Digital design of regional characteristic apparel pattern driven by GAN

In the links of apparel product development and production, apparel pattern design cannot reduce its marginal cost through economies of scale because of its creative characteristics. With the world entering the era of industry 4.0, machine learning can provide services for apparel design. This resea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Industria textilă (Bucharest, Romania : 1994) Ročník 73; číslo 3; s. 233 - 240
Hlavní autori: CHEN, HAN, SHEN, LEI, ZHANG, XIYING, REN, XIANGFANG, WANG, MINGMING, MIN, XUE, LI, XUE
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bucharest The National Research & Development Institute for Textiles and Leather - INCDTP 01.01.2022
Predmet:
ISSN:1222-5347
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the links of apparel product development and production, apparel pattern design cannot reduce its marginal cost through economies of scale because of its creative characteristics. With the world entering the era of industry 4.0, machine learning can provide services for apparel design. This research takes the Chinese characteristic tachisme pattern as the research object and puts forward a new design method of regional characteristic apparel pattern driven by Generative Adversarial Networks (GAN). Firstly, the main framework based on GAN including discrimination and generation modules is established. Aiming at the training difficulties of regional characteristic apparel pattern sample situation with small quantity and disordered specification, the image self-amplification and normalization pre-processing module is added to the model. Secondly, by adding the Batch Normalization mechanism, Leaky ReLU and RMSProp algorithm, the problems of gradient disappearance and overfitting in the experiment are solved, and the convergence speed of the model is improved. Finally, the HSV colour model algorithm is introduced into the loss function to indicate the training process, so that the artistic expression characteristics of the generated results are closer to the human visual perception experience. Through index evaluation comparison, result authenticity investigation and product design practice, we prove the superiority and practicality of the proposed method in this paper. The new design method theoretically solves the scale economy dilemma of the previous apparel pattern design methods and provides reference ideas for more application scenarios currently trapped in the real-time presentation of design results.
AbstractList In the links of apparel product development and production, apparel pattern design cannot reduce its marginal cost through economies of scale because of its creative characteristics. With the world entering the era of industry 4.0, machine learning can provide services for apparel design. This research takes the Chinese characteristic tachisme pattern as the research object and puts forward a new design method of regional characteristic apparel pattern driven by Generative Adversarial Networks (GAN). Firstly, the main framework based on GAN including discrimination and generation modules is established. Aiming at the training difficulties of regional characteristic apparel pattern sample situation with small quantity and disordered specification, the image self-amplification and normalization pre-processing module is added to the model. Secondly, by adding the Batch Normalization mechanism, Leaky ReLU and RMSProp algorithm, the problems of gradient disappearance and overfitting in the experiment are solved, and the convergence speed of the model is improved. Finally, the HSV colour model algorithm is introduced into the loss function to indicate the training process, so that the artistic expression characteristics of the generated results are closer to the human visual perception experience. Through index evaluation comparison, result authenticity investigation and product design practice, we prove the superiority and practicality of the proposed method in this paper. The new design method theoretically solves the scale economy dilemma of the previous apparel pattern design methods and provides reference ideas for more application scenarios currently trapped in the real-time presentation of design results.
In the links of apparel product development and production, apparel pattern design cannot reduce its marginal cost through economies of scale because of its creative characteristics. With the world entering the era of industry 4.0, machine learning can provide services for apparel design. This research takes the Chinese characteristic tachisme pattern as the research object and puts forward a new design method of regional characteristic apparel pattern driven by Generative Adversarial Networks (GAN). Firstly, the main framework based on GAN including discrimination and generation modules is established. Aiming at the training difficulties of regional characteristic apparel pattern sample situation with small quantity and disordered specification, the image self-amplification and normalization pre-processing module is added to the model. Secondly, by adding the Batch Normalization mechanism, Leaky ReLU and RMSProp algorithm, the problems of gradient disappearance and overfitting in the experiment are solved, and the convergence speed of the model is improved. Finally, the HSV colour model algorithm is introduced into the loss function to indicate the training process, so that the artistic expression characteristics of the generated results are closer to the human visual perception experience. Through index evaluation comparison, result authenticity investigation and product design practice, we prove the superiority and practicality of the proposed method in this paper. The new design method theoretically solves the scale economy dilemma of the previous apparel pattern design methods and provides reference ideas for more application scenarios currently trapped in the real-time presentation of design results.
Author LI, XUE
CHEN, HAN
REN, XIANGFANG
MIN, XUE
SHEN, LEI
WANG, MINGMING
ZHANG, XIYING
Author_xml – sequence: 1
  givenname: HAN
  surname: CHEN
  fullname: CHEN, HAN
  organization: iangnan University, Faculty of Design, Department of Apparel, 1800 Lihu Dadao, Binhu District, 214122, Wuxi, China
– sequence: 2
  givenname: LEI
  surname: SHEN
  fullname: SHEN, LEI
  organization: iangnan University, Faculty of Design, Department of Apparel, 1800 Lihu Dadao, Binhu District, 214122, Wuxi, China
– sequence: 3
  givenname: XIYING
  surname: ZHANG
  fullname: ZHANG, XIYING
  organization: iangnan University, Faculty of Design, Department of Apparel, 1800 Lihu Dadao, Binhu District, 214122, Wuxi, China
– sequence: 4
  givenname: XIANGFANG
  surname: REN
  fullname: REN, XIANGFANG
  organization: iangnan University, Faculty of Design, Department of Apparel, 1800 Lihu Dadao, Binhu District, 214122, Wuxi, China
– sequence: 5
  givenname: MINGMING
  surname: WANG
  fullname: WANG, MINGMING
  organization: Fudan University, Faculty of Computer Science and Technology, Department of Machine Learning, 825 Zhangheng Road, 201203, Shanghai, China
– sequence: 6
  givenname: XUE
  surname: MIN
  fullname: MIN, XUE
  organization: iangnan University, Faculty of Design, Department of Apparel, 1800 Lihu Dadao, Binhu District, 214122, Wuxi, China
– sequence: 7
  givenname: XUE
  surname: LI
  fullname: LI, XUE
  organization: iangnan University, Faculty of Design, Department of Apparel, 1800 Lihu Dadao, Binhu District, 214122, Wuxi, China
BookMark eNotkMFOwzAQRH0oEqX0A7hZ4tywXsd2OFYFSqUKLuVsbRy7uCpJsFOk_j0R5bIjjUYzq3fDJm3XesbuBBRSKQkPm10BRhYgCwQUwkzYVCDiQsnSXLN5zgcAEKUqUeGUrZ_iPg505I3Pcd_yLvDk97FrR8t9UiI3-BTzEB2nvqfkj7ynYfRa3qT441ten_l6-XbLrgIds5__64x9vDzvVq-L7ft6s1puFw51NYwXDWlAEO7RNbUuqQZFhJWX2gWhQ-UpUF36usHKhdII0ARaNcKj9E7KGbu_9Pap-z75PNhDd0rjt9mOA1hpNAbGlLikXOpyTj7YPsUvSmcrwP5hspudHTFZkPaCSf4C22heMg
ContentType Journal Article
Copyright Copyright The National Research & Development Institute for Textiles and Leather - INCDTP 2022
Copyright_xml – notice: Copyright The National Research & Development Institute for Textiles and Leather - INCDTP 2022
DBID AAYXX
CITATION
3V.
7SR
7WY
7XB
883
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
BYOGL
CCPQU
D1I
DWQXO
F28
FR3
FRNLG
HCIFZ
JG9
K60
K6~
KB.
L.-
M0F
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.35530/IT.073.03.202117
DatabaseName CrossRef
ProQuest Central (Corporate)
Engineered Materials Abstracts
ABI/INFORM Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Trade & Industry (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
East Europe, Central Europe Database
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Business Premium Collection (Alumni)
SciTech Premium Collection
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Trade & Industry
Materials Science Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Business Premium Collection
ABI/INFORM Trade & Industry (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
East Europe, Central Europe Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ABI/INFORM Trade & Industry
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: BYOGL
  name: East Europe, Central Europe Database
  url: https://search.proquest.com/eastcentraleurope
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 240
ExternalDocumentID 10_35530_IT_073_03_202117
GroupedDBID 5GY
7WY
883
8FE
8FG
8FL
AAYXX
ABJCF
ABUWG
ACIWK
AENEX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BEZIV
BGLVJ
BPHCQ
BYOGL
CCPQU
CITATION
D1I
DWQXO
EOJEC
FRNLG
HCIFZ
K60
K6~
KB.
M0F
OBODZ
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
TTC
3V.
7SR
7XB
8FD
8FK
F28
FR3
JG9
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c268t-c227a60201c9cdb64ab05aa28e36cf16f8eafab4ebd28cf47106a065d1e23ec33
IEDL.DBID 7WY
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848102700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1222-5347
IngestDate Sun Jul 13 05:34:57 EDT 2025
Sat Nov 29 02:45:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-c227a60201c9cdb64ab05aa28e36cf16f8eafab4ebd28cf47106a065d1e23ec33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.35530/it.073.03.202117
PQID 2682862770
PQPubID 2035127
PageCount 8
ParticipantIDs proquest_journals_2682862770
crossref_primary_10_35530_IT_073_03_202117
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Bucharest
PublicationPlace_xml – name: Bucharest
PublicationTitle Industria textilă (Bucharest, Romania : 1994)
PublicationYear 2022
Publisher The National Research & Development Institute for Textiles and Leather - INCDTP
Publisher_xml – name: The National Research & Development Institute for Textiles and Leather - INCDTP
SSID ssj0001454252
Score 2.1995525
Snippet In the links of apparel product development and production, apparel pattern design cannot reduce its marginal cost through economies of scale because of its...
In the links of apparel product development and production, apparel pattern design cannot reduce its marginal cost through economies of scale because of its...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 233
SubjectTerms Algorithms
Artistic expression
Clothing industry
Convergence
Design techniques
Economies of scale
Experiments
Generative adversarial networks
Machine learning
Methods
Modules
Product design
Product development
Regional development
Training
Visual perception
Title Digital design of regional characteristic apparel pattern driven by GAN
URI https://www.proquest.com/docview/2682862770
Volume 73
WOSCitedRecordID wos000848102700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  issn: 1222-5347
  databaseCode: 7WY
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/abicomplete
  omitProxy: false
  ssIdentifier: ssj0001454252
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Trade & Industry
  issn: 1222-5347
  databaseCode: M0F
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/abitrade
  omitProxy: false
  ssIdentifier: ssj0001454252
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: East Europe, Central Europe Database
  issn: 1222-5347
  databaseCode: BYOGL
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/eastcentraleurope
  omitProxy: false
  ssIdentifier: ssj0001454252
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  issn: 1222-5347
  databaseCode: KB.
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  omitProxy: false
  ssIdentifier: ssj0001454252
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1222-5347
  databaseCode: BENPR
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: false
  ssIdentifier: ssj0001454252
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6edCD3-J0jhw8Cd3apE3Sk2y6zSGWIRPnqaRJKgPp6jYF_3uTtGPbxYuXQCmUx3uv7zvvB8C1TyVRYYAdjEXo-CxMHCYkcbyQc0IT4QVMWLAJGkVsPA6HZcFtXo5VLm2iNdRyKkyNvIWIufCMKHVv80_HoEaZ7moJobENqtpRBwbBgL6-rWosfqBV0jY8kcm5sE-LxiY2YDmtwaipFdzsOEXa01nIsjXXtGmZrbvpHfyX0EOwXwaasF1oxhHYUtkx2FtbP3gC-veTd4MZAqUd44DTFBqcBhObQ7GxyBny3Eyqf8DcruPMoJwZKwmTH9hvR6fgpdcd3T04JbCCIzR1C30iyokOFD0RCpkQnyduwDliChOReiRliqc88VUiEROp9l8u4TpWkZ5CWAmMz0Alm2bqHGgCfZToRFcZzF-qUCiZRySjQuqPe5LVwM2Sp3Fe7M-Idd5hBRAPRrEWQOziuBBADdSXLI3LX2ker_h58ffrS7CLzN0EWx-pg8pi9qWuwI74Xkzms4bVjAaodrrR8Fk_PXaa-nxye781PML5
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB4hqAQcaMtDDaWtD3BBWtj1bmzvoapQaSAiiTgEiZvx2l4UqUpCEkD5U_xGZrxZAZfeOPSyl5Us737z8Ixn5gPYz6QTPm-mUZraPMpUXkTKOhEluTFCFjZpKhvIJmSvp66v88sleKp7YaissraJwVC7kaUc-TEX1PDMpYx_je8iYo2i29WaQqMSiws_f8SQbfqzfYr4HnDe-tP_fR4tWAUii2vM8MmlEXhKSmxuXSEyU8RNY7jyqbBlIkrlTWmKzBeOK1ui8Y6FQUftEs9TbykBiiZ_JcPAizSqG7decjpZE1UgXLByivHSTFYXqSmR8xy3-0eoUDRTlaNnDRRpr1zhW08Q3Fvr4__2Yz7BxuIgzU4qyf8MS364Ceuvxituwdnp4JY4UZgLZSpsVDLioaDYg9k3g6qZGVMl_l82DuNGh8xNyAuwYs7OTnrbcPUuX7IDy8PR0H8B3GDGCwzkPXEaS89zpxLhlLQOF0-casBhjaEeV_NBNMZVAXDd7msEXMeprgBvwF4NoV6Yiql-wW_3369_wOp5v9vRnXbv4iuscerDCLmgPVieTe79N_hgH2aD6eR7kEoGN--N9jMNfR5t
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH5CBU3jMMYYgq0MH-AyKWtjp7ZzQKhQChUoqqYicfMc20FIqC1t2cS_tr-OZycRcOHGgUsukSwnn997fj8_gL1EWO7SDosYM2mUyDSPpLE8ilOtuchN3JEmkE2ILJNXV-lwCf7XvTC-rLLWiUFR24nxMfIW5b7hmQrRbhVVWcSw1z-c3kWeQcpnWms6jfKInLuHf-i-zQ8GPcR6n9L-yej4LKoYBiKD6y3wSYXmeGOKTWpszhOdtztaU-kYN0XMC-l0ofPE5ZZKU6Aib3ONRtvGjjJnfDAU1f-yYOj0NGD56CQb_n6K8CQdFIiQbqXe42OJKNOqzFP1tAajXyhefsIqRTsbCNOeGcaXdiEYu_7ae_5Nn-FTdcUm3VIm1mHJjb_A6rPBixtw2ru59mwpxIYCFjIpiGeo8F4JMS9GWBM99TX6t2QaBpGOiZ15-0DyB3Lazb7C5Zt8ySY0xpOx2wLcYEJzdPGdZzsWjqZWxtxKYSwuHlu5DT9rPNW0nByi0OMK4KvBSCH4qs1UCf42NGs4VaVE5uoJy2-vv96FDwiyuhhk59_hI_UNGiFI1ITGYnbvdmDF_F3czGc_qiNK4M9bw_0I6iMoog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+design+of+regional+characteristic+apparel+pattern+driven+by+GAN&rft.jtitle=Industria+textil%C4%83+%28Bucharest%2C+Romania+%3A+1994%29&rft.au=CHEN%2C+HAN&rft.au=SHEN%2C+LEI&rft.au=ZHANG%2C+XIYING&rft.au=REN%2C+XIANGFANG&rft.date=2022-01-01&rft.issn=1222-5347&rft.volume=73&rft.issue=3&rft.spage=233&rft.epage=240&rft_id=info:doi/10.35530%2FIT.073.03.202117&rft.externalDBID=n%2Fa&rft.externalDocID=10_35530_IT_073_03_202117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1222-5347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1222-5347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1222-5347&client=summon