Decomposition of Additive Random Fields
We consider in this work an additive random field on [0, 1] d , which is a sum of d uncorrelated random processes. We assume that the processes have zero mean and the same continuous covariance function. There is a significant interest in the study of random fields of this type. For example, they ar...
Uložené v:
| Vydané v: | Vestnik, St. Petersburg University. Mathematics Ročník 53; číslo 1; s. 29 - 36 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Moscow
Pleiades Publishing
01.01.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1063-4541, 1934-7855 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We consider in this work an additive random field on [0, 1]
d
, which is a sum of
d
uncorrelated random processes. We assume that the processes have zero mean and the same continuous covariance function. There is a significant interest in the study of random fields of this type. For example, they arise in the theory of intersections and self-intersections of Brownian processes, in the problems concerning small ball probabilities, and in the finite-rank approximation problems with arbitrarily large parametric dimension
d
. In problems of the last kind, the spectral characteristics of the covariance operator play a key role. For a given additive random field, the dependence of eigenvalues of its covariance operator on eigenvalues of the covariance operator of the marginal processes is quite simple, provided that the identical 1 is an eigenvector of the latter operator. In the opposite case, the dependence is complex, and, therefore, it is hard to study these random fields. Here, summands of the decomposition of the random field into the sum of its integral and its centered version are orthogonal in
L
2
([0, 1]
d
), but, in general, they are correlated. In the present paper, we propose another interesting decomposition for random fields (it was discovered by the authors while resolving finite-rank approximation problems in the average-case setting). In the obtained decomposition, the summands are orthogonal in
L
2
([0, 1]
d
) and are uncorrelated. Moreover, for large
d
, they are respectively close to the integral and to the centered version of the random field with small relative mean square errors. |
|---|---|
| AbstractList | We consider in this work an additive random field on [0, 1]d, which is a sum of d uncorrelated random processes. We assume that the processes have zero mean and the same continuous covariance function. There is a significant interest in the study of random fields of this type. For example, they arise in the theory of intersections and self-intersections of Brownian processes, in the problems concerning small ball probabilities, and in the finite-rank approximation problems with arbitrarily large parametric dimension d. In problems of the last kind, the spectral characteristics of the covariance operator play a key role. For a given additive random field, the dependence of eigenvalues of its covariance operator on eigenvalues of the covariance operator of the marginal processes is quite simple, provided that the identical 1 is an eigenvector of the latter operator. In the opposite case, the dependence is complex, and, therefore, it is hard to study these random fields. Here, summands of the decomposition of the random field into the sum of its integral and its centered version are orthogonal in L2([0, 1]d), but, in general, they are correlated. In the present paper, we propose another interesting decomposition for random fields (it was discovered by the authors while resolving finite-rank approximation problems in the average-case setting). In the obtained decomposition, the summands are orthogonal in L2([0, 1]d) and are uncorrelated. Moreover, for large d, they are respectively close to the integral and to the centered version of the random field with small relative mean square errors. We consider in this work an additive random field on [0, 1] d , which is a sum of d uncorrelated random processes. We assume that the processes have zero mean and the same continuous covariance function. There is a significant interest in the study of random fields of this type. For example, they arise in the theory of intersections and self-intersections of Brownian processes, in the problems concerning small ball probabilities, and in the finite-rank approximation problems with arbitrarily large parametric dimension d . In problems of the last kind, the spectral characteristics of the covariance operator play a key role. For a given additive random field, the dependence of eigenvalues of its covariance operator on eigenvalues of the covariance operator of the marginal processes is quite simple, provided that the identical 1 is an eigenvector of the latter operator. In the opposite case, the dependence is complex, and, therefore, it is hard to study these random fields. Here, summands of the decomposition of the random field into the sum of its integral and its centered version are orthogonal in L 2 ([0, 1] d ), but, in general, they are correlated. In the present paper, we propose another interesting decomposition for random fields (it was discovered by the authors while resolving finite-rank approximation problems in the average-case setting). In the obtained decomposition, the summands are orthogonal in L 2 ([0, 1] d ) and are uncorrelated. Moreover, for large d , they are respectively close to the integral and to the centered version of the random field with small relative mean square errors. |
| Author | Zani, M. Khartov, A. A. |
| Author_xml | – sequence: 1 givenname: M. surname: Zani fullname: Zani, M. email: marguerite.zani@univ-orleans.fr organization: Institut Denis Poisson, Universite d’Orleans – sequence: 2 givenname: A. A. surname: Khartov fullname: Khartov, A. A. email: alexeykhartov@gmail.com organization: St. Petersburg State University, St. Petersburg National Research University of Information Technologies, Mechanics and Optics |
| BookMark | eNp1UF1LwzAUDTLBbfoDfCv44FM1Nzdpm8cxnQoDwY_nkCapdKzNTDrBf7-MCj6IT-dczseFMyOT3veOkEugNwDIb1-BFsgFB0YpUGD8hExBIs_LSohJ4knOj_oZmcW4oVQUTOCUXN8547udj-3Q-j7zTbawNvEvl73o3vouW7Vua-M5OW30NrqLH5yT99X92_IxXz8_PC0X69ywohpyq7GsC6xsOmsER3WD3OpCGtA1GEsFNLKCQlbOcllzl1DWEksrbW2Ewzm5Gnt3wX_uXRzUxu9Dn14qhhUKzhjS5ILRZYKPMbhG7ULb6fCtgKrjHurPHinDxkxM3v7Dhd_m_0MHEp9h8Q |
| Cites_doi | 10.1090/S0002-9947-07-04233-X 10.1016/j.jco.2007.11.002 10.1016/j.jco.2015.05.002 10.1007/978-3-0348-8059-6_14 10.1137/0108003 10.1007/BFb0103934 10.1016/j.jco.2018.04.001 10.1016/j.jco.2019.02.002 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2020 2020© Pleiades Publishing, Ltd. 2020 |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2020 – notice: 2020© Pleiades Publishing, Ltd. 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1134/S1063454120010124 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1934-7855 |
| EndPage | 36 |
| ExternalDocumentID | 10_1134_S1063454120010124 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA CAG COF CS3 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9R PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XU3 YLTOR ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ATHPR AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c268t-da37b638dc26b31e0af34da69c1ab1cd051f981698ed49b4e8ed9b937d9dbc5e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521743800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-4541 |
| IngestDate | Thu Sep 25 00:46:58 EDT 2025 Sat Nov 29 02:07:01 EST 2025 Fri Feb 21 02:39:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | decomposition additive random fields eigenpairs covariance function covariance operator average-case approximation complexity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-da37b638dc26b31e0af34da69c1ab1cd051f981698ed49b4e8ed9b937d9dbc5e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2383542230 |
| PQPubID | 2044361 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2383542230 crossref_primary_10_1134_S1063454120010124 springer_journals_10_1134_S1063454120010124 |
| PublicationCentury | 2000 |
| PublicationDate | 20200100 2020-01-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 1 year: 2020 text: 20200100 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: New York |
| PublicationTitle | Vestnik, St. Petersburg University. Mathematics |
| PublicationTitleAbbrev | Vestnik St.Petersb. Univ.Math |
| PublicationYear | 2020 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | HickernellF. J.WasilkowskiG. W.WoźniakowskiH.Monte Carlo and Quasi-Monte Carlo Methods 20062008BerlinSpringer-Verlag KarolA.NazarovA.NikitinYa.Small ball probabilities for Gaussian random fields and tensor products of compact operatorsTrans. Am. Math. Soc.200836014431474235770210.1090/S0002-9947-07-04233-X KhartovA. A.ZaniM.Approximation complexity of sums of random processesJ. Complexity201954101399398321110.1016/j.jco.2019.02.002 BrownJ. L.Mean Square truncation error in series expansions of random functionsJ. Soc. Ind. Appl. Math.19608283215199910.1137/0108003 KhartovA. A.ZaniM.Asymptotic analysis of average case approximation complexity of additive random fieldsJ. Complexity2019522444394507010.1016/j.jco.2018.04.001 K. Ritter, Average-Case Analysis of Numerical Problems (Springer-Verlag, Berlin, 2000), in Ser.: Lecture Notes in Mathematics, Vol. 1733. X. Chen and W. V. Li, “Small deviation estimates for some additive processes,” in Proc. 3rd Conf. High Dimensional Probability, Sandjberg, Denmark, June 24–28,2002 (Birkhäuser, Basel, 2003), in Ser.: Progress in Probability, Vol. 55, 225–238. LifshitsM. A.ZaniM.Approximation of additive random fields based on standard information: Average case and probabilistic settingsJ. Complexity201531659674337750610.1016/j.jco.2015.05.002 LifshitsM. A.ZaniM.Approximation complexity of additive random fieldsJ. Complexity200824362379242675810.1016/j.jco.2007.11.002 5030_CR9 M. A. Lifshits (5030_CR5) 2015; 31 5030_CR1 A. Karol (5030_CR2) 2008; 360 A. A. Khartov (5030_CR7) 2019; 54 F. J. Hickernell (5030_CR3) 2008 A. A. Khartov (5030_CR6) 2019; 52 M. A. Lifshits (5030_CR4) 2008; 24 J. L. Brown (5030_CR8) 1960; 8 |
| References_xml | – reference: KarolA.NazarovA.NikitinYa.Small ball probabilities for Gaussian random fields and tensor products of compact operatorsTrans. Am. Math. Soc.200836014431474235770210.1090/S0002-9947-07-04233-X – reference: K. Ritter, Average-Case Analysis of Numerical Problems (Springer-Verlag, Berlin, 2000), in Ser.: Lecture Notes in Mathematics, Vol. 1733. – reference: HickernellF. J.WasilkowskiG. W.WoźniakowskiH.Monte Carlo and Quasi-Monte Carlo Methods 20062008BerlinSpringer-Verlag – reference: KhartovA. A.ZaniM.Approximation complexity of sums of random processesJ. Complexity201954101399398321110.1016/j.jco.2019.02.002 – reference: BrownJ. L.Mean Square truncation error in series expansions of random functionsJ. Soc. Ind. Appl. Math.19608283215199910.1137/0108003 – reference: LifshitsM. A.ZaniM.Approximation complexity of additive random fieldsJ. Complexity200824362379242675810.1016/j.jco.2007.11.002 – reference: KhartovA. A.ZaniM.Asymptotic analysis of average case approximation complexity of additive random fieldsJ. Complexity2019522444394507010.1016/j.jco.2018.04.001 – reference: X. Chen and W. V. Li, “Small deviation estimates for some additive processes,” in Proc. 3rd Conf. High Dimensional Probability, Sandjberg, Denmark, June 24–28,2002 (Birkhäuser, Basel, 2003), in Ser.: Progress in Probability, Vol. 55, 225–238. – reference: LifshitsM. A.ZaniM.Approximation of additive random fields based on standard information: Average case and probabilistic settingsJ. Complexity201531659674337750610.1016/j.jco.2015.05.002 – volume: 360 start-page: 1443 year: 2008 ident: 5030_CR2 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-07-04233-X – volume: 24 start-page: 362 year: 2008 ident: 5030_CR4 publication-title: J. Complexity doi: 10.1016/j.jco.2007.11.002 – volume-title: Monte Carlo and Quasi-Monte Carlo Methods 2006 year: 2008 ident: 5030_CR3 – volume: 31 start-page: 659 year: 2015 ident: 5030_CR5 publication-title: J. Complexity doi: 10.1016/j.jco.2015.05.002 – ident: 5030_CR1 doi: 10.1007/978-3-0348-8059-6_14 – volume: 8 start-page: 28 year: 1960 ident: 5030_CR8 publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0108003 – ident: 5030_CR9 doi: 10.1007/BFb0103934 – volume: 52 start-page: 24 year: 2019 ident: 5030_CR6 publication-title: J. Complexity doi: 10.1016/j.jco.2018.04.001 – volume: 54 start-page: 101399 year: 2019 ident: 5030_CR7 publication-title: J. Complexity doi: 10.1016/j.jco.2019.02.002 |
| SSID | ssj0056253 |
| Score | 2.1086037 |
| Snippet | We consider in this work an additive random field on [0, 1]
d
, which is a sum of
d
uncorrelated random processes. We assume that the processes have zero mean... We consider in this work an additive random field on [0, 1]d, which is a sum of d uncorrelated random processes. We assume that the processes have zero mean... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 29 |
| SubjectTerms | Analysis Approximation Continuity (mathematics) Covariance Decomposition Dependence Eigenvalues Eigenvectors Entropy Fields (mathematics) Integrals Intersections Mathematical analysis Mathematics Mathematics and Statistics Operators (mathematics) Random processes |
| Title | Decomposition of Additive Random Fields |
| URI | https://link.springer.com/article/10.1134/S1063454120010124 https://www.proquest.com/docview/2383542230 |
| Volume | 53 |
| WOSCitedRecordID | wos000521743800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1934-7855 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056253 issn: 1063-4541 databaseCode: RSV dateStart: 20070301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBN6K8lAEJCRRRx25ijxVQsVChFlC3yI-zxECKmsLvx3YSKl4DTFEUy0lOPt93uS_3AZykyFIvcB9bTGnMlPItb5WIM0Uk0owrFJXYRDYY8PFY3NX_cZcN270pSYadutIdYRcjl7xQ1mUkCX3RErYISy7aca_XMBw9NtuvB_QVq97f2w2vS5k_TvE5GM0R5peiaIg1_fV_PeUGrNXQMupVa2ETFrDYgtXbj76s5TacXqHnkNdErWhio54xgT0UDWVhJs9R3zPayh146F_fX97EtVRCrJOUz2IjaaacKxl3qijBjrSUGZkKTaQi2jjXs4KTVHA0TCiG7iiUgyZGGKW7SHehVUwK3IOISJNRNNgxUjGuLNeUMK2tZYJyTbANZ43N8peqI0YeMgnK8m9v34bDxqp57Rxl7lAC7TKHSzptOG-sOL_862T7fxp9ACuJz43D55JDaM2mr3gEy_pt9lROj8OaeQdGdLiA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1itmoMgKMFudprsHotaKrZF2iq9hX0FPNhKU_397uZh8XXQUwhZNsmws_NN5ss3AKehwdA1uPcTE1IfpXSSt5L7kSTC0IhJw_NmE1Gvx0Yjfl_8x52WbPeyJJnt1HnfEbwc2OSFYgNJkOmiBbgIS2gDlhPM7w8ey-3XAfqcVe_ubYcXpcwfp_gcjOYI80tRNIs1rY1_PeUmrBfQ0mvma2ELFsx4G9a6H7qs6Q6cXRvHIS-IWt4k8ZpaZ-whry_GevLstRyjLd2Fh9bN8KrtF60SfBWEbOZrQSNpXUnbU0mJqYuEohYhV0RIorR1vYQzEnJmNHKJxh65tNBEcy1Vw9A9qIwnY7MPHhE6okabuhYSmUyYogSVShLklCliqnBe2ix-yRUx4iyToBh_e_sq1EqrxoVzpLFFCbSBFpfUq3BRWnF--dfJDv40-gRW2sNuJ-7c9u4OYTVweXL26aQGldn01RzBsnqbPaXT42z9vAP34btk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah8EQSlbmqxNHoezKOoYTsW3kiv4YDfW6u836cXh7UF8KqUhJIec5js5X74DcBxqEroC977RIfaJEE7yVjA_EohrHFGhWVlsIhoM6NMTG1Z1TrOa7V6nJMs7DU6lKc3bE2WqGiSkPbKBDCZdgoJCIy0g87BAHI_eheujx_pX7MB9ybB347DNq7Tmj1183phmaPNLgrTYd-K1f494HVYryOn1yjWyAXM63YSV2w-91mwLTvraccsrApc3Nl5PqYJV5N3xVI1fvNgx3bJteIgv7s8v_aqEgi-DkOa-4jgS1sWUfRUY6Q43mCgeMom4QFJZlzSMopBRrQgTRNsnExayKKaE7Gq8A410nOpd8BBXEdZKdxQXhApDJUZESmMIw1Qi3YTT2n7JpFTKSIoIA5Pk2-yb0KotnFROkyUWPeAusXil04Sz2qKzz792tven1kewNOzHyc3V4HoflgMXPhcnKi1o5NNXfQCL8i1_zqaHxVJ6B8G1xEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposition+of+Additive+Random+Fields&rft.jtitle=Vestnik%2C+St.+Petersburg+University.+Mathematics&rft.au=Zani%2C+M.&rft.au=Khartov%2C+A.+A.&rft.date=2020-01-01&rft.pub=Pleiades+Publishing&rft.issn=1063-4541&rft.eissn=1934-7855&rft.volume=53&rft.issue=1&rft.spage=29&rft.epage=36&rft_id=info:doi/10.1134%2FS1063454120010124&rft.externalDocID=10_1134_S1063454120010124 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-4541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-4541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-4541&client=summon |