Detecting and analysing the topology of the cosmic web with spatial clustering algorithms I: methods

ABSTRACT In this paper, we explore the use of spatial clustering algorithms as a new computational approach for modelling the cosmic web. We demonstrate that such algorithms are efficient in terms of computing time needed. We explore three distinct spatial methods which we suitably adjust for (i) de...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Monthly notices of the Royal Astronomical Society Ročník 516; číslo 4; s. 5110 - 5124
Hlavní autori: Kelesis, Dimitrios, Basilakos, Spyros, Papadopoulou Lesta, Vicky, Fotakis, Dimitris, Efstathiou, Andreas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford University Press 27.09.2022
Predmet:
ISSN:0035-8711, 1365-2966
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ABSTRACT In this paper, we explore the use of spatial clustering algorithms as a new computational approach for modelling the cosmic web. We demonstrate that such algorithms are efficient in terms of computing time needed. We explore three distinct spatial methods which we suitably adjust for (i) detecting the topology of the cosmic web and (ii) categorizing various cosmic structures as voids, walls, clusters, and superclusters based on a variety of topological and physical criteria such as the physical distance between objects, their masses, and local densities. The methods explored are (1) a new spatial method called Gravity Lattice; (2) a modified version of another spatial clustering algorithm, the abacus; and (3) the well known spatial clustering algorithm hdbscan. We utilize hdbscan in order to detect cosmic structures and categorize them using their overdensity. We demonstrate that the abacus method can be combined with the classic dtfe method to obtain similar results in terms of the achieved accuracy with about an order of magnitude less computation time. To further solidify our claims, we draw insights from the computer science domain and compare the quality of the results with and without the application of our method. Finally, we further extend our experiments and verify their effectiveness by showing their ability to scale well with different cosmic web structures that formed at different redshifts.
AbstractList ABSTRACT In this paper, we explore the use of spatial clustering algorithms as a new computational approach for modelling the cosmic web. We demonstrate that such algorithms are efficient in terms of computing time needed. We explore three distinct spatial methods which we suitably adjust for (i) detecting the topology of the cosmic web and (ii) categorizing various cosmic structures as voids, walls, clusters, and superclusters based on a variety of topological and physical criteria such as the physical distance between objects, their masses, and local densities. The methods explored are (1) a new spatial method called Gravity Lattice; (2) a modified version of another spatial clustering algorithm, the abacus; and (3) the well known spatial clustering algorithm hdbscan. We utilize hdbscan in order to detect cosmic structures and categorize them using their overdensity. We demonstrate that the abacus method can be combined with the classic dtfe method to obtain similar results in terms of the achieved accuracy with about an order of magnitude less computation time. To further solidify our claims, we draw insights from the computer science domain and compare the quality of the results with and without the application of our method. Finally, we further extend our experiments and verify their effectiveness by showing their ability to scale well with different cosmic web structures that formed at different redshifts.
In this paper, we explore the use of spatial clustering algorithms as a new computational approach for modelling the cosmic web. We demonstrate that such algorithms are efficient in terms of computing time needed. We explore three distinct spatial methods which we suitably adjust for (i) detecting the topology of the cosmic web and (ii) categorizing various cosmic structures as voids, walls, clusters, and superclusters based on a variety of topological and physical criteria such as the physical distance between objects, their masses, and local densities. The methods explored are (1) a new spatial method called Gravity Lattice; (2) a modified version of another spatial clustering algorithm, the abacus; and (3) the well known spatial clustering algorithm hdbscan. We utilize hdbscan in order to detect cosmic structures and categorize them using their overdensity. We demonstrate that the abacus method can be combined with the classic dtfe method to obtain similar results in terms of the achieved accuracy with about an order of magnitude less computation time. To further solidify our claims, we draw insights from the computer science domain and compare the quality of the results with and without the application of our method. Finally, we further extend our experiments and verify their effectiveness by showing their ability to scale well with different cosmic web structures that formed at different redshifts.
Author Papadopoulou Lesta, Vicky
Fotakis, Dimitris
Kelesis, Dimitrios
Efstathiou, Andreas
Basilakos, Spyros
Author_xml – sequence: 1
  givenname: Dimitrios
  surname: Kelesis
  fullname: Kelesis, Dimitrios
– sequence: 2
  givenname: Spyros
  surname: Basilakos
  fullname: Basilakos, Spyros
– sequence: 3
  givenname: Vicky
  surname: Papadopoulou Lesta
  fullname: Papadopoulou Lesta, Vicky
– sequence: 4
  givenname: Dimitris
  surname: Fotakis
  fullname: Fotakis, Dimitris
– sequence: 5
  givenname: Andreas
  orcidid: 0000-0002-2612-4840
  surname: Efstathiou
  fullname: Efstathiou, Andreas
  email: a.efstathiou@euc.ac.cy
BookMark eNqFkL1rwzAQxUVJoUnatbPWDk70ZVnuVtKvQKBLOxtZkmMX2zI6hZD_vo7Tzh2O4_HuPbjfAs163zuE7ilZUZLzddcHDWuI2jAhxBWaUy7ThOVSztCcEJ4mKqP0Bi0AvgkhgjM5R_bZRWdi0--x7u04uj3BWcXa4egH3_r9Cftq0sZD1xh8dCU-NrHGMOjY6Bab9gDRhamk3fsweh3g7SPuXKy9hVt0XekW3N3vXqKv15fPzXuy-3jbbp52iWFSxcTmWeWo5ZRZa0pplDQ6YyUbTZ2njjmrS5URKlXKnRyfE9KkKlNE2MpoofgSrS69JniA4KpiCE2nw6mgpDgzKiZGxR-jMfBwCfjD8N_tDyZCblM
Cites_doi 10.1093/mnras/sty1643
10.1111/j.1468-4004.2009.50512.x
10.1146/annurev-statistics-031017-100045
10.1086/311214
10.1086/172975
10.1051/0004-6361/201321489
10.1093/mnras/stw2862
10.1093/mnrasl/slx008
10.1093/mnras/stab2326
10.1088/1475-7516/2021/04/061
10.1093/mnras/stw803
10.1093/mnras/sty618
10.1093/mnras/stw2944
10.1007/978-3-642-25249-5_3
10.1046/j.1365-8711.2001.04902.x
10.1038/nature13316
10.1046/j.1365-8711.2001.04226.x
10.1017/S1743921316010504
10.1088/0004-637X/723/1/364
10.1088/1475-7516/2019/09/052
10.1051/0004-6361/201525830
10.1093/mnras/stx2656
10.1051/aas:1997340
10.1038/300407a0
10.1111/j.1365-2966.2011.18394.x
10.1137/1.9781611972818.26
10.1007/978-1-4612-1098-6
10.1201/9781420073980
10.1086/301513
10.1093/mnras/stx3040
10.1093/mnras/sty2206
10.1111/j.1365-2966.2004.08060.x
10.1186/s40668-019-0028-x
10.1007/s00454-002-2885-2
10.1111/j.1365-2966.2005.09731.x
10.1086/162806
10.1088/0067-0049/206/1/3
10.1093/mnras/stx3304
10.1111/j.1365-2966.2008.13307.x
10.1109/ICPR.2010.579
10.1093/mnras/stx1976
10.1111/j.1365-2966.2009.15715.x
10.1093/mnras/stv722
10.5303/JKAS.2013.46.3.125
10.1086/382125
10.1046/j.1365-8711.2003.06845.x
10.1046/j.1365-8711.2003.06642.x
10.1093/mnras/stu768
10.1086/310492
10.1016/j.ascom.2015.09.003
10.1007/978-1-4020-6941-3_11
10.1109/TIP.2003.819861
10.1038/380603a0
10.1093/mnras/stz541
10.1186/s40668-018-0026-4
10.1111/j.1365-2966.2010.17263.x
ContentType Journal Article
Copyright 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022
Copyright_xml – notice: 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022
DBID AAYXX
CITATION
DOI 10.1093/mnras/stac2444
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 5124
ExternalDocumentID 10_1093_mnras_stac2444
10.1093/mnras/stac2444
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-c268t-d97fe1d312ddcb6c86ca72b2268a95e2edab87016853e636546c587804dfca483
IEDL.DBID TOX
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000860850700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-8711
IngestDate Sat Nov 29 05:37:16 EST 2025
Wed Aug 28 03:17:59 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords galaxies: clusters: general
methods: data analysis
dark matter
large-scale structure of Universe
cosmology: theory
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-d97fe1d312ddcb6c86ca72b2268a95e2edab87016853e636546c587804dfca483
ORCID 0000-0002-2612-4840
OpenAccessLink https://doi.org/10.1093/mnras/stac2444
PageCount 15
ParticipantIDs crossref_primary_10_1093_mnras_stac2444
oup_primary_10_1093_mnras_stac2444
PublicationCentury 2000
PublicationDate 2022-09-27
PublicationDateYYYYMMDD 2022-09-27
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-27
  day: 27
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Springel (2022112117242238200_bib55) 2010; 401
Aragón-Calvo (2022112117242238200_bib2) 2010; 723
Wilding (2022112117242238200_bib66) 2021; 507
Colless (2022112117242238200_bib14) 2001; 328
Klypin (2022112117242238200_bib28) 1993; 413
Barabási (2022112117242238200_bib3) 2016
Edelsbrunner (2022112117242238200_bib19) 2002; 28
Rodríguez (2022112117242238200_bib46) 2018; 5
Schaap (2022112117242238200_bib49) 2000; 363
Libeskind (2022112117242238200_bib30) 2017; 473
Nelson (2022112117242238200_bib69_1663521486375) 2019; 6
Scoville (2022112117242238200_bib51) 2013; 206
Sheth (2022112117242238200_bib53) 2003; 343
Vogelsberger (2022112117242238200_bib62) 2014; 509
Feldbrugge (2022112117242238200_bib21) 2019; 2019
Park (2022112117242238200_bib39) 2013; 46
Pranav (2022112117242238200_bib43) 2017; 465
Van de Weygaert (2022112117242238200_bib59) 2008
Preparata (2022112117242238200_bib45) 1985
Springel (2022112117242238200_bib56) 2018; 475
Wasserman (2022112117242238200_bib64) 2018; 5
Colberg (2022112117242238200_bib13) 2008; 387
Van de Weygaert (2022112117242238200_bib60) 2008
Marinacci (2022112117242238200_bib33) 2018; 480
Pillepich (2022112117242238200_bib40) 2018; 473
Pranav (2022112117242238200_bib44) 2019; 485
Cautun (2022112117242238200_bib10) 2014; 441
Schawinski (2022112117242238200_bib50) 2017; 467
Sousbie (2022112117242238200_bib54) 2011; 414
Driver (2022112117242238200_bib17) 2009; 50
Dekel (2022112117242238200_bib16) 1985; 288
Codis (2022112117242238200_bib12) 2018; 479
Planck Collaboration XIII (2022112117242238200_bib41) 2016; 594
Kingma (2022112117242238200_bib27) 2014
Edelsbrunner (2022112117242238200_bib18) 2010
Van de Weygaert (2022112117242238200_bib58) 2014; 11
Coutinho (2022112117242238200_bib15) 2016
Weinberger (2022112117242238200_bib65) 2017; 465
Goodfellow (2022112117242238200_bib22) 2014
York (2022112117242238200_bib67) 2000; 120
Hong (2022112117242238200_bib24) 2015; 450
Basilakos (2022112117242238200_bib4) 2003; 344
Kono (2022112117242238200_bib29) 2020
Horé (2022112117242238200_bib26) 2010
Malzer (2022112117242238200_bib31) 2020
Bond (2022112117242238200_bib8) 1996; 380
Sahni (2022112117242238200_bib47) 1997; 476
Guzzo (2022112117242238200_bib23) 2014; 566
Basilakos (2022112117242238200_bib5) 2001; 323
Einasto (2022112117242238200_bib20) 1997; 123
Miller (2022112117242238200_bib34) 2009
Naiman (2022112117242238200_bib35) 2018; 477
Nevenzeel (2022112117242238200_bib38) 2013
Chaoji (2022112117242238200_bib11) 2011
Hong (2022112117242238200_bib25) 2016; 459
Tegmark (2022112117242238200_bib57) 2004; 606
Van de Weygaert (2022112117242238200_bib61) 2011
Mandelbrot (2022112117242238200_bib32) 1975; 280
Aragón-Calvo (2022112117242238200_bib1) 2010; 408
Nelson (2022112117242238200_bib37) 2018; 475
Sahni (2022112117242238200_bib48) 1998; 495
Cautun (2022112117242238200_bib9) 2019
Basilakos (2022112117242238200_bib6) 2006; 365
Wang (2022112117242238200_bib63) 2004; 13
Nelson (2022112117242238200_bib36) 2015; 13
Shandarin (2022112117242238200_bib52) 2004; 353
Biagetti (2022112117242238200_bib7) 2021; 2021
Zeldovich (2022112117242238200_bib68) 1982; 300
References_xml – volume-title: A Study on the Baryon Acoustic Oscillation with Topological Data Analysis
  year: 2020
  ident: 2022112117242238200_bib29
– volume: 479
  start-page: 973
  year: 2018
  ident: 2022112117242238200_bib12
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1643
– volume: 50
  start-page: 5.12
  year: 2009
  ident: 2022112117242238200_bib17
  publication-title: Astron. Geophys.
  doi: 10.1111/j.1468-4004.2009.50512.x
– volume: 5
  start-page: 501
  year: 2018
  ident: 2022112117242238200_bib64
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-031017-100045
– volume: 495
  start-page: L5
  year: 1998
  ident: 2022112117242238200_bib48
  publication-title: ApJ
  doi: 10.1086/311214
– volume: 413
  start-page: 48
  year: 1993
  ident: 2022112117242238200_bib28
  publication-title: ApJ
  doi: 10.1086/172975
– volume: 566
  start-page: A108
  year: 2014
  ident: 2022112117242238200_bib23
  publication-title: A&A
  doi: 10.1051/0004-6361/201321489
– volume: 465
  start-page: 4281
  year: 2017
  ident: 2022112117242238200_bib43
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2862
– volume: 467
  start-page: L110
  year: 2017
  ident: 2022112117242238200_bib50
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slx008
– volume: 507
  start-page: 2968
  year: 2021
  ident: 2022112117242238200_bib66
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2326
– volume-title: 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings
  year: 2014
  ident: 2022112117242238200_bib27
– volume: 2021
  start-page: 061
  year: 2021
  ident: 2022112117242238200_bib7
  publication-title: J.Cosmology Astropart. Phys.
  doi: 10.1088/1475-7516/2021/04/061
– volume: 459
  start-page: 2690
  year: 2016
  ident: 2022112117242238200_bib25
  publication-title: MNRAS
  doi: 10.1093/mnras/stw803
– volume-title: The Network Behind the Cosmic Web
  year: 2016
  ident: 2022112117242238200_bib15
– volume: 477
  start-page: 1206
  year: 2018
  ident: 2022112117242238200_bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/sty618
– volume: 465
  start-page: 3291
  year: 2017
  ident: 2022112117242238200_bib65
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2944
– start-page: 60
  volume-title: Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web
  year: 2011
  ident: 2022112117242238200_bib61
  doi: 10.1007/978-3-642-25249-5_3
– volume: 328
  start-page: 1039
  year: 2001
  ident: 2022112117242238200_bib14
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04902.x
– volume: 509
  start-page: 177
  year: 2014
  ident: 2022112117242238200_bib62
  publication-title: Nature
  doi: 10.1038/nature13316
– volume: 323
  start-page: 47
  year: 2001
  ident: 2022112117242238200_bib5
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04226.x
– volume: 280
  start-page: 1551
  year: 1975
  ident: 2022112117242238200_bib32
  publication-title: Academie des Sciences Paris Comptes Rendus Serie Sciences Mathematiques
– volume: 11
  start-page: 493
  year: 2014
  ident: 2022112117242238200_bib58
  publication-title: Proc. Int. Astron. Union
  doi: 10.1017/S1743921316010504
– volume: 723
  start-page: 364
  year: 2010
  ident: 2022112117242238200_bib2
  publication-title: ApJ
  doi: 10.1088/0004-637X/723/1/364
– volume: 2019
  start-page: 052
  year: 2019
  ident: 2022112117242238200_bib21
  publication-title: J. Cosmology Astropart. Phys.
  doi: 10.1088/1475-7516/2019/09/052
– volume: 594
  start-page: A13
  year: 2016
  ident: 2022112117242238200_bib41
  publication-title: A&A
  doi: 10.1051/0004-6361/201525830
– volume: 473
  start-page: 4077
  year: 2018
  ident: 2022112117242238200_bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2656
– volume: 123
  start-page: 119
  year: 1997
  ident: 2022112117242238200_bib20
  publication-title: A&AS
  doi: 10.1051/aas:1997340
– volume: 300
  start-page: 407
  year: 1982
  ident: 2022112117242238200_bib68
  publication-title: Nature
  doi: 10.1038/300407a0
– volume: 414
  start-page: 350
  year: 2011
  ident: 2022112117242238200_bib54
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18394.x
– start-page: 295
  volume-title: in Proceedings of the Eleventh SIAM International Conference on Data Mining, SDM 2011, April 28-30, 2011, SIAM / Omnipress
  year: 2011
  ident: 2022112117242238200_bib11
  doi: 10.1137/1.9781611972818.26
– volume-title: Computational Geometry: An Introduction
  year: 1985
  ident: 2022112117242238200_bib45
  doi: 10.1007/978-1-4612-1098-6
– volume-title: Geographic Data Mining and Knowledge Discovery
  year: 2009
  ident: 2022112117242238200_bib34
  doi: 10.1201/9781420073980
– volume: 120
  start-page: 1579
  year: 2000
  ident: 2022112117242238200_bib67
  publication-title: AJ
  doi: 10.1086/301513
– start-page: 291
  volume-title: Lecture Notes in Physics, vol. 665
  year: 2008
  ident: 2022112117242238200_bib60
– volume: 475
  start-page: 624
  year: 2018
  ident: 2022112117242238200_bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3040
– volume: 480
  start-page: 5113
  year: 2018
  ident: 2022112117242238200_bib33
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2206
– volume: 353
  start-page: 162
  year: 2004
  ident: 2022112117242238200_bib52
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08060.x
– volume: 6
  start-page: 1
  year: 2019
  ident: 2022112117242238200_bib69_1663521486375
  publication-title: Computational Astrophysics and Cosmology
  doi: 10.1186/s40668-019-0028-x
– volume-title: Computational Topology: An Introduction
  year: 2010
  ident: 2022112117242238200_bib18
– volume: 28
  start-page: 511
  year: 2002
  ident: 2022112117242238200_bib19
  publication-title: Discrete & Computational Geometry
  doi: 10.1007/s00454-002-2885-2
– volume: 365
  start-page: 539
  year: 2006
  ident: 2022112117242238200_bib6
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09731.x
– volume: 288
  start-page: 411
  year: 1985
  ident: 2022112117242238200_bib16
  publication-title: ApJ
  doi: 10.1086/162806
– start-page: 223
  volume-title: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)
  year: 2020
  ident: 2022112117242238200_bib31
– volume: 206
  start-page: 3
  year: 2013
  ident: 2022112117242238200_bib51
  publication-title: ApJS
  doi: 10.1088/0067-0049/206/1/3
– volume: 475
  start-page: 676
  year: 2018
  ident: 2022112117242238200_bib56
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3304
– volume-title: The DTFE public software: The Delaunay Tessellation Field Estimator code
  year: 2019
  ident: 2022112117242238200_bib9
– volume: 387
  start-page: 933
  year: 2008
  ident: 2022112117242238200_bib13
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13307.x
– start-page: 2366
  volume-title: in 20th International Conference on Pattern Recognition, ICPR 2010, 23-26 August 2010
  year: 2010
  ident: 2022112117242238200_bib26
  doi: 10.1109/ICPR.2010.579
– volume: 473
  start-page: 1195
  year: 2017
  ident: 2022112117242238200_bib30
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1976
– volume-title: Network Science
  year: 2016
  ident: 2022112117242238200_bib3
– volume: 401
  start-page: 791
  year: 2010
  ident: 2022112117242238200_bib55
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15715.x
– start-page: 2672
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: 2022112117242238200_bib22
– volume: 450
  start-page: 1999
  year: 2015
  ident: 2022112117242238200_bib24
  publication-title: MNRAS
  doi: 10.1093/mnras/stv722
– volume: 46
  start-page: 125
  year: 2013
  ident: 2022112117242238200_bib39
  publication-title: J. Korean Astron. Soc.
  doi: 10.5303/JKAS.2013.46.3.125
– volume: 363
  start-page: L29
  year: 2000
  ident: 2022112117242238200_bib49
  publication-title: A&A
– volume: 606
  start-page: 702
  year: 2004
  ident: 2022112117242238200_bib57
  publication-title: ApJ
  doi: 10.1086/382125
– volume: 344
  start-page: 602
  year: 2003
  ident: 2022112117242238200_bib4
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06845.x
– volume: 343
  start-page: 22
  year: 2003
  ident: 2022112117242238200_bib53
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06642.x
– volume: 441
  start-page: 2923
  year: 2014
  ident: 2022112117242238200_bib10
  publication-title: MNRAS
  doi: 10.1093/mnras/stu768
– volume: 476
  start-page: L1
  year: 1997
  ident: 2022112117242238200_bib47
  publication-title: ApJ
  doi: 10.1086/310492
– volume: 13
  start-page: 12
  year: 2015
  ident: 2022112117242238200_bib36
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2015.09.003
– volume-title: Triangulating the Darkness: Topological Dark Energy Differentiation
  year: 2013
  ident: 2022112117242238200_bib38
– start-page: 409
  volume-title: Observations and Morphology of the Cosmic Web
  year: 2008
  ident: 2022112117242238200_bib59
  doi: 10.1007/978-1-4020-6941-3_11
– volume: 13
  start-page: 600
  year: 2004
  ident: 2022112117242238200_bib63
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 380
  start-page: 603
  year: 1996
  ident: 2022112117242238200_bib8
  publication-title: Nature
  doi: 10.1038/380603a0
– volume: 485
  start-page: 4167
  year: 2019
  ident: 2022112117242238200_bib44
  publication-title: MNRAS
  doi: 10.1093/mnras/stz541
– volume: 5
  start-page: 4
  year: 2018
  ident: 2022112117242238200_bib46
  publication-title: Comput. Astrophys
  doi: 10.1186/s40668-018-0026-4
– volume: 408
  start-page: 2163
  year: 2010
  ident: 2022112117242238200_bib1
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17263.x
SSID ssj0004326
Score 2.4084787
Snippet ABSTRACT In this paper, we explore the use of spatial clustering algorithms as a new computational approach for modelling the cosmic web. We demonstrate that...
In this paper, we explore the use of spatial clustering algorithms as a new computational approach for modelling the cosmic web. We demonstrate that such...
SourceID crossref
oup
SourceType Index Database
Publisher
StartPage 5110
Title Detecting and analysing the topology of the cosmic web with spatial clustering algorithms I: methods
Volume 516
WOSCitedRecordID wos000860850700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kePDioyqtLxYRPYV2k-blrVSLglYPFXoLm31IoUkkmwr9985uWl8I6iGQYXfDMpvNfDuT-QbgTHFFu9ILHdVl3OmlkXJSRXsOZbizhFAqZLZqyV04GkWTSfy4JIvWP4TwY6-T5SXTHcRKHE2RYf6kfmRqFYwfJh8ZkJ4trGYJGPEIQN_pGb8P_2J-TErbJ2sy3PrHPLZhcwkZSb9e4x1Yk3kTWn1tnNhFtiDnxN7XPgrdhPY9AuGitP5ybBzMpohKrbQL4kqaqAHaK8JygZelJEEJcSCp6oIJC1IoK_NCZ1NO8ENLjLuWaPP3Nc6Ez-aGXsE-ZPZclNiWaXJ7Sepy1HoPnobX48GNsyy04HA3iCpHxKGSVHjUFYKnAY8CzkI3RWQWsdiXrhQsxX1NA7TtMvBM_hP3I0NdJJRhRff2oZEXuWwBUVIY-kkaK9Xtof1lymcMBwnGBZVUteFipf_kpebTSOo4uJdYBScrBbfhFJfnl04Hf-l0CBuuSVowsaTwCBpVOZfHsM5fq6kuT-yL9AZ1A8x1
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+and+analysing+the+topology+of+the+cosmic+web+with+spatial+clustering+algorithms+I%3A+methods&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Kelesis%2C+Dimitrios&rft.au=Basilakos%2C+Spyros&rft.au=Papadopoulou%C2%A0Lesta%2C+Vicky&rft.au=Fotakis%2C+Dimitris&rft.date=2022-09-27&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=516&rft.issue=4&rft.spage=5110&rft.epage=5124&rft_id=info:doi/10.1093%2Fmnras%2Fstac2444&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stac2444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon