CBCG: A Clustering Algorithm Based on Bidirectional Conical Information Granularity

In this article, we propose a novel center-based clustering algorithm based on bidirectional conical information granularity. The main purpose is to fully absorb the semantic information of the ordinal relationship between objects to improve the performance of central clustering in identifying inter...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 32; číslo 8; s. 4388 - 4400
Hlavní autoři: Yu, Bin, Zheng, Zijian, Cai, Mingjie, Pedrycz, Witold, Xu, Zeshui
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.08.2024
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article, we propose a novel center-based clustering algorithm based on bidirectional conical information granularity. The main purpose is to fully absorb the semantic information of the ordinal relationship between objects to improve the performance of central clustering in identifying interleaved and imbalanced data. The proposed algorithm includes two main stages: first, the stage of determining the cluster center and second, the division stage. In the stage of determining the cluster center, the first cluster center is determined by using the number of conical information granularity in the data, and the remaining cluster centers are determined by defining the statistical measure of "fuzzy importance degree." In the division stage, we divide the points to be clustered into stable and active areas. The former quickly and accurately identifies and assigns the objects belonging to a cluster by measuring the fuzzy similarity between the objects to be clustered and the cluster center, and the latter assigns the objects in the active area by using the information of the points already assigned. This method describes the position and sorting relationship of objects that are granulated through ordinal relationships more accurately in the global environment, thereby gaining a more comprehensive understanding of the structural characteristics of the data. This helps to improve the accuracy and stability of clustering algorithms in handling interleaved and imbalanced data. This article uses three clustering validity indicators to test the performance of our algorithm. We compare the results with those of six different types of popular clustering algorithms and new algorithms proposed in recent years. The experimental results show that the algorithm proposed in this article can identify clusters more accurately on the datasets with a complex and staggered distribution. It is significantly better than the clustering algorithm participating in the comparison and has good robustness on datasets with added noise.
AbstractList In this article, we propose a novel center-based clustering algorithm based on bidirectional conical information granularity. The main purpose is to fully absorb the semantic information of the ordinal relationship between objects to improve the performance of central clustering in identifying interleaved and imbalanced data. The proposed algorithm includes two main stages: first, the stage of determining the cluster center and second, the division stage. In the stage of determining the cluster center, the first cluster center is determined by using the number of conical information granularity in the data, and the remaining cluster centers are determined by defining the statistical measure of "fuzzy importance degree." In the division stage, we divide the points to be clustered into stable and active areas. The former quickly and accurately identifies and assigns the objects belonging to a cluster by measuring the fuzzy similarity between the objects to be clustered and the cluster center, and the latter assigns the objects in the active area by using the information of the points already assigned. This method describes the position and sorting relationship of objects that are granulated through ordinal relationships more accurately in the global environment, thereby gaining a more comprehensive understanding of the structural characteristics of the data. This helps to improve the accuracy and stability of clustering algorithms in handling interleaved and imbalanced data. This article uses three clustering validity indicators to test the performance of our algorithm. We compare the results with those of six different types of popular clustering algorithms and new algorithms proposed in recent years. The experimental results show that the algorithm proposed in this article can identify clusters more accurately on the datasets with a complex and staggered distribution. It is significantly better than the clustering algorithm participating in the comparison and has good robustness on datasets with added noise.
Author Pedrycz, Witold
Yu, Bin
Zheng, Zijian
Cai, Mingjie
Xu, Zeshui
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0002-6321-2129
  surname: Yu
  fullname: Yu, Bin
  email: yu7bin@hotmail.com
  organization: College of Information Science and Engineering, Hunan Normal University, Changsha, China
– sequence: 2
  givenname: Zijian
  surname: Zheng
  fullname: Zheng, Zijian
  organization: College of Information Science and Engineering, Hunan Normal University, Changsha, China
– sequence: 3
  givenname: Mingjie
  orcidid: 0000-0003-3652-2022
  surname: Cai
  fullname: Cai, Mingjie
  email: cmjlong@163.com
  organization: College of Mathematics, Hunan University, Changsha, China
– sequence: 4
  givenname: Witold
  orcidid: 0000-0002-9335-9930
  surname: Pedrycz
  fullname: Pedrycz, Witold
  email: wpedrycz@ualberta.ca
  organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
– sequence: 5
  givenname: Zeshui
  orcidid: 0000-0003-3547-2908
  surname: Xu
  fullname: Xu, Zeshui
  organization: Business School, Sichuan University, Chengdu, China
BookMark eNp9kL1OwzAUhS1UJNrCCyAGv0DK9U8Sm62NaKlUiYF26RI5sV2MUhs56dC3J_0ZEAPTuTrSd3X0jdDAB28QeiQwIQTk83q-2W4nFCifMCZzAeIGDYnkJAFgfNDfkLEkyyG7Q6O2_QIgPCViiD6KWbF4wVNcNIe2M9H5HZ42uxBd97nHM9UajYPHM6ddNHXnglcNLoJ3dZ9Lb0Pcq1OLF1H5Q6N67niPbq1qWvNwzTHazF_XxVuyel8si-kqqWkmukQTqhTTMuPMKgkCUltJaymjVcUqKgi3yhhJqhQMyyHVwioBlAmm84xpYGMkLn_rGNo2GlvWrjuv6aJyTUmgPMkpz3LKk5zyKqdH6R_0O7q9isf_oacL5Iwxv4CUklxw9gMfmXMV
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_fss_2025_109575
crossref_primary_10_1016_j_knosys_2025_113276
Cites_doi 10.1016/j.fss.2024.108860
10.1016/j.inffus.2023.102137
10.1016/j.eswa.2020.113435
10.1109/TMECH.2020.3000732
10.1016/j.ijar.2019.11.002
10.1016/j.asoc.2014.08.004
10.1016/j.knosys.2021.107295
10.1016/j.knosys.2020.106672
10.1016/j.neunet.2019.01.015
10.1007/s007780050009
10.1126/science.1242072
10.1109/TVCG.2020.2986996
10.1016/S0165-0114(97)00077-8
10.1016/j.eswa.2019.113159
10.1109/TFUZZ.2015.2417896
10.1016/j.ins.2020.06.069
10.1109/TSE.2007.70732
10.32604/jai.2020.014944
10.1016/j.ins.2023.03.012
10.1109/TPAMI.2013.190
10.1016/0098-3004(84)90020-7
10.1016/j.knosys.2020.106028
10.1109/TCYB.2022.3217897
10.1109/TCYB.2021.3081762
10.1016/j.patrec.2006.11.010
10.1016/j.neucom.2018.06.087
10.1007/BF01890115
10.1109/TCYB.2020.2964011
10.1016/j.patcog.2021.108305
10.1016/j.bdr.2017.09.002
10.1109/PROC.1979.11327
10.3390/electronics9081295
10.1093/bioinformatics/btg038
10.3390/app8020237
10.1016/j.eswa.2020.114060
10.1016/j.eswa.2021.115054
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TFUZZ.2024.3397808
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 4400
ExternalDocumentID 10_1109_TFUZZ_2024_3397808
10521784
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province; Hunan Provincial Natural Science Foundation of China
  grantid: 2023JJ30387; 2023JJ30113
  funderid: 10.13039/501100004735
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515012342
  funderid: 10.13039/501100021171
– fundername: Scientific Research Fund of Hunan Provincial Education Department of China
  grantid: 23B0072
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c268t-d12aa3d9643fa90805fb9ff232bb3b2814faee91b50e3705d8fa802383d763d03
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001291157800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sat Nov 29 03:12:47 EST 2025
Tue Nov 18 22:18:17 EST 2025
Wed Aug 27 02:35:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-d12aa3d9643fa90805fb9ff232bb3b2814faee91b50e3705d8fa802383d763d03
ORCID 0000-0003-3652-2022
0000-0002-6321-2129
0000-0003-3547-2908
0000-0002-9335-9930
PageCount 13
ParticipantIDs ieee_primary_10521784
crossref_citationtrail_10_1109_TFUZZ_2024_3397808
crossref_primary_10_1109_TFUZZ_2024_3397808
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref38
ref19
Arthur (ref34) 2007
Bianchi (ref18) 2020
Rani (ref16) 2017; 8
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Xia (ref30) 2022; 44
ref40
References_xml – start-page: 1027
  volume-title: Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms
  year: 2007
  ident: ref34
  article-title: $k$-means: The advantages of careful seeding
– ident: ref8
  doi: 10.1016/j.fss.2024.108860
– ident: ref24
  doi: 10.1016/j.inffus.2023.102137
– ident: ref26
  doi: 10.1016/j.eswa.2020.113435
– ident: ref17
  doi: 10.1109/TMECH.2020.3000732
– ident: ref22
  doi: 10.1016/j.ijar.2019.11.002
– ident: ref32
  doi: 10.1016/j.asoc.2014.08.004
– ident: ref19
  doi: 10.1016/j.knosys.2021.107295
– ident: ref27
  doi: 10.1016/j.knosys.2020.106672
– ident: ref28
  doi: 10.1016/j.neunet.2019.01.015
– ident: ref15
  doi: 10.1007/s007780050009
– ident: ref33
  doi: 10.1126/science.1242072
– ident: ref40
  doi: 10.1109/TVCG.2020.2986996
– volume: 44
  start-page: 87
  issue: 01
  year: 2022
  ident: ref30
  article-title: Ball $k$-Means: Fast adaptive clustering with no bounds
  publication-title: IEEE Trans. Pattern Anal.
– ident: ref25
  doi: 10.1016/S0165-0114(97)00077-8
– ident: ref29
  doi: 10.1016/j.eswa.2019.113159
– ident: ref31
  doi: 10.1109/TFUZZ.2015.2417896
– ident: ref20
  doi: 10.1016/j.ins.2020.06.069
– ident: ref3
  doi: 10.1109/TSE.2007.70732
– ident: ref38
  doi: 10.32604/jai.2020.014944
– ident: ref11
  doi: 10.1016/j.ins.2023.03.012
– ident: ref35
  doi: 10.1109/TPAMI.2013.190
– volume: 8
  start-page: 1510
  issue: 5
  year: 2017
  ident: ref16
  article-title: A survey on STING and CLIQUE grid based clustering methods
  publication-title: Int. J. Adv. Res. Comput. Sci.
– ident: ref6
  doi: 10.1016/0098-3004(84)90020-7
– ident: ref14
  doi: 10.1016/j.knosys.2020.106028
– ident: ref7
  doi: 10.1109/TCYB.2022.3217897
– ident: ref10
  doi: 10.1109/TCYB.2021.3081762
– ident: ref39
  doi: 10.1016/j.patrec.2006.11.010
– ident: ref36
  doi: 10.1016/j.neucom.2018.06.087
– ident: ref9
  doi: 10.1007/BF01890115
– ident: ref23
  doi: 10.1109/TCYB.2020.2964011
– ident: ref21
  doi: 10.1016/j.patcog.2021.108305
– ident: ref12
  doi: 10.1016/j.bdr.2017.09.002
– ident: ref2
  doi: 10.1109/PROC.1979.11327
– ident: ref5
  doi: 10.3390/electronics9081295
– ident: ref37
  doi: 10.1093/bioinformatics/btg038
– ident: ref4
  doi: 10.3390/app8020237
– ident: ref1
  doi: 10.1016/j.eswa.2020.114060
– start-page: 874
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2020
  ident: ref18
  article-title: Spectral clustering with graph neural networks for graph pooling
– ident: ref13
  doi: 10.1016/j.eswa.2021.115054
SSID ssj0014518
Score 2.4589171
Snippet In this article, we propose a novel center-based clustering algorithm based on bidirectional conical information granularity. The main purpose is to fully...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 4388
SubjectTerms <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> k</tex-math> </inline-formula> </named-content>-bidirectional conical information granularity
Bidirectional conical information granularity
center-based clustering
Clustering algorithms
Clustering methods
Data mining
Data models
fuzzy importance degree (FID)
Fuzzy systems
Granular computing
Semantics
two-step division
Title CBCG: A Clustering Algorithm Based on Bidirectional Conical Information Granularity
URI https://ieeexplore.ieee.org/document/10521784
Volume 32
WOSCitedRecordID wos001291157800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6EeNCDKGLEX-nBmxmua9e13mARPBETISFclnZtlQSZQfDvt-0GwYMm3paXvmTZt_a9tu_7HgC3NE5EhAUJkGI4IEqGgeCGBlIyhJTKc0mVbzaRDIdsMuHPFVndc2G01r74THfco7_LV0W-dkdldobbYJMwUgO1JKElWWt7ZUBiVPLeKA5oEtINQybk96P-eDq1e8GIdDB2kjvsRxTaaavio0q_8c_3OQZHVfoIuyXeJ2BPL5qgsWnNAKuZ2gSHOzqDp-Al7aWDB9iF6XzthBGsEXbnr8Vytnp7hz0byBQsFrA3KwOcPx2EaeEpk7AiLDkrHNjI5upWbereAuP-4yh9CqpuCkEeUbYKFIqEwMrpbxnBbaIYG8mNsRmVlFhGDBEjtOZIxqHGSRgrZoRTh2NY2TVIhfgM1BfFQp8DqOOIxDIyufUgdhEQnPJcIaaFTAg3rA3Q5utmeSU17jpezDO_5Qh55hHJHCJZhUgb3G19PkqhjT9HtxwcOyNLJC5-sV-CA-deVu5dgfpqudbXYD__Ws0-lzf-R_oG7C3F4A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XB68S7efBNqk2TtolvW3Eq6hCcIL6UpEl0MFeZm7_fJO1kPij4Vg5JKf2SnJPkfN8BOE7iVERE0AArRgKqZBgIbpJASoaxUkUhE-WLTaSdDnt64vc1Wd1zYbTWPvlMn7pHf5evymLsjsrsDLfOJmV0FuZd6ayarvV9aUBjXDHfEhIkaZhMODIhP-u2H5-f7W4woqeEONEd9sMPTRVW8X6lvfrPL1qDlTqARM0K8XWY0YMNWJ0UZ0D1XN2A5SmlwU14yFrZ5Tlqoqw_dtII1oia_Zdy2Bu9vqGWdWUKlQPU6lUuzp8Poqz0pElUU5acFV1a3-YyV23w3oDH9kU3uwrqegpBESVsFCgcCUGUU-AygttQMTaSG2NjKimJjBimRmjNsYxDTdIwVswIpw_HiLKrkArJFswNyoHeBqTjiMYyMoXtQe0yIHjCC4WZFjKl3LAdwJO_mxe12LiredHP_aYj5LlHJHeI5DUiO3Dy3ee9ktr4s3XDwTHVskJi9xf7ESxede9u89vrzs0eLLlXVXl8-zA3Go71ASwUn6Pex_DQD6ovaADJKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CBCG%3A+A+Clustering+Algorithm+Based+on+Bidirectional+Conical+Information+Granularity&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Yu%2C+Bin&rft.au=Zheng%2C+Zijian&rft.au=Cai%2C+Mingjie&rft.au=Pedrycz%2C+Witold&rft.date=2024-08-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=32&rft.issue=8&rft.spage=4388&rft.epage=4400&rft_id=info:doi/10.1109%2FTFUZZ.2024.3397808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2024_3397808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon