SegNet4D: Efficient Instance-Aware 4D Semantic Segmentation for LiDAR Point Cloud

4D LiDAR semantic segmentation classifies the semantic category of each LiDAR point and detects whether it is dynamic, a critical ability for tasks like obstacle avoidance and autonomous navigation. Existing approaches often rely on computationally heavy 4D convolutions or recursive networks, which...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 22; pp. 15339 - 15350
Main Authors: Wang, Neng, Guo, Ruibin, Shi, Chenghao, Wang, Ziyue, Zhang, Hui, Lu, Huimin, Zheng, Zhiqiang, Chen, Xieyuanli
Format: Journal Article
Language:English
Published: IEEE 2025
Subjects:
ISSN:1545-5955, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract 4D LiDAR semantic segmentation classifies the semantic category of each LiDAR point and detects whether it is dynamic, a critical ability for tasks like obstacle avoidance and autonomous navigation. Existing approaches often rely on computationally heavy 4D convolutions or recursive networks, which result in poor real-time performance. In this paper, we introduce SegNet4D, a novel real-time 4D semantic segmentation network, offering both efficiency and strong semantic understanding. SegNet4D addresses 4D segmentation as two tasks: single-scan semantic segmentation and moving object segmentation, each tackled by a separate network head. Both results are combined in a motion-semantic fusion module to achieve comprehensive 4D segmentation. Additionally, instance information is extracted from the current scan and exploited for instance-wise segmentation consistency. Extensive experiments on the SemanticKITTI and nuScenes datasets demonstrate that our method outperforms the state-of-the-art in both 4D semantic segmentation and moving object segmentation. Through detailed runtime analysis, our method shows greater efficiency, enabling real-time operation. Besides, its effectiveness and efficiency have also been validated on a real-world robotic platform. The implementation of our method has been released at https://github.com/nubot-nudt/SegNet4D Note to Practitioners-This paper focuses on enhancing the efficiency of 4D semantic segmentation for applications in autonomous driving or navigation. Existing LiDAR-based 4D semantic segmentation methods fall short of real-time processing capabilities, thereby severely limiting their practicality for autonomous vehicles and robotic systems. To tackle these issues, we design a high-efficiency 4D semantic segmentation network that not only performs real-time operations on real-world robotic systems but also delivers superior performance, validating its practical utility. Future work can further leverage the instance information we introduced to improve the network's functionality by achieving panoptic segmentation or 4D panoptic segmentation. Furthermore, some studies may use the 4D semantic labels predicted by our approach to reinforce tasks associated with robotic autonomy.
AbstractList 4D LiDAR semantic segmentation classifies the semantic category of each LiDAR point and detects whether it is dynamic, a critical ability for tasks like obstacle avoidance and autonomous navigation. Existing approaches often rely on computationally heavy 4D convolutions or recursive networks, which result in poor real-time performance. In this paper, we introduce SegNet4D, a novel real-time 4D semantic segmentation network, offering both efficiency and strong semantic understanding. SegNet4D addresses 4D segmentation as two tasks: single-scan semantic segmentation and moving object segmentation, each tackled by a separate network head. Both results are combined in a motion-semantic fusion module to achieve comprehensive 4D segmentation. Additionally, instance information is extracted from the current scan and exploited for instance-wise segmentation consistency. Extensive experiments on the SemanticKITTI and nuScenes datasets demonstrate that our method outperforms the state-of-the-art in both 4D semantic segmentation and moving object segmentation. Through detailed runtime analysis, our method shows greater efficiency, enabling real-time operation. Besides, its effectiveness and efficiency have also been validated on a real-world robotic platform. The implementation of our method has been released at https://github.com/nubot-nudt/SegNet4D Note to Practitioners-This paper focuses on enhancing the efficiency of 4D semantic segmentation for applications in autonomous driving or navigation. Existing LiDAR-based 4D semantic segmentation methods fall short of real-time processing capabilities, thereby severely limiting their practicality for autonomous vehicles and robotic systems. To tackle these issues, we design a high-efficiency 4D semantic segmentation network that not only performs real-time operations on real-world robotic systems but also delivers superior performance, validating its practical utility. Future work can further leverage the instance information we introduced to improve the network's functionality by achieving panoptic segmentation or 4D panoptic segmentation. Furthermore, some studies may use the 4D semantic labels predicted by our approach to reinforce tasks associated with robotic autonomy.
Author Zhang, Hui
Guo, Ruibin
Chen, Xieyuanli
Wang, Ziyue
Wang, Neng
Zheng, Zhiqiang
Shi, Chenghao
Lu, Huimin
Author_xml – sequence: 1
  givenname: Neng
  orcidid: 0009-0005-3620-347X
  surname: Wang
  fullname: Wang, Neng
  organization: College of Intelligence Science and Technology and the National Key Laboratory of Equipment State Sensing and Smart Support, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Ruibin
  orcidid: 0000-0001-9935-6792
  surname: Guo
  fullname: Guo, Ruibin
  organization: College of Intelligence Science and Technology and the National Key Laboratory of Equipment State Sensing and Smart Support, National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Chenghao
  orcidid: 0000-0002-1462-2367
  surname: Shi
  fullname: Shi, Chenghao
  organization: College of Intelligence Science and Technology and the National Key Laboratory of Equipment State Sensing and Smart Support, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Ziyue
  surname: Wang
  fullname: Wang, Ziyue
  organization: College of Intelligence Science and Technology and the National Key Laboratory of Equipment State Sensing and Smart Support, National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: Hui
  surname: Zhang
  fullname: Zhang, Hui
  organization: College of Intelligence Science and Technology and the National Key Laboratory of Equipment State Sensing and Smart Support, National University of Defense Technology, Changsha, China
– sequence: 6
  givenname: Huimin
  orcidid: 0000-0002-6375-581X
  surname: Lu
  fullname: Lu, Huimin
  organization: College of Intelligence Science and Technology and the National Key Laboratory of Equipment State Sensing and Smart Support, National University of Defense Technology, Changsha, China
– sequence: 7
  givenname: Zhiqiang
  surname: Zheng
  fullname: Zheng, Zhiqiang
  organization: College of Intelligence Science and Technology and the National Key Laboratory of Equipment State Sensing and Smart Support, National University of Defense Technology, Changsha, China
– sequence: 8
  givenname: Xieyuanli
  orcidid: 0000-0003-0955-6681
  surname: Chen
  fullname: Chen, Xieyuanli
  email: xieyuanli.chen@nudt.edu.cn
  organization: College of Intelligence Science and Technology and the National Key Laboratory of Equipment State Sensing and Smart Support, National University of Defense Technology, Changsha, China
BookMark eNp9kMtOwzAQRS1UJNrCByCx8A-k2LEd2-yiPqBSxatlHdmOXRmlDnKMEH9PonaBWLCau5hzR3MmYBTaYAG4xmiGMZK3u3K7nOUoZzPCCoEQPgNjzJjICBdkNGTKMiYZuwCTrntHKKdCojF42dr9o010cQeXznnjbUhwHbqkgrFZ-aWihXQBt_agQvKmD_tDv6KSbwN0bYQbvyhf4XPre27etJ_1JTh3quns1WlOwdtquZs_ZJun-_W83GQmL0TKNFVOGMR1bTThSOVGUE0ZJjUiknGZO-pqJ42jkhRCKlFrQpXiUtccCanJFOBjr4lt10Xrqo_oDyp-VxhVg5NqcFINTqqTk57hfxjjj7-kqHzzL3lzJL219tclKQnlkvwAkg1wXw
CODEN ITASC7
CitedBy_id crossref_primary_10_3390_app15158162
Cites_doi 10.1109/CASE59546.2024.10711541
10.1109/IVS.2017.7995698
10.1109/TIM.2023.3292948
10.1109/LRA.2023.3325687
10.1109/TASE.2024.3394519
10.1109/ICRA.2011.5980567
10.1109/WACV56688.2023.00169
10.1007/s11263-024-02149-w
10.1109/ICRA57147.2024.10610262
10.1109/ICRA46639.2022.9811818
10.1109/TITS.2023.3286464
10.1109/LRA.2022.3166544
10.1109/TPAMI.2021.3098789
10.1109/LRA.2022.3186080
10.1109/IROS47612.2022.9981210
10.1109/TPAMI.2023.3349304
10.1109/ICCV.2019.00737
10.48550/ARXIV.1807.06521
10.1109/TASE.2024.3429280
10.1109/CVPR52729.2023.01683
10.1109/IROS55552.2023.10342277
10.1109/LRA.2022.3183245
10.1109/TRO.2022.3141876
10.1109/LRA.2021.3132059
10.1109/CVPR.2019.00319
10.1109/ICCV.2019.00939
10.1007/s11263-009-0275-4
10.1109/LRA.2024.3371873
10.1037/h0070888
10.1109/LRA.2021.3093567
10.1109/TPAMI.2020.3042093
10.1109/CVPR46437.2021.00548
10.1109/ICCV.2019.00651
10.1109/LRA.2023.3236568
10.1109/CVPR46437.2021.01161
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2025.3568001
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 15350
ExternalDocumentID 10_1109_TASE_2025_3568001
10993479
Genre orig-research
GrantInformation_xml – fundername: Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST)
  grantid: 2023QNRC001
  funderid: 10.13039/501100019005
– fundername: National Science Foundation of China
  grantid: 62403478; U22A2059; 62203460
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c268t-b4af8c07bdcb370a2c84b4513d0395792f4fdf9cf493689a8db34aa79bd7089b3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001494111500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sat Nov 29 07:54:51 EST 2025
Tue Nov 18 22:27:43 EST 2025
Wed Aug 27 01:37:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-b4af8c07bdcb370a2c84b4513d0395792f4fdf9cf493689a8db34aa79bd7089b3
ORCID 0000-0003-0955-6681
0000-0001-9935-6792
0000-0002-1462-2367
0009-0005-3620-347X
0000-0002-6375-581X
PageCount 12
ParticipantIDs crossref_primary_10_1109_TASE_2025_3568001
ieee_primary_10993479
crossref_citationtrail_10_1109_TASE_2025_3568001
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref15
ref14
Shi (ref29) 2024; 132
ref17
Caesar (ref45)
ref16
ref18
Li (ref28)
ref51
ref50
Duerr (ref12)
Chen (ref7)
Mohapatra (ref24) 2021
ref42
ref41
ref43
Geiger (ref46)
ref8
ref9
ref4
ref3
Fradlin (ref33)
ref6
ref5
Patil (ref19)
ref40
ref35
Shi (ref11)
Chen (ref30)
ref37
ref36
ref31
ref32
Everingham (ref49) 2010; 88
ref2
ref1
Li (ref10) 2022; 7
Chen (ref21) 2021; 6
ref38
ref26
ref25
Liu (ref13)
ref20
ref22
Graham (ref34)
Kingma (ref48)
ref27
Liebel (ref44) 2018
Cheng (ref23)
Paszke (ref47)
Hotelling (ref39) 1933; 24
References_xml – year: 2021
  ident: ref24
  article-title: LiMoSeg: Real-time bird’s eye view based LiDAR motion segmentation
  publication-title: arXiv:2111.04875
– ident: ref3
  doi: 10.1109/CASE59546.2024.10711541
– ident: ref40
  doi: 10.1109/IVS.2017.7995698
– ident: ref8
  doi: 10.1109/TIM.2023.3292948
– ident: ref25
  doi: 10.1109/LRA.2023.3325687
– ident: ref5
  doi: 10.1109/TASE.2024.3394519
– start-page: 781
  volume-title: Proc. Int. Conf. 3D Vis. (3DV)
  ident: ref12
  article-title: LiDAR-based recurrent 3D semantic segmentation with temporal memory alignment
– start-page: 745
  volume-title: Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)
  ident: ref28
  article-title: MemorySeg: Online LiDAR semantic segmentation with a latent memory
– ident: ref38
  doi: 10.1109/ICRA.2011.5980567
– ident: ref27
  doi: 10.1109/WACV56688.2023.00169
– start-page: 12499
  volume-title: Proc. IEEE Int. Conf. Robot. Autom. (ICRA)
  ident: ref23
  article-title: MF-MOS: A motion-focused model for moving object segmentation
– start-page: 1
  volume-title: Proc. IEEE Int. Conf. Robot. Autom. (ICRA)
  ident: ref33
  article-title: Interactive4D: Interactive 4D LiDAR segmentation
– volume: 132
  start-page: 5603
  issue: 12
  year: 2024
  ident: ref29
  article-title: Learning temporal variations for 4D point cloud segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-024-02149-w
– start-page: 3354
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  ident: ref46
  article-title: Are we ready for autonomous driving? The KITTI vision benchmark suite
– start-page: 11618
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)
  ident: ref45
  article-title: NuScenes: A multimodal dataset for autonomous driving
– ident: ref31
  doi: 10.1109/ICRA57147.2024.10610262
– ident: ref16
  doi: 10.1109/ICRA46639.2022.9811818
– ident: ref4
  doi: 10.1109/TITS.2023.3286464
– start-page: 9372
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)
  ident: ref13
  article-title: MarS3D: A plug-and-play motion-aware model for semantic segmentation on multi-scan 3D point clouds
– ident: ref18
  doi: 10.1109/LRA.2022.3166544
– ident: ref1
  doi: 10.1109/TPAMI.2021.3098789
– ident: ref2
  doi: 10.1109/LRA.2022.3186080
– ident: ref22
  doi: 10.1109/IROS47612.2022.9981210
– ident: ref32
  doi: 10.1109/TPAMI.2023.3349304
– ident: ref42
  doi: 10.1109/ICCV.2019.00737
– ident: ref43
  doi: 10.48550/ARXIV.1807.06521
– start-page: 4573
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)
  ident: ref11
  article-title: SpSequenceNet: Semantic segmentation network on 4D point clouds
– ident: ref6
  doi: 10.1109/TASE.2024.3429280
– start-page: 9224
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
  ident: ref34
  article-title: 3D semantic segmentation with submanifold sparse convolutional networks
– ident: ref35
  doi: 10.1109/CVPR52729.2023.01683
– ident: ref17
  doi: 10.1109/IROS55552.2023.10342277
– ident: ref26
  doi: 10.1109/LRA.2022.3183245
– ident: ref50
  doi: 10.1109/TRO.2022.3141876
– volume: 7
  start-page: 738
  issue: 2
  year: 2022
  ident: ref10
  article-title: Multi-scale interaction for real-time LiDAR data segmentation on an embedded platform
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3132059
– ident: ref15
  doi: 10.1109/CVPR.2019.00319
– start-page: 4530
  volume-title: Proc. IEEE/RSJ Intl. Conf. Intell. Robots Syst. (IROS)
  ident: ref7
  article-title: SuMa++: Efficient LiDAR-based semantic SLAM
– ident: ref14
  doi: 10.1109/ICCV.2019.00939
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: ref49
  article-title: The Pascal visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– year: 2018
  ident: ref44
  article-title: Auxiliary tasks in multi-task learning
  publication-title: arXiv:1805.06334
– volume-title: arXiv:1412.6980
  ident: ref48
  article-title: Adam: A method for stochastic optimization
– start-page: 8146
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)
  ident: ref19
  article-title: An end-to-end edge aggregation network for moving object segmentation
– ident: ref51
  doi: 10.1109/LRA.2024.3371873
– volume: 24
  start-page: 498
  issue: 7
  year: 1933
  ident: ref39
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J. Educ. Psychol.
  doi: 10.1037/h0070888
– volume: 6
  start-page: 6529
  issue: 4
  year: 2021
  ident: ref21
  article-title: Moving object segmentation in 3D LiDAR data: A learning-based approach exploiting sequential data
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3093567
– ident: ref20
  doi: 10.1109/TPAMI.2020.3042093
– start-page: 8535
  volume-title: Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)
  ident: ref30
  article-title: SVQNet: Sparse voxel-adjacent query network for 4D spatio-temporal LiDAR semantic segmentation
– ident: ref36
  doi: 10.1109/CVPR46437.2021.00548
– ident: ref9
  doi: 10.1109/ICCV.2019.00651
– ident: ref37
  doi: 10.1109/LRA.2023.3236568
– start-page: 8026
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref47
  article-title: Pytorch: An imperative style, high-performance deep learning library
– ident: ref41
  doi: 10.1109/CVPR46437.2021.01161
SSID ssj0024890
Score 2.419367
Snippet 4D LiDAR semantic segmentation classifies the semantic category of each LiDAR point and detects whether it is dynamic, a critical ability for tasks like...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 15339
SubjectTerms 4D semantic segmentation
deep learning
Feature extraction
Laser radar
LiDAR point cloud
Motion segmentation
moving object segmentation
Object segmentation
Point cloud compression
Real-time systems
Robots
Semantic segmentation
Semantics
Three-dimensional displays
Title SegNet4D: Efficient Instance-Aware 4D Semantic Segmentation for LiDAR Point Cloud
URI https://ieeexplore.ieee.org/document/10993479
Volume 22
WOSCitedRecordID wos001494111500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjBZ8X6IgdPwrbp7maTeCt9oFBKtRV6W_KYLYU-pLb6902yq9aDgrewZJbwJZBvZjLfIHSjwHICZsIAQu1EtRUETgIlqGtKlU5AcuN1Zrus1-OjkegXxeq-FgYA_OMzqLqhz-WbhV67UFnNZXFc5eM22mYsyYu1voX1uA-oOEoQUEFpkcK0NrVhY9C2rmBIqxFNLEOq_7iENrqq-Eulc_DP5Ryi_YI94ka-3UdoC-bHaG9DU_AEPQ5g3INV3LrDbS8PYf-BHzwJ1BA03uUScNzCA5hZTCfaDsazov5oji2Dxd1Jq_GE-4uJtWtOF2tTRs-d9rB5HxR9EwIdJnwVqFhmXBOmjFYRIzLUPFYxrUeG-KxcmMWZyYTOYhElXNjtUFEsJRPKMMKFik5Rab6YwxnCRNcZhBBKZb3XJOMqE1QyahTJNDWSVBD5BDLVhai4620xTb1zQUTqsE8d9mmBfQXdfpm85Ioaf00uO9w3JuaQn__y_QLtOvM8RnKJSqvlGq7Qjn5bTV6X1_7AfADE67zM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBfXgs-LbHDwJq2k22U28FVtRrEVtBW9LHrNSsK3UVv--SXbVelDwFpZMCF8W8s1M5huEjjQ4TpBaGgE1XlRbQ-QlUKKa4VybBJSwQWe2lbbb4vFR3pbF6qEWBgDC4zM48cOQy7dDM_GhslOfxfGVj7NojjNGSVGu9S2tJ0JIxZOCiEvOyySmszrt1jtN5wxSfhLzxHGk2o9raKqvSrhWLlb-uaFVtFzyR1wvDnwNzcBgHS1NqQpuoLsOPLVhzBpnuBkEItwa-CrQQANR_V2NALMG7kDfodozbvDULyuQBthxWNzqNer3-HbYc3bnz8OJraKHi2b3_DIqOydEhiZiHGmmcmFIqq3RcUoUNYJpxmuxJSEvR3OW21yanMk4EdIdiI6ZUqnUNiVC6ngTVQbDAWwhTEwtBQpUaee_JrnQueQq5VaT3HCryDYin0BmppQV990tnrPgXhCZeewzj31WYr-Njr9MXgpNjb8mVz3uUxMLyHd--X6IFi67N62sddW-3kWLfqkiYrKHKuPRBPbRvHkb915HB-Hn-QDGLMAT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SegNet4D%3A+Efficient+Instance-Aware+4D+Semantic+Segmentation+for+LiDAR+Point+Cloud&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Wang%2C+Neng&rft.au=Guo%2C+Ruibin&rft.au=Shi%2C+Chenghao&rft.au=Wang%2C+Ziyue&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=15339&rft.epage=15350&rft_id=info:doi/10.1109%2FTASE.2025.3568001&rft.externalDocID=10993479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon