Decomposition of Additive Random Fields

We consider in this work an additive random field on [0, 1] d , which is a sum of d uncorrelated random processes. We assume that the processes have zero mean and the same continuous covariance function. There is a significant interest in the study of random fields of this type. For example, they ar...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Vestnik, St. Petersburg University. Mathematics Ročník 53; číslo 1; s. 29 - 36
Hlavní autori: Zani, M., Khartov, A. A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.01.2020
Springer Nature B.V
Predmet:
ISSN:1063-4541, 1934-7855
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We consider in this work an additive random field on [0, 1] d , which is a sum of d uncorrelated random processes. We assume that the processes have zero mean and the same continuous covariance function. There is a significant interest in the study of random fields of this type. For example, they arise in the theory of intersections and self-intersections of Brownian processes, in the problems concerning small ball probabilities, and in the finite-rank approximation problems with arbitrarily large parametric dimension d . In problems of the last kind, the spectral characteristics of the covariance operator play a key role. For a given additive random field, the dependence of eigenvalues of its covariance operator on eigenvalues of the covariance operator of the marginal processes is quite simple, provided that the identical 1 is an eigenvector of the latter operator. In the opposite case, the dependence is complex, and, therefore, it is hard to study these random fields. Here, summands of the decomposition of the random field into the sum of its integral and its centered version are orthogonal in L 2 ([0, 1] d ), but, in general, they are correlated. In the present paper, we propose another interesting decomposition for random fields (it was discovered by the authors while resolving finite-rank approximation problems in the average-case setting). In the obtained decomposition, the summands are orthogonal in L 2 ([0, 1] d ) and are uncorrelated. Moreover, for large d , they are respectively close to the integral and to the centered version of the random field with small relative mean square errors.
AbstractList We consider in this work an additive random field on [0, 1]d, which is a sum of d uncorrelated random processes. We assume that the processes have zero mean and the same continuous covariance function. There is a significant interest in the study of random fields of this type. For example, they arise in the theory of intersections and self-intersections of Brownian processes, in the problems concerning small ball probabilities, and in the finite-rank approximation problems with arbitrarily large parametric dimension d. In problems of the last kind, the spectral characteristics of the covariance operator play a key role. For a given additive random field, the dependence of eigenvalues of its covariance operator on eigenvalues of the covariance operator of the marginal processes is quite simple, provided that the identical 1 is an eigenvector of the latter operator. In the opposite case, the dependence is complex, and, therefore, it is hard to study these random fields. Here, summands of the decomposition of the random field into the sum of its integral and its centered version are orthogonal in L2([0, 1]d), but, in general, they are correlated. In the present paper, we propose another interesting decomposition for random fields (it was discovered by the authors while resolving finite-rank approximation problems in the average-case setting). In the obtained decomposition, the summands are orthogonal in L2([0, 1]d) and are uncorrelated. Moreover, for large d, they are respectively close to the integral and to the centered version of the random field with small relative mean square errors.
We consider in this work an additive random field on [0, 1] d , which is a sum of d uncorrelated random processes. We assume that the processes have zero mean and the same continuous covariance function. There is a significant interest in the study of random fields of this type. For example, they arise in the theory of intersections and self-intersections of Brownian processes, in the problems concerning small ball probabilities, and in the finite-rank approximation problems with arbitrarily large parametric dimension d . In problems of the last kind, the spectral characteristics of the covariance operator play a key role. For a given additive random field, the dependence of eigenvalues of its covariance operator on eigenvalues of the covariance operator of the marginal processes is quite simple, provided that the identical 1 is an eigenvector of the latter operator. In the opposite case, the dependence is complex, and, therefore, it is hard to study these random fields. Here, summands of the decomposition of the random field into the sum of its integral and its centered version are orthogonal in L 2 ([0, 1] d ), but, in general, they are correlated. In the present paper, we propose another interesting decomposition for random fields (it was discovered by the authors while resolving finite-rank approximation problems in the average-case setting). In the obtained decomposition, the summands are orthogonal in L 2 ([0, 1] d ) and are uncorrelated. Moreover, for large d , they are respectively close to the integral and to the centered version of the random field with small relative mean square errors.
Author Zani, M.
Khartov, A. A.
Author_xml – sequence: 1
  givenname: M.
  surname: Zani
  fullname: Zani, M.
  email: marguerite.zani@univ-orleans.fr
  organization: Institut Denis Poisson, Universite d’Orleans
– sequence: 2
  givenname: A. A.
  surname: Khartov
  fullname: Khartov, A. A.
  email: alexeykhartov@gmail.com
  organization: St. Petersburg State University, St. Petersburg National Research University of Information Technologies, Mechanics and Optics
BookMark eNp1UF1LwzAUDTLBbfoDfCv44FM1Nzdpm8cxnQoDwY_nkCapdKzNTDrBf7-MCj6IT-dczseFMyOT3veOkEugNwDIb1-BFsgFB0YpUGD8hExBIs_LSohJ4knOj_oZmcW4oVQUTOCUXN8547udj-3Q-j7zTbawNvEvl73o3vouW7Vua-M5OW30NrqLH5yT99X92_IxXz8_PC0X69ywohpyq7GsC6xsOmsER3WD3OpCGtA1GEsFNLKCQlbOcllzl1DWEksrbW2Ewzm5Gnt3wX_uXRzUxu9Dn14qhhUKzhjS5ILRZYKPMbhG7ULb6fCtgKrjHurPHinDxkxM3v7Dhd_m_0MHEp9h8Q
Cites_doi 10.1090/S0002-9947-07-04233-X
10.1016/j.jco.2007.11.002
10.1016/j.jco.2015.05.002
10.1007/978-3-0348-8059-6_14
10.1137/0108003
10.1007/BFb0103934
10.1016/j.jco.2018.04.001
10.1016/j.jco.2019.02.002
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2020
2020© Pleiades Publishing, Ltd. 2020
Copyright_xml – notice: Pleiades Publishing, Ltd. 2020
– notice: 2020© Pleiades Publishing, Ltd. 2020
DBID AAYXX
CITATION
DOI 10.1134/S1063454120010124
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1934-7855
EndPage 36
ExternalDocumentID 10_1134_S1063454120010124
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9R
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c268t-da37b638dc26b31e0af34da69c1ab1cd051f981698ed49b4e8ed9b937d9dbc5e3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521743800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-4541
IngestDate Thu Sep 25 00:46:58 EDT 2025
Sat Nov 29 02:07:01 EST 2025
Fri Feb 21 02:39:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords decomposition
additive random fields
eigenpairs
covariance function
covariance operator
average-case approximation complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-da37b638dc26b31e0af34da69c1ab1cd051f981698ed49b4e8ed9b937d9dbc5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2383542230
PQPubID 2044361
PageCount 8
ParticipantIDs proquest_journals_2383542230
crossref_primary_10_1134_S1063454120010124
springer_journals_10_1134_S1063454120010124
PublicationCentury 2000
PublicationDate 20200100
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Vestnik, St. Petersburg University. Mathematics
PublicationTitleAbbrev Vestnik St.Petersb. Univ.Math
PublicationYear 2020
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References HickernellF. J.WasilkowskiG. W.WoźniakowskiH.Monte Carlo and Quasi-Monte Carlo Methods 20062008BerlinSpringer-Verlag
KarolA.NazarovA.NikitinYa.Small ball probabilities for Gaussian random fields and tensor products of compact operatorsTrans. Am. Math. Soc.200836014431474235770210.1090/S0002-9947-07-04233-X
KhartovA. A.ZaniM.Approximation complexity of sums of random processesJ. Complexity201954101399398321110.1016/j.jco.2019.02.002
BrownJ. L.Mean Square truncation error in series expansions of random functionsJ. Soc. Ind. Appl. Math.19608283215199910.1137/0108003
KhartovA. A.ZaniM.Asymptotic analysis of average case approximation complexity of additive random fieldsJ. Complexity2019522444394507010.1016/j.jco.2018.04.001
K. Ritter, Average-Case Analysis of Numerical Problems (Springer-Verlag, Berlin, 2000), in Ser.: Lecture Notes in Mathematics, Vol. 1733.
X. Chen and W. V. Li, “Small deviation estimates for some additive processes,” in Proc. 3rd Conf. High Dimensional Probability, Sandjberg, Denmark, June 24–28,2002 (Birkhäuser, Basel, 2003), in Ser.: Progress in Probability, Vol. 55, 225–238.
LifshitsM. A.ZaniM.Approximation of additive random fields based on standard information: Average case and probabilistic settingsJ. Complexity201531659674337750610.1016/j.jco.2015.05.002
LifshitsM. A.ZaniM.Approximation complexity of additive random fieldsJ. Complexity200824362379242675810.1016/j.jco.2007.11.002
5030_CR9
M. A. Lifshits (5030_CR5) 2015; 31
5030_CR1
A. Karol (5030_CR2) 2008; 360
A. A. Khartov (5030_CR7) 2019; 54
F. J. Hickernell (5030_CR3) 2008
A. A. Khartov (5030_CR6) 2019; 52
M. A. Lifshits (5030_CR4) 2008; 24
J. L. Brown (5030_CR8) 1960; 8
References_xml – reference: KarolA.NazarovA.NikitinYa.Small ball probabilities for Gaussian random fields and tensor products of compact operatorsTrans. Am. Math. Soc.200836014431474235770210.1090/S0002-9947-07-04233-X
– reference: K. Ritter, Average-Case Analysis of Numerical Problems (Springer-Verlag, Berlin, 2000), in Ser.: Lecture Notes in Mathematics, Vol. 1733.
– reference: HickernellF. J.WasilkowskiG. W.WoźniakowskiH.Monte Carlo and Quasi-Monte Carlo Methods 20062008BerlinSpringer-Verlag
– reference: KhartovA. A.ZaniM.Approximation complexity of sums of random processesJ. Complexity201954101399398321110.1016/j.jco.2019.02.002
– reference: BrownJ. L.Mean Square truncation error in series expansions of random functionsJ. Soc. Ind. Appl. Math.19608283215199910.1137/0108003
– reference: LifshitsM. A.ZaniM.Approximation complexity of additive random fieldsJ. Complexity200824362379242675810.1016/j.jco.2007.11.002
– reference: KhartovA. A.ZaniM.Asymptotic analysis of average case approximation complexity of additive random fieldsJ. Complexity2019522444394507010.1016/j.jco.2018.04.001
– reference: X. Chen and W. V. Li, “Small deviation estimates for some additive processes,” in Proc. 3rd Conf. High Dimensional Probability, Sandjberg, Denmark, June 24–28,2002 (Birkhäuser, Basel, 2003), in Ser.: Progress in Probability, Vol. 55, 225–238.
– reference: LifshitsM. A.ZaniM.Approximation of additive random fields based on standard information: Average case and probabilistic settingsJ. Complexity201531659674337750610.1016/j.jco.2015.05.002
– volume: 360
  start-page: 1443
  year: 2008
  ident: 5030_CR2
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-07-04233-X
– volume: 24
  start-page: 362
  year: 2008
  ident: 5030_CR4
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2007.11.002
– volume-title: Monte Carlo and Quasi-Monte Carlo Methods 2006
  year: 2008
  ident: 5030_CR3
– volume: 31
  start-page: 659
  year: 2015
  ident: 5030_CR5
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2015.05.002
– ident: 5030_CR1
  doi: 10.1007/978-3-0348-8059-6_14
– volume: 8
  start-page: 28
  year: 1960
  ident: 5030_CR8
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0108003
– ident: 5030_CR9
  doi: 10.1007/BFb0103934
– volume: 52
  start-page: 24
  year: 2019
  ident: 5030_CR6
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2018.04.001
– volume: 54
  start-page: 101399
  year: 2019
  ident: 5030_CR7
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2019.02.002
SSID ssj0056253
Score 2.1086037
Snippet We consider in this work an additive random field on [0, 1] d , which is a sum of d uncorrelated random processes. We assume that the processes have zero mean...
We consider in this work an additive random field on [0, 1]d, which is a sum of d uncorrelated random processes. We assume that the processes have zero mean...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 29
SubjectTerms Analysis
Approximation
Continuity (mathematics)
Covariance
Decomposition
Dependence
Eigenvalues
Eigenvectors
Entropy
Fields (mathematics)
Integrals
Intersections
Mathematical analysis
Mathematics
Mathematics and Statistics
Operators (mathematics)
Random processes
Title Decomposition of Additive Random Fields
URI https://link.springer.com/article/10.1134/S1063454120010124
https://www.proquest.com/docview/2383542230
Volume 53
WOSCitedRecordID wos000521743800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1934-7855
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056253
  issn: 1063-4541
  databaseCode: RSV
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBN6K8lAEJCRRRx25ijxVQsVChFlC3yI-zxECKmsLvx3YSKl4DTFEUy0lOPt93uS_3AZykyFIvcB9bTGnMlPItb5WIM0Uk0owrFJXYRDYY8PFY3NX_cZcN270pSYadutIdYRcjl7xQ1mUkCX3RErYISy7aca_XMBw9NtuvB_QVq97f2w2vS5k_TvE5GM0R5peiaIg1_fV_PeUGrNXQMupVa2ETFrDYgtXbj76s5TacXqHnkNdErWhio54xgT0UDWVhJs9R3zPayh146F_fX97EtVRCrJOUz2IjaaacKxl3qijBjrSUGZkKTaQi2jjXs4KTVHA0TCiG7iiUgyZGGKW7SHehVUwK3IOISJNRNNgxUjGuLNeUMK2tZYJyTbANZ43N8peqI0YeMgnK8m9v34bDxqp57Rxl7lAC7TKHSzptOG-sOL_862T7fxp9ACuJz43D55JDaM2mr3gEy_pt9lROj8OaeQdGdLiA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1itmoMgKMFudprsHotaKrZF2iq9hX0FPNhKU_397uZh8XXQUwhZNsmws_NN5ss3AKehwdA1uPcTE1IfpXSSt5L7kSTC0IhJw_NmE1Gvx0Yjfl_8x52WbPeyJJnt1HnfEbwc2OSFYgNJkOmiBbgIS2gDlhPM7w8ey-3XAfqcVe_ubYcXpcwfp_gcjOYI80tRNIs1rY1_PeUmrBfQ0mvma2ELFsx4G9a6H7qs6Q6cXRvHIS-IWt4k8ZpaZ-whry_GevLstRyjLd2Fh9bN8KrtF60SfBWEbOZrQSNpXUnbU0mJqYuEohYhV0RIorR1vYQzEnJmNHKJxh65tNBEcy1Vw9A9qIwnY7MPHhE6okabuhYSmUyYogSVShLklCliqnBe2ix-yRUx4iyToBh_e_sq1EqrxoVzpLFFCbSBFpfUq3BRWnF--dfJDv40-gRW2sNuJ-7c9u4OYTVweXL26aQGldn01RzBsnqbPaXT42z9vAP34btk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah8EQSlbmqxNHoezKOoYTsW3kiv4YDfW6u836cXh7UF8KqUhJIec5js5X74DcBxqEroC977RIfaJEE7yVjA_EohrHFGhWVlsIhoM6NMTG1Z1TrOa7V6nJMs7DU6lKc3bE2WqGiSkPbKBDCZdgoJCIy0g87BAHI_eheujx_pX7MB9ybB347DNq7Tmj1183phmaPNLgrTYd-K1f494HVYryOn1yjWyAXM63YSV2w-91mwLTvraccsrApc3Nl5PqYJV5N3xVI1fvNgx3bJteIgv7s8v_aqEgi-DkOa-4jgS1sWUfRUY6Q43mCgeMom4QFJZlzSMopBRrQgTRNsnExayKKaE7Gq8A410nOpd8BBXEdZKdxQXhApDJUZESmMIw1Qi3YTT2n7JpFTKSIoIA5Pk2-yb0KotnFROkyUWPeAusXil04Sz2qKzz792tven1kewNOzHyc3V4HoflgMXPhcnKi1o5NNXfQCL8i1_zqaHxVJ6B8G1xEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposition+of+Additive+Random+Fields&rft.jtitle=Vestnik%2C+St.+Petersburg+University.+Mathematics&rft.au=Zani%2C+M.&rft.au=Khartov%2C+A.+A.&rft.date=2020-01-01&rft.pub=Pleiades+Publishing&rft.issn=1063-4541&rft.eissn=1934-7855&rft.volume=53&rft.issue=1&rft.spage=29&rft.epage=36&rft_id=info:doi/10.1134%2FS1063454120010124&rft.externalDocID=10_1134_S1063454120010124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-4541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-4541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-4541&client=summon