Parallel Heat Kernel Volume Based Local Binary Pattern on Multi-Orientation Planes for Face Representation
Appropriate representation is one of the keys to successful face recognition technologies. Actual facial appearance sometimes differs dramatically because of variations in pose, illumination, expression, and occlusion. However, existing face representation methods remain insufficiently powerful and...
Saved in:
| Published in: | International journal of parallel programming Vol. 46; no. 5; pp. 943 - 962 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.10.2018
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0885-7458, 1573-7640 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Appropriate representation is one of the keys to successful face recognition technologies. Actual facial appearance sometimes differs dramatically because of variations in pose, illumination, expression, and occlusion. However, existing face representation methods remain insufficiently powerful and robust. Hence, we propose a new feature extraction approach for face representation based on heat kernel volume and local binary patterns. Multi-scale heat kernel faces are created in our proposed framework. We then reformulate these multi-scale heat kernel faces as three-dimensional volume. Furthermore, we generate multi-orientation planes from the heat kernel volume, which reflects orientation co-occurrence statistics among different heat kernel faces. Finally, we apply local binary pattern (LBP) analysis on the multi-orientation planes of the heat kernel volume to capture the microstructure and macrostructure of face appearance. Hence, we obtain the heat kernel volume based local binary pattern on multi-orientation planes (HKV–LBP–MOP) descriptor. The proposed method is successfully be paralleled. We applied the method to face recognition and obtain the performance of 99.28 and 87.82% on ORL and Yale databases respectively. Experimental results on the show that the proposed algorithm significantly outperforms other well-known approaches in terms of recognition rate. |
|---|---|
| AbstractList | Appropriate representation is one of the keys to successful face recognition technologies. Actual facial appearance sometimes differs dramatically because of variations in pose, illumination, expression, and occlusion. However, existing face representation methods remain insufficiently powerful and robust. Hence, we propose a new feature extraction approach for face representation based on heat kernel volume and local binary patterns. Multi-scale heat kernel faces are created in our proposed framework. We then reformulate these multi-scale heat kernel faces as three-dimensional volume. Furthermore, we generate multi-orientation planes from the heat kernel volume, which reflects orientation co-occurrence statistics among different heat kernel faces. Finally, we apply local binary pattern (LBP) analysis on the multi-orientation planes of the heat kernel volume to capture the microstructure and macrostructure of face appearance. Hence, we obtain the heat kernel volume based local binary pattern on multi-orientation planes (HKV–LBP–MOP) descriptor. The proposed method is successfully be paralleled. We applied the method to face recognition and obtain the performance of 99.28 and 87.82% on ORL and Yale databases respectively. Experimental results on the show that the proposed algorithm significantly outperforms other well-known approaches in terms of recognition rate. |
| Author | Jian, Lihua Wu, Wei Lu, Wei Jeon, Gwanggil Yang, Xiaomin Gou, Xu |
| Author_xml | – sequence: 1 givenname: Wei surname: Lu fullname: Lu, Wei organization: School of Software Engineering, Beijing Jiaotong University, College of Electronics and Information Engineering, Sichuan University – sequence: 2 givenname: Xiaomin surname: Yang fullname: Yang, Xiaomin email: arielyang@scu.edu.cn organization: College of Electronics and Information Engineering, Sichuan University – sequence: 3 givenname: Xu surname: Gou fullname: Gou, Xu organization: College of Electronics and Information Engineering, Sichuan University – sequence: 4 givenname: Lihua surname: Jian fullname: Jian, Lihua organization: College of Electronics and Information Engineering, Sichuan University – sequence: 5 givenname: Wei surname: Wu fullname: Wu, Wei organization: College of Electronics and Information Engineering, Sichuan University – sequence: 6 givenname: Gwanggil surname: Jeon fullname: Jeon, Gwanggil organization: College of Information and Technology, Incheon National University |
| BookMark | eNp1kMFOwzAMhiM0JDbgAbhF4hxw0jbJjmxiDDG0CQHXyGtd1KlLR9IdeHsyDSQuXGzL_n9b_kZs4DtPjF1JuJEA5jZKMFoLkEZAUShhT9hQFiYTRucwYEOwthAmL-wZG8W4AYCxsXbINisM2LbU8jlhz58o-FS_d-1-S3yCkSq-6Eps-aTxGL74Cvs-aXjn-fO-7RuxDA35HvsmdVYteoq87gKfYUn8hXaB4u_4gp3W2Ea6_Mnn7G12_zqdi8Xy4XF6txCl0rYX61xprIwxiKhkhXmJa2u0UTarwNSyUIpIlkrVudY6xaxel2MoLVRj0NU6O2fXx7270H3uKfZu0-2DTyedHFtVZAAFJJU8qsrQxRiodrvQbNOLToI7IHVHpC4hdQekziaPOnpi0voPCn82_2v6Bh9DezY |
| Cites_doi | 10.1109/AFGR.2008.4813354 10.1109/TIP.2002.999679 10.1016/S0031-3203(99)00139-9 10.1016/j.eswa.2017.02.034 10.1109/IPIN.2013.6851448 10.1016/j.procs.2013.06.001 10.1007/978-3-540-27868-9_20 10.1155/2014/523862 10.1109/12.210173 10.1109/34.598227 10.1016/j.media.2013.09.007 10.1109/TMI.2016.2550080 10.1109/TBME.2015.2503756 10.1109/TNNLS.2012.2234134 10.1109/34.598235 10.1016/j.neucom.2017.01.064 10.1162/089976603321780317 10.1109/SITIS.2014.16 10.1109/TPAMI.2005.55 10.1109/TIFS.2016.2601065 10.1109/34.598228 10.1016/0031-3203(95)00067-4 10.1109/TPAMI.2010.128 10.1109/LSP.2009.2036653 10.1007/s11045-015-0363-2 10.1109/TPAMI.2007.1110 10.1109/TNNLS.2016.2527796 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2017 International Journal of Parallel Programming is a copyright of Springer, (2017). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017 – notice: International Journal of Parallel Programming is a copyright of Springer, (2017). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s10766-017-0552-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7640 |
| EndPage | 962 |
| ExternalDocumentID | 10_1007_s10766_017_0552_8 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61701327; 61711540303 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYJJ AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARCSS ARMRJ AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO E.L EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- MS~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c268t-b426ad777aaa21da4cab8767283d07f1522ee1c22f46662f43fbc90c80d906db3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445372900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7458 |
| IngestDate | Tue Nov 04 22:31:48 EST 2025 Sat Nov 29 01:59:44 EST 2025 Fri Feb 21 02:37:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Face presentation Face recognition Parallel multi-scale heat kernel face Local binary patterns |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-b426ad777aaa21da4cab8767283d07f1522ee1c22f46662f43fbc90c80d906db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1982530050 |
| PQPubID | 48389 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_1982530050 crossref_primary_10_1007_s10766_017_0552_8 springer_journals_10_1007_s10766_017_0552_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20181000 2018-10-00 20181001 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 20181000 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of parallel programming |
| PublicationTitleAbbrev | Int J Parallel Prog |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | SugiyamaMRoweisSDimensionality reduction of multimodal labeled data by local Fisher discriminant analysisJ. Mach. Learn.20078102710611222.68312 WiskottLFellousJKrugerNMalsburgCFace recognition by elastic bunch graph matchingIEEE Trans. Pattern Anal. Mach. Intell.199719777577910.1109/34.598235 HeXFFace recognition using Laplacian facesIEEE Trans. Pattern Anal. Mach. Intell.2005273328340211396310.1109/TPAMI.2005.55 OjalaTPietikäinenMHarwoodDA comparative study of texture measures with classification based on featured distributionsPattern Recognit.199629515910.1016/0031-3203(95)00067-4 MaTZhangYCaoJShenJTangMTianYAl-DhelaanAAl-RodhaanMKDVEM: a k-degree anonymity with vertex and edge modification algorithmComputing20157061336134434150551329.91116 BaiXiaoHancockEdwin R.Heat Kernels, Manifolds and Graph EmbeddingLecture Notes in Computer Science2004Berlin, HeidelbergSpringer Berlin Heidelberg198206 Zhang, W. et al.: Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: IEEE International Conference on Computer Vision, pp. 786–791 (2015) GuBShengVSA robust regularization path algorithm for ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}-support vector classificationIEEE Trans. Neural Netw. Learn. Syst.201610.1109/TNNLS.2016.2527796 LadesMVorbruggenJCBuhmannJLangeJvon der MalsburgCWurtzRPKonenWDistortion invariant object recognition in the dynamic link architectureIEEE Trans. Comput.199342330031110.1109/12.210173 CuomoSDe MichelePPiccialliF3D data denoising via nonlocal means filter by using parallel GPU strategiesComput. Math. Methods Med.201410.1155/2014/5238621307.94006 YeJCharacterization of a family of algorithms for generalized discriminant analysis on undersampled problemsJ. Mach. Learn.2005648350222498291222.62081 ZhouZWangYWuQMJYangC-NSunXEffective and efficient global context verification for image copy detectionIEEE Trans. Inf. Forensics Secur.2017121486310.1109/TIFS.2016.2601065 LiuYZhanZCaiJ-FGuoDChenZXiaoboQProjected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imagingIEEE Trans. Med. Imaging20163592130214010.1109/TMI.2016.2550080 CuomoSMichelePDPiccialliFGallettiAJungJEIoT-based collaborative reputation system for associating visitors and artworks in a cultural scenarioExpert Syst. Appl.20177910111110.1016/j.eswa.2017.02.034 BelkinMNiyogiPLaplacian eigenmaps for dimensionality reduction and data representationNeural Comput.20031561373139610.1162/089976603321780317 Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 586–591, CVPR (1991) Chianese, A., Picciall, F.: SmaCH: a framework for smart cultural heritage spaces. In: 10th International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2014, pp. 477–484 (2015) ChenYHaoCWenWEnhuaWRobust dense reconstruction by range merging based on confidence estimationSci. China Inf. Sci.2016599111 LiuJWechslerHGabor feature based classification using the enhanced Fisher linear discriminant model for face recognitionIEEE Trans. Image Proc.200211446747610.1109/TIP.2002.999679 NaseemITogneriRBennamounMLinear regression forface recognitionIEEE Trans. Pattern Anal. Mach. Intell.201032112106211210.1109/TPAMI.2010.128 Lei, Z., Liao, S., He, R.: Gabor volume based local binary pattern for face representation and recognition. In: Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition, pp. 564–569 (2008) LiXHuWZhangZWangHHeat kernel based local binary pattern for face representation and classificationIEEE Signal Process. Lett.201017330831110.1109/LSP.2009.2036653 MoghaddamBPentlandAProbabilistic visual learning for object representationIEEE Trans. Pattern Anal. Mach. Intell.199719769671010.1109/34.598227 QuXHouYLamFGuoDZhongJChenZMagnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operatorMed. Image Anal.201418684385610.1016/j.media.2013.09.007 ChenLFA new LDA-based face recognition system which can solve the small sample size problemPattern Recognit.200033101713172610.1016/S0031-3203(99)00139-9 PiccialliFCuomoSDe MichelePA regularized MRI image reconstruction based on hessian penalty term on CPU/GPU systemsProc. Comput. Sci.2013182643264610.1016/j.procs.2013.06.001 Chianese, A., Marulli, F., Moscato, V., Piccialli, F.: A smart multimedia guide for indoor contextual navigation in cultural heritage applications. In: 2013 International Conference on Indoor Positioning and Indoor Navigation, pp. 1–6 (2013) TianQChenSCross-heterogeneous-database age estimation through correlation representation learningNeurocomputing201723828629510.1016/j.neucom.2017.01.064 Palma, G., Comerci, M., Alfano, B., Cuomo, S., De Michele, P., Piccialli, F., Borrelli, P.: 3D Non-local means denoising via multi-GPU. In: 2013 Federated Conference on Computer Science and Information Systems. pp. 495–498 (2013) Xiao, B., Wilson, R.C., Hancock, E.R.: Characterising graphs using the heat kernel. In: Proceedings of the conference on British Machine Vision Conference. pp. 50–64 (2005) WangJLianSShiY-QHybrid multiplicative multi-watermarking in DWT domainMultidimens. Syst. Signal Process.201728261763610.1007/s11045-015-0363-2 ZhanZCaiJ-FGuoDLiuYChenZXiaoboQFast multiclass dictionaries learning with geometrical directions in MRI reconstructionIEEE Trans. Biomed. Eng.20166391850186110.1109/TBME.2015.2503756 FarinaRCuomoSDe MichelePPiccialliFHeat kernel based local binary pattern for face representation and classificationAppl. Math. Sci.201376130073021 BelhumeurPNHespanhaJPKriegmanDJEigenface vs. Fisherface: recognition using class specific linear projectionIEEE Trans. Pattern Anal. Mach. Intell.199719771172010.1109/34.598228 FarinaRCuomoSDe MichelePPiccialliFA smart GPU implementation of an elliptic kernel for an ocean global circulation modelAppl. Math. Sci.201376130073021 ZhaoGPietikainenMDynamic texture recognition using local binary patterns with an application to facial expressionsIEEE Trans. Pattern Anal. Mach. Intell.200729691592810.1109/TPAMI.2007.1110 LiJTaoDSimple exponential family PCAIEEE Trans. Neural Netw. Learn. Syst.201324348549710.1109/TNNLS.2012.2234134 F Piccialli (552_CR27) 2013; 18 R Farina (552_CR19) 2013; 7 F Piccialli (552_CR20) 2013; 18 T Ojala (552_CR13) 1996; 29 Y Liu (552_CR31) 2016; 35 Q Tian (552_CR37) 2017; 238 Z Zhan (552_CR32) 2016; 63 G Zhao (552_CR15) 2007; 29 T Ma (552_CR21) 2015; 70 552_CR23 J Wang (552_CR36) 2017; 28 LF Chen (552_CR8) 2000; 33 M Sugiyama (552_CR6) 2007; 8 552_CR24 Z Zhou (552_CR38) 2017; 12 I Naseem (552_CR25) 2010; 32 552_CR16 552_CR18 PN Belhumeur (552_CR3) 1997; 19 J Li (552_CR7) 2013; 24 S Cuomo (552_CR33) 2017; 79 X Li (552_CR17) 2010; 17 R Farina (552_CR26) 2013; 7 552_CR34 S Cuomo (552_CR28) 2014 552_CR14 J Ye (552_CR5) 2005; 6 552_CR1 Y Chen (552_CR22) 2016; 59 L Wiskott (552_CR11) 1997; 19 J Liu (552_CR12) 2002; 11 M Belkin (552_CR4) 2003; 15 B Gu (552_CR35) 2016 552_CR29 B Moghaddam (552_CR2) 1997; 19 XF He (552_CR9) 2005; 27 X Qu (552_CR30) 2014; 18 M Lades (552_CR10) 1993; 42 |
| References_xml | – reference: ChenLFA new LDA-based face recognition system which can solve the small sample size problemPattern Recognit.200033101713172610.1016/S0031-3203(99)00139-9 – reference: BelhumeurPNHespanhaJPKriegmanDJEigenface vs. Fisherface: recognition using class specific linear projectionIEEE Trans. Pattern Anal. Mach. Intell.199719771172010.1109/34.598228 – reference: YeJCharacterization of a family of algorithms for generalized discriminant analysis on undersampled problemsJ. Mach. Learn.2005648350222498291222.62081 – reference: LiXHuWZhangZWangHHeat kernel based local binary pattern for face representation and classificationIEEE Signal Process. Lett.201017330831110.1109/LSP.2009.2036653 – reference: ZhaoGPietikainenMDynamic texture recognition using local binary patterns with an application to facial expressionsIEEE Trans. Pattern Anal. Mach. Intell.200729691592810.1109/TPAMI.2007.1110 – reference: MoghaddamBPentlandAProbabilistic visual learning for object representationIEEE Trans. Pattern Anal. Mach. Intell.199719769671010.1109/34.598227 – reference: ZhanZCaiJ-FGuoDLiuYChenZXiaoboQFast multiclass dictionaries learning with geometrical directions in MRI reconstructionIEEE Trans. Biomed. Eng.20166391850186110.1109/TBME.2015.2503756 – reference: ChenYHaoCWenWEnhuaWRobust dense reconstruction by range merging based on confidence estimationSci. China Inf. Sci.2016599111 – reference: BaiXiaoHancockEdwin R.Heat Kernels, Manifolds and Graph EmbeddingLecture Notes in Computer Science2004Berlin, HeidelbergSpringer Berlin Heidelberg198206 – reference: Palma, G., Comerci, M., Alfano, B., Cuomo, S., De Michele, P., Piccialli, F., Borrelli, P.: 3D Non-local means denoising via multi-GPU. In: 2013 Federated Conference on Computer Science and Information Systems. pp. 495–498 (2013) – reference: Zhang, W. et al.: Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: IEEE International Conference on Computer Vision, pp. 786–791 (2015) – reference: LiJTaoDSimple exponential family PCAIEEE Trans. Neural Netw. Learn. Syst.201324348549710.1109/TNNLS.2012.2234134 – reference: WiskottLFellousJKrugerNMalsburgCFace recognition by elastic bunch graph matchingIEEE Trans. Pattern Anal. Mach. Intell.199719777577910.1109/34.598235 – reference: QuXHouYLamFGuoDZhongJChenZMagnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operatorMed. Image Anal.201418684385610.1016/j.media.2013.09.007 – reference: NaseemITogneriRBennamounMLinear regression forface recognitionIEEE Trans. Pattern Anal. Mach. Intell.201032112106211210.1109/TPAMI.2010.128 – reference: OjalaTPietikäinenMHarwoodDA comparative study of texture measures with classification based on featured distributionsPattern Recognit.199629515910.1016/0031-3203(95)00067-4 – reference: CuomoSDe MichelePPiccialliF3D data denoising via nonlocal means filter by using parallel GPU strategiesComput. Math. Methods Med.201410.1155/2014/5238621307.94006 – reference: LadesMVorbruggenJCBuhmannJLangeJvon der MalsburgCWurtzRPKonenWDistortion invariant object recognition in the dynamic link architectureIEEE Trans. Comput.199342330031110.1109/12.210173 – reference: PiccialliFCuomoSDe MichelePA regularized MRI image reconstruction based on hessian penalty term on CPU/GPU systemsProc. Comput. Sci.2013182643264610.1016/j.procs.2013.06.001 – reference: Lei, Z., Liao, S., He, R.: Gabor volume based local binary pattern for face representation and recognition. In: Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition, pp. 564–569 (2008) – reference: Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 586–591, CVPR (1991) – reference: LiuYZhanZCaiJ-FGuoDChenZXiaoboQProjected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imagingIEEE Trans. Med. Imaging20163592130214010.1109/TMI.2016.2550080 – reference: LiuJWechslerHGabor feature based classification using the enhanced Fisher linear discriminant model for face recognitionIEEE Trans. Image Proc.200211446747610.1109/TIP.2002.999679 – reference: Chianese, A., Marulli, F., Moscato, V., Piccialli, F.: A smart multimedia guide for indoor contextual navigation in cultural heritage applications. In: 2013 International Conference on Indoor Positioning and Indoor Navigation, pp. 1–6 (2013) – reference: ZhouZWangYWuQMJYangC-NSunXEffective and efficient global context verification for image copy detectionIEEE Trans. Inf. Forensics Secur.2017121486310.1109/TIFS.2016.2601065 – reference: FarinaRCuomoSDe MichelePPiccialliFHeat kernel based local binary pattern for face representation and classificationAppl. Math. Sci.201376130073021 – reference: WangJLianSShiY-QHybrid multiplicative multi-watermarking in DWT domainMultidimens. Syst. Signal Process.201728261763610.1007/s11045-015-0363-2 – reference: HeXFFace recognition using Laplacian facesIEEE Trans. Pattern Anal. Mach. Intell.2005273328340211396310.1109/TPAMI.2005.55 – reference: GuBShengVSA robust regularization path algorithm for ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}-support vector classificationIEEE Trans. Neural Netw. Learn. Syst.201610.1109/TNNLS.2016.2527796 – reference: Chianese, A., Picciall, F.: SmaCH: a framework for smart cultural heritage spaces. In: 10th International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2014, pp. 477–484 (2015) – reference: TianQChenSCross-heterogeneous-database age estimation through correlation representation learningNeurocomputing201723828629510.1016/j.neucom.2017.01.064 – reference: SugiyamaMRoweisSDimensionality reduction of multimodal labeled data by local Fisher discriminant analysisJ. Mach. Learn.20078102710611222.68312 – reference: Xiao, B., Wilson, R.C., Hancock, E.R.: Characterising graphs using the heat kernel. In: Proceedings of the conference on British Machine Vision Conference. pp. 50–64 (2005) – reference: BelkinMNiyogiPLaplacian eigenmaps for dimensionality reduction and data representationNeural Comput.20031561373139610.1162/089976603321780317 – reference: FarinaRCuomoSDe MichelePPiccialliFA smart GPU implementation of an elliptic kernel for an ocean global circulation modelAppl. Math. Sci.201376130073021 – reference: CuomoSMichelePDPiccialliFGallettiAJungJEIoT-based collaborative reputation system for associating visitors and artworks in a cultural scenarioExpert Syst. Appl.20177910111110.1016/j.eswa.2017.02.034 – reference: MaTZhangYCaoJShenJTangMTianYAl-DhelaanAAl-RodhaanMKDVEM: a k-degree anonymity with vertex and edge modification algorithmComputing20157061336134434150551329.91116 – ident: 552_CR16 doi: 10.1109/AFGR.2008.4813354 – volume: 7 start-page: 3007 issue: 61 year: 2013 ident: 552_CR19 publication-title: Appl. Math. Sci. – ident: 552_CR29 – volume: 11 start-page: 467 issue: 4 year: 2002 ident: 552_CR12 publication-title: IEEE Trans. Image Proc. doi: 10.1109/TIP.2002.999679 – volume: 33 start-page: 1713 issue: 10 year: 2000 ident: 552_CR8 publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(99)00139-9 – volume: 79 start-page: 101 year: 2017 ident: 552_CR33 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.02.034 – ident: 552_CR18 doi: 10.1109/IPIN.2013.6851448 – ident: 552_CR14 – volume: 18 start-page: 2643 year: 2013 ident: 552_CR20 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2013.06.001 – ident: 552_CR23 doi: 10.1007/978-3-540-27868-9_20 – year: 2014 ident: 552_CR28 publication-title: Comput. Math. Methods Med. doi: 10.1155/2014/523862 – volume: 42 start-page: 300 issue: 3 year: 1993 ident: 552_CR10 publication-title: IEEE Trans. Comput. doi: 10.1109/12.210173 – volume: 19 start-page: 696 issue: 7 year: 1997 ident: 552_CR2 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.598227 – volume: 6 start-page: 483 year: 2005 ident: 552_CR5 publication-title: J. Mach. Learn. – volume: 18 start-page: 843 issue: 6 year: 2014 ident: 552_CR30 publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.09.007 – volume: 35 start-page: 2130 issue: 9 year: 2016 ident: 552_CR31 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2550080 – volume: 63 start-page: 1850 issue: 9 year: 2016 ident: 552_CR32 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2503756 – volume: 70 start-page: 1336 issue: 6 year: 2015 ident: 552_CR21 publication-title: Computing – ident: 552_CR24 – volume: 24 start-page: 485 issue: 3 year: 2013 ident: 552_CR7 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2234134 – volume: 19 start-page: 775 issue: 7 year: 1997 ident: 552_CR11 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.598235 – volume: 238 start-page: 286 year: 2017 ident: 552_CR37 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.064 – volume: 15 start-page: 1373 issue: 6 year: 2003 ident: 552_CR4 publication-title: Neural Comput. doi: 10.1162/089976603321780317 – ident: 552_CR34 doi: 10.1109/SITIS.2014.16 – volume: 27 start-page: 328 issue: 3 year: 2005 ident: 552_CR9 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.55 – volume: 59 start-page: 1 issue: 9 year: 2016 ident: 552_CR22 publication-title: Sci. China Inf. Sci. – volume: 12 start-page: 48 issue: 1 year: 2017 ident: 552_CR38 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2016.2601065 – volume: 7 start-page: 3007 issue: 61 year: 2013 ident: 552_CR26 publication-title: Appl. Math. Sci. – volume: 19 start-page: 711 issue: 7 year: 1997 ident: 552_CR3 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.598228 – volume: 29 start-page: 51 year: 1996 ident: 552_CR13 publication-title: Pattern Recognit. doi: 10.1016/0031-3203(95)00067-4 – volume: 32 start-page: 2106 issue: 11 year: 2010 ident: 552_CR25 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.128 – volume: 17 start-page: 308 issue: 3 year: 2010 ident: 552_CR17 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2036653 – volume: 28 start-page: 617 issue: 2 year: 2017 ident: 552_CR36 publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-015-0363-2 – volume: 18 start-page: 2643 year: 2013 ident: 552_CR27 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2013.06.001 – ident: 552_CR1 – volume: 8 start-page: 1027 year: 2007 ident: 552_CR6 publication-title: J. Mach. Learn. – volume: 29 start-page: 915 issue: 6 year: 2007 ident: 552_CR15 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1110 – year: 2016 ident: 552_CR35 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2527796 |
| SSID | ssj0009788 |
| Score | 2.117156 |
| Snippet | Appropriate representation is one of the keys to successful face recognition technologies. Actual facial appearance sometimes differs dramatically because of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 943 |
| SubjectTerms | Algorithms Computer programming Computer Science Face Face recognition Feature extraction Kernels Macrostructure Occlusion Orientation Parallel processing Pattern analysis Pattern recognition Planes Processor Architectures Representations Software Engineering/Programming and Operating Systems Special Issue on Parallel Approaches for Data Mining in the Internet of Things Realm Theory of Computation |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86ffDF-YnTKXnwSQm2WdukT-LEMZjMISp7K2k-QJFuttO_30uWUhX0xZdSCBwhd_ndXZK7H0KniitI_mVMApkISFCEARwUlOQqN5wxSZmJHNkEG4_5dJpO_IFb5Z9V1pjogFrNpD0jv4DkmMa2t3pwOX8jljXK3q56Co1VtBZSGlo7HzHSNN1ljncSNlJMWBTz-lZzWTrHEptLMxLEMYDCd7_UBJs_7ked2xm0_zvhLbTpA058tbSQbbSiix3UrskcsN_bu-hlIkrLq_KKhwDPeKTLAv6fHHjhPvg6hW-t38N9V8GLJ64xZ4FnBXZFvOSufPZ1TAW2VEi6whAQ44GQGt-797b18B56HNw8XA-JJ2IgkiZ8QXJw40IxxoQQNFQikiIHFGUQmqiAGQgBqNahpNREkA3Bt2dymQaSB2AIicp7-6hVzAp9gHAg8jhJDdWQlkeRiFOQkOgo0jzVhvKwg85qNWTzZb-NrOmsbHWWgc4yq7OMd1C3XvrMb70qa9a9g85r5X0Z_k3Y4d_CjtAGxErLVrhhF7UW5bs-RuvyY_FclSfO7j4BO8TeBw priority: 102 providerName: ProQuest |
| Title | Parallel Heat Kernel Volume Based Local Binary Pattern on Multi-Orientation Planes for Face Representation |
| URI | https://link.springer.com/article/10.1007/s10766-017-0552-8 https://www.proquest.com/docview/1982530050 |
| Volume | 46 |
| WOSCitedRecordID | wos000445372900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009788 issn: 0885-7458 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbYxoEL4ynGY8qBEyhSm7VNemTTpknAVg0Yj0uVpqkEQgV1g9-Pk7UaIDjAxWqVKqrs2J8txzbAcSpSDP6VTx0VSAxQZIZ2UDKapEkmOFeMZ54dNsFHI3F3F0ZlHfesuu1epSStpf5U7MYDE_1y6vg-qnENGoh2wmjj5Gq67LTL7bBJ1B6fcs8XVSrzpy2-gtHSw_yWFLVYM2j-6y83YL10LcnZ4ixsworOt6BZjW0gpRZvw1MkCzNB5ZkM0RCTc13k-Dy1Zop0EdVScmEQjnRtrS6JbAvOnLzkxJbr0nHxWFYs5cQMPdIzgq4vGUilycTerK2Wd-Bm0L_uDWk5coEqFog5TRCwZco5l1IyN5WekgnaS45OSOrwDMGeae0qxjIP4x6knSxRoaOEgyIP0qSzC_X8Jdd7QByZ-EGYMY0BuOdJP8QdAu15WoQ6Y8JtwUnF-_h10VkjXvZQNlyMkYux4WIsWnBYSSculWwWuyGGt6bdvtOC00oan5Z_22z_T18fwBo6SYseuO4h1OfFmz6CVfU-f5wVbajx2_s2NLr9UTTBt3NOkV46PUPZGGnkP7TtCf0ARL_aJQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BrUQv3dIWse0CPsClyGrWOLFzQIiv1aJdtquKVtyCYzsSVZWl2W0r_hS_kbETawtSuXHgEkWyNJLj8XszsWcewJaRBpN_HdNIJwoTFFUgDipGc5MXUgjNRMG92IQYjeTFRTpegNtQC-OuVQZM9EBtJtr9I_-MyTGLXW_1aP_6F3WqUe50NUho1G4xsDd_MWWb7p0e4_puM9Y7OT_q00ZVgGqWyBnNkZOUEUIopVjXKK5VjpAgkGdNJArkM2ZtVzNWcAzt8blb5DqNtIxwVonJd9HuIrzgHLeDuyoYHc2b_Aqvc4kbN6aCxzKcotaleiJxubugURwjCN3nwXlw--A81tNcr_XcPtAbeN0E1OSg3gErsGDLt9AKYhWkwa538GOsKqcb85P0kX7IwFYlvn_34EwOkcsNGTpeJ4e-QpmMfePRkkxK4ouU6ZfqqqnTKomTerJTggE_6SltyVd_nzgMv4dvTzLjVVgqJ6VdAxKpPE7SglmepJyrOEULieXcytQWTHbb8Ckse3Zd9xPJ5p2jnY9k6COZ85FMtqETljproGWazde5DTvBWf4Z_p-xD48b24Tl_vnZMBuejgYf4RXGhXXb324HlmbVb7sOL_Wf2dW02vA-T-DyqX3oDsRNO0M |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PTxQxFH4BJMSLyA_jKkoPeJE0zJZ22jkYI-IGsmTdGCHchk5_JBgyC7Orxn_Nv87XzjSrJnDjwGUySZOXdPr1-96b9r0HsGOVxeDfCJqZXGOAoj3yoGa0spVXUhomPY_NJuRopM7Pi_EC_E65MOFaZeLESNR2YsI_8j0MjpkItdWzPd9dixgfDt5f39DQQSqctKZ2Gi1Ehu7XTwzfpu-OD3Gt3zA2-PT14xHtOgxQw3I1oxXqk7ZSSq0161vNja6QHiRqrs2kR21jzvUNY56jm4_PfV-ZIjMqwxnmttpHu4vwCFVYhD02lHRe8FfGnpe4iQWVXKh0otqm7ck8xPGSZkIgIf2riXNH97-z2Sh5g9WH_LGewpPO0SYf2p2xBguuXofV1MSCdJy2Ad_Gugn9ZK7IEcoSGbqmxvezSNrkADXekpOg9-QgZi6TcSxIWpNJTWLyMv3cXHb5WzUJLaDclGAgQAbaOPIl3jNOw5twei8zfgZL9aR2z4FkuhJ54ZnjecG5FgVayB3nThXOM9XvwdsEgfK6rTNSzitKB7yUiJcy4KVUPdhKy152lDMt52veg90EnL-GbzP24m5j27CC0ClPjkfDl_AY3cW2GnB_C5ZmzXf3CpbNj9nltHkd4U_g4r4h9AeAZEPp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Heat+Kernel+Volume+Based+Local+Binary+Pattern+on+Multi-Orientation+Planes+for+Face+Representation&rft.jtitle=International+journal+of+parallel+programming&rft.au=Lu%2C+Wei&rft.au=Yang%2C+Xiaomin&rft.au=Gou%2C+Xu&rft.au=Jian%2C+Lihua&rft.date=2018-10-01&rft.pub=Springer+US&rft.issn=0885-7458&rft.eissn=1573-7640&rft.volume=46&rft.issue=5&rft.spage=943&rft.epage=962&rft_id=info:doi/10.1007%2Fs10766-017-0552-8&rft.externalDocID=10_1007_s10766_017_0552_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7458&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7458&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7458&client=summon |