CBCG: A Clustering Algorithm Based on Bidirectional Conical Information Granularity
In this article, we propose a novel center-based clustering algorithm based on bidirectional conical information granularity. The main purpose is to fully absorb the semantic information of the ordinal relationship between objects to improve the performance of central clustering in identifying inter...
Uloženo v:
| Vydáno v: | IEEE transactions on fuzzy systems Ročník 32; číslo 8; s. 4388 - 4400 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2024
|
| Témata: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, we propose a novel center-based clustering algorithm based on bidirectional conical information granularity. The main purpose is to fully absorb the semantic information of the ordinal relationship between objects to improve the performance of central clustering in identifying interleaved and imbalanced data. The proposed algorithm includes two main stages: first, the stage of determining the cluster center and second, the division stage. In the stage of determining the cluster center, the first cluster center is determined by using the number of conical information granularity in the data, and the remaining cluster centers are determined by defining the statistical measure of "fuzzy importance degree." In the division stage, we divide the points to be clustered into stable and active areas. The former quickly and accurately identifies and assigns the objects belonging to a cluster by measuring the fuzzy similarity between the objects to be clustered and the cluster center, and the latter assigns the objects in the active area by using the information of the points already assigned. This method describes the position and sorting relationship of objects that are granulated through ordinal relationships more accurately in the global environment, thereby gaining a more comprehensive understanding of the structural characteristics of the data. This helps to improve the accuracy and stability of clustering algorithms in handling interleaved and imbalanced data. This article uses three clustering validity indicators to test the performance of our algorithm. We compare the results with those of six different types of popular clustering algorithms and new algorithms proposed in recent years. The experimental results show that the algorithm proposed in this article can identify clusters more accurately on the datasets with a complex and staggered distribution. It is significantly better than the clustering algorithm participating in the comparison and has good robustness on datasets with added noise. |
|---|---|
| AbstractList | In this article, we propose a novel center-based clustering algorithm based on bidirectional conical information granularity. The main purpose is to fully absorb the semantic information of the ordinal relationship between objects to improve the performance of central clustering in identifying interleaved and imbalanced data. The proposed algorithm includes two main stages: first, the stage of determining the cluster center and second, the division stage. In the stage of determining the cluster center, the first cluster center is determined by using the number of conical information granularity in the data, and the remaining cluster centers are determined by defining the statistical measure of "fuzzy importance degree." In the division stage, we divide the points to be clustered into stable and active areas. The former quickly and accurately identifies and assigns the objects belonging to a cluster by measuring the fuzzy similarity between the objects to be clustered and the cluster center, and the latter assigns the objects in the active area by using the information of the points already assigned. This method describes the position and sorting relationship of objects that are granulated through ordinal relationships more accurately in the global environment, thereby gaining a more comprehensive understanding of the structural characteristics of the data. This helps to improve the accuracy and stability of clustering algorithms in handling interleaved and imbalanced data. This article uses three clustering validity indicators to test the performance of our algorithm. We compare the results with those of six different types of popular clustering algorithms and new algorithms proposed in recent years. The experimental results show that the algorithm proposed in this article can identify clusters more accurately on the datasets with a complex and staggered distribution. It is significantly better than the clustering algorithm participating in the comparison and has good robustness on datasets with added noise. |
| Author | Pedrycz, Witold Yu, Bin Zheng, Zijian Cai, Mingjie Xu, Zeshui |
| Author_xml | – sequence: 1 givenname: Bin orcidid: 0000-0002-6321-2129 surname: Yu fullname: Yu, Bin email: yu7bin@hotmail.com organization: College of Information Science and Engineering, Hunan Normal University, Changsha, China – sequence: 2 givenname: Zijian surname: Zheng fullname: Zheng, Zijian organization: College of Information Science and Engineering, Hunan Normal University, Changsha, China – sequence: 3 givenname: Mingjie orcidid: 0000-0003-3652-2022 surname: Cai fullname: Cai, Mingjie email: cmjlong@163.com organization: College of Mathematics, Hunan University, Changsha, China – sequence: 4 givenname: Witold orcidid: 0000-0002-9335-9930 surname: Pedrycz fullname: Pedrycz, Witold email: wpedrycz@ualberta.ca organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada – sequence: 5 givenname: Zeshui orcidid: 0000-0003-3547-2908 surname: Xu fullname: Xu, Zeshui organization: Business School, Sichuan University, Chengdu, China |
| BookMark | eNp9kL1OwzAUhS1UJNrCCyAGv0DK9U8Sm62NaKlUiYF26RI5sV2MUhs56dC3J_0ZEAPTuTrSd3X0jdDAB28QeiQwIQTk83q-2W4nFCifMCZzAeIGDYnkJAFgfNDfkLEkyyG7Q6O2_QIgPCViiD6KWbF4wVNcNIe2M9H5HZ42uxBd97nHM9UajYPHM6ddNHXnglcNLoJ3dZ9Lb0Pcq1OLF1H5Q6N67niPbq1qWvNwzTHazF_XxVuyel8si-kqqWkmukQTqhTTMuPMKgkCUltJaymjVcUqKgi3yhhJqhQMyyHVwioBlAmm84xpYGMkLn_rGNo2GlvWrjuv6aJyTUmgPMkpz3LKk5zyKqdH6R_0O7q9isf_oacL5Iwxv4CUklxw9gMfmXMV |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1016_j_fss_2025_109575 crossref_primary_10_1016_j_knosys_2025_113276 |
| Cites_doi | 10.1016/j.fss.2024.108860 10.1016/j.inffus.2023.102137 10.1016/j.eswa.2020.113435 10.1109/TMECH.2020.3000732 10.1016/j.ijar.2019.11.002 10.1016/j.asoc.2014.08.004 10.1016/j.knosys.2021.107295 10.1016/j.knosys.2020.106672 10.1016/j.neunet.2019.01.015 10.1007/s007780050009 10.1126/science.1242072 10.1109/TVCG.2020.2986996 10.1016/S0165-0114(97)00077-8 10.1016/j.eswa.2019.113159 10.1109/TFUZZ.2015.2417896 10.1016/j.ins.2020.06.069 10.1109/TSE.2007.70732 10.32604/jai.2020.014944 10.1016/j.ins.2023.03.012 10.1109/TPAMI.2013.190 10.1016/0098-3004(84)90020-7 10.1016/j.knosys.2020.106028 10.1109/TCYB.2022.3217897 10.1109/TCYB.2021.3081762 10.1016/j.patrec.2006.11.010 10.1016/j.neucom.2018.06.087 10.1007/BF01890115 10.1109/TCYB.2020.2964011 10.1016/j.patcog.2021.108305 10.1016/j.bdr.2017.09.002 10.1109/PROC.1979.11327 10.3390/electronics9081295 10.1093/bioinformatics/btg038 10.3390/app8020237 10.1016/j.eswa.2020.114060 10.1016/j.eswa.2021.115054 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TFUZZ.2024.3397808 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 4400 |
| ExternalDocumentID | 10_1109_TFUZZ_2024_3397808 10521784 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province; Hunan Provincial Natural Science Foundation of China grantid: 2023JJ30387; 2023JJ30113 funderid: 10.13039/501100004735 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2023A1515012342 funderid: 10.13039/501100021171 – fundername: Scientific Research Fund of Hunan Provincial Education Department of China grantid: 23B0072 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c268t-d12aa3d9643fa90805fb9ff232bb3b2814faee91b50e3705d8fa802383d763d03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001291157800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Sat Nov 29 03:12:47 EST 2025 Tue Nov 18 22:18:17 EST 2025 Wed Aug 27 02:35:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-d12aa3d9643fa90805fb9ff232bb3b2814faee91b50e3705d8fa802383d763d03 |
| ORCID | 0000-0003-3652-2022 0000-0002-6321-2129 0000-0003-3547-2908 0000-0002-9335-9930 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10521784 crossref_citationtrail_10_1109_TFUZZ_2024_3397808 crossref_primary_10_1109_TFUZZ_2024_3397808 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref38 ref19 Arthur (ref34) 2007 Bianchi (ref18) 2020 Rani (ref16) 2017; 8 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Xia (ref30) 2022; 44 ref40 |
| References_xml | – start-page: 1027 volume-title: Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms year: 2007 ident: ref34 article-title: $k$-means: The advantages of careful seeding – ident: ref8 doi: 10.1016/j.fss.2024.108860 – ident: ref24 doi: 10.1016/j.inffus.2023.102137 – ident: ref26 doi: 10.1016/j.eswa.2020.113435 – ident: ref17 doi: 10.1109/TMECH.2020.3000732 – ident: ref22 doi: 10.1016/j.ijar.2019.11.002 – ident: ref32 doi: 10.1016/j.asoc.2014.08.004 – ident: ref19 doi: 10.1016/j.knosys.2021.107295 – ident: ref27 doi: 10.1016/j.knosys.2020.106672 – ident: ref28 doi: 10.1016/j.neunet.2019.01.015 – ident: ref15 doi: 10.1007/s007780050009 – ident: ref33 doi: 10.1126/science.1242072 – ident: ref40 doi: 10.1109/TVCG.2020.2986996 – volume: 44 start-page: 87 issue: 01 year: 2022 ident: ref30 article-title: Ball $k$-Means: Fast adaptive clustering with no bounds publication-title: IEEE Trans. Pattern Anal. – ident: ref25 doi: 10.1016/S0165-0114(97)00077-8 – ident: ref29 doi: 10.1016/j.eswa.2019.113159 – ident: ref31 doi: 10.1109/TFUZZ.2015.2417896 – ident: ref20 doi: 10.1016/j.ins.2020.06.069 – ident: ref3 doi: 10.1109/TSE.2007.70732 – ident: ref38 doi: 10.32604/jai.2020.014944 – ident: ref11 doi: 10.1016/j.ins.2023.03.012 – ident: ref35 doi: 10.1109/TPAMI.2013.190 – volume: 8 start-page: 1510 issue: 5 year: 2017 ident: ref16 article-title: A survey on STING and CLIQUE grid based clustering methods publication-title: Int. J. Adv. Res. Comput. Sci. – ident: ref6 doi: 10.1016/0098-3004(84)90020-7 – ident: ref14 doi: 10.1016/j.knosys.2020.106028 – ident: ref7 doi: 10.1109/TCYB.2022.3217897 – ident: ref10 doi: 10.1109/TCYB.2021.3081762 – ident: ref39 doi: 10.1016/j.patrec.2006.11.010 – ident: ref36 doi: 10.1016/j.neucom.2018.06.087 – ident: ref9 doi: 10.1007/BF01890115 – ident: ref23 doi: 10.1109/TCYB.2020.2964011 – ident: ref21 doi: 10.1016/j.patcog.2021.108305 – ident: ref12 doi: 10.1016/j.bdr.2017.09.002 – ident: ref2 doi: 10.1109/PROC.1979.11327 – ident: ref5 doi: 10.3390/electronics9081295 – ident: ref37 doi: 10.1093/bioinformatics/btg038 – ident: ref4 doi: 10.3390/app8020237 – ident: ref1 doi: 10.1016/j.eswa.2020.114060 – start-page: 874 volume-title: Proc. Int. Conf. Mach. Learn. year: 2020 ident: ref18 article-title: Spectral clustering with graph neural networks for graph pooling – ident: ref13 doi: 10.1016/j.eswa.2021.115054 |
| SSID | ssj0014518 |
| Score | 2.4589171 |
| Snippet | In this article, we propose a novel center-based clustering algorithm based on bidirectional conical information granularity. The main purpose is to fully... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 4388 |
| SubjectTerms | <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> k</tex-math> </inline-formula> </named-content>-bidirectional conical information granularity Bidirectional conical information granularity center-based clustering Clustering algorithms Clustering methods Data mining Data models fuzzy importance degree (FID) Fuzzy systems Granular computing Semantics two-step division |
| Title | CBCG: A Clustering Algorithm Based on Bidirectional Conical Information Granularity |
| URI | https://ieeexplore.ieee.org/document/10521784 |
| Volume | 32 |
| WOSCitedRecordID | wos001291157800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6EeNCDKGLEX-nBmxmua9e13mARPBETISFclnZtlQSZQfDvt-0GwYMm3paXvmTZt_a9tu_7HgC3NE5EhAUJkGI4IEqGgeCGBlIyhJTKc0mVbzaRDIdsMuHPFVndc2G01r74THfco7_LV0W-dkdldobbYJMwUgO1JKElWWt7ZUBiVPLeKA5oEtINQybk96P-eDq1e8GIdDB2kjvsRxTaaavio0q_8c_3OQZHVfoIuyXeJ2BPL5qgsWnNAKuZ2gSHOzqDp-Al7aWDB9iF6XzthBGsEXbnr8Vytnp7hz0byBQsFrA3KwOcPx2EaeEpk7AiLDkrHNjI5upWbereAuP-4yh9CqpuCkEeUbYKFIqEwMrpbxnBbaIYG8mNsRmVlFhGDBEjtOZIxqHGSRgrZoRTh2NY2TVIhfgM1BfFQp8DqOOIxDIyufUgdhEQnPJcIaaFTAg3rA3Q5utmeSU17jpezDO_5Qh55hHJHCJZhUgb3G19PkqhjT9HtxwcOyNLJC5-sV-CA-deVu5dgfpqudbXYD__Ws0-lzf-R_oG7C3F4A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XB68S7efBNqk2TtolvW3Eq6hCcIL6UpEl0MFeZm7_fJO1kPij4Vg5JKf2SnJPkfN8BOE7iVERE0AArRgKqZBgIbpJASoaxUkUhE-WLTaSdDnt64vc1Wd1zYbTWPvlMn7pHf5evymLsjsrsDLfOJmV0FuZd6ayarvV9aUBjXDHfEhIkaZhMODIhP-u2H5-f7W4woqeEONEd9sMPTRVW8X6lvfrPL1qDlTqARM0K8XWY0YMNWJ0UZ0D1XN2A5SmlwU14yFrZ5Tlqoqw_dtII1oia_Zdy2Bu9vqGWdWUKlQPU6lUuzp8Poqz0pElUU5acFV1a3-YyV23w3oDH9kU3uwrqegpBESVsFCgcCUGUU-AygttQMTaSG2NjKimJjBimRmjNsYxDTdIwVswIpw_HiLKrkArJFswNyoHeBqTjiMYyMoXtQe0yIHjCC4WZFjKl3LAdwJO_mxe12LiredHP_aYj5LlHJHeI5DUiO3Dy3ee9ktr4s3XDwTHVskJi9xf7ESxede9u89vrzs0eLLlXVXl8-zA3Go71ASwUn6Pex_DQD6ovaADJKQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CBCG%3A+A+Clustering+Algorithm+Based+on+Bidirectional+Conical+Information+Granularity&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Yu%2C+Bin&rft.au=Zheng%2C+Zijian&rft.au=Cai%2C+Mingjie&rft.au=Pedrycz%2C+Witold&rft.date=2024-08-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=32&rft.issue=8&rft.spage=4388&rft.epage=4400&rft_id=info:doi/10.1109%2FTFUZZ.2024.3397808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2024_3397808 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |