pub=Pleiades+Publishing&rft.issn=0001-4346&rft.eissn=1573-8876&rft.volume=105&rft.issue=1-2&rft.spage=28&rft.epage=35&rft_id=info:doi/10.1134%2FS0001434619010048&rft.externalDocID=10_1134_S0001434619010048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4346&client=summon