Orderings of extremes among dependent extended Weibull random variables

In this work, we consider two sets of dependent variables $\{X_{1},\ldots,X_{n}\}$ and $\{Y_{1},\ldots,Y_{n}\}$ , where $X_{i}\sim EW(\alpha_{i},\lambda_{i},k_{i})$ and $Y_{i}\sim EW(\beta_{i},\mu_{i},l_{i})$ , for $i=1,\ldots, n$ , which are coupled by Archimedean copulas having different generator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability in the engineering and informational sciences Jg. 38; H. 4; S. 705 - 732
Hauptverfasser: Samanta, Ramkrishna Jyoti, Das, Sangita, Balakrishnan, N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge Cambridge University Press 01.10.2024
Schlagworte:
ISSN:0269-9648, 1469-8951
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we consider two sets of dependent variables $\{X_{1},\ldots,X_{n}\}$ and $\{Y_{1},\ldots,Y_{n}\}$ , where $X_{i}\sim EW(\alpha_{i},\lambda_{i},k_{i})$ and $Y_{i}\sim EW(\beta_{i},\mu_{i},l_{i})$ , for $i=1,\ldots, n$ , which are coupled by Archimedean copulas having different generators. We then establish different inequalities between two extremes, namely, $X_{1:n}$ and $Y_{1:n}$ and $X_{n:n}$ and $Y_{n:n}$ , in terms of the usual stochastic, star, Lorenz, hazard rate, reversed hazard rate and dispersive orders. Several examples and counterexamples are presented for illustrating all the results established here. Some of the results here extend the existing results of [5] (Barmalzan, G., Ayat, S.M., Balakrishnan, N., & Roozegar, R. (2020). Stochastic comparisons of series and parallel systems with dependent heterogeneous extended exponential components under Archimedean copula. Journal of Computational and Applied Mathematics 380 : Article No. 112965).
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0269-9648
1469-8951
DOI:10.1017/S026996482400007X