The fundamental role of density functions in the binary classification problem
In biomedicine, binary classification problems are involved in diagnostic but also, for instance, in personalized medicine. The objective is to use information for correctly allocating subjects in groups. Frequently, this information implies high-dimensional data. An adequate classification rule is...
Uložené v:
| Vydané v: | Journal of statistical computation and simulation Ročník 92; číslo 13; s. 2846 - 2861 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
02.09.2022
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0094-9655, 1563-5163 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In biomedicine, binary classification problems are involved in diagnostic but also, for instance, in personalized medicine. The objective is to use information for correctly allocating subjects in groups. Frequently, this information implies high-dimensional data. An adequate classification rule is a trade-off between the sensitivity and the specificity. The ROC curve helps to understand, evaluate and compare the accuracy of classification processes. We propose a procedure for estimating the optimal classification rules based on a penalized estimator of the underlying probability distribution functions. We study its asymptotic properties. Through Monte Carlo simulations, we compare our proposal with a support vector machine-based ROC curve. We illustrate its practical use in a real-world problem. Results suggest that, despite some techniques promise to improve the results provided by traditional methods, in the binary classification problem, the limit is the actual relationship among the density functions. |
|---|---|
| AbstractList | In biomedicine, binary classification problems are involved in diagnostic but also, for instance, in personalized medicine. The objective is to use information for correctly allocating subjects in groups. Frequently, this information implies high-dimensional data. An adequate classification rule is a trade-off between the sensitivity and the specificity. The ROC curve helps to understand, evaluate and compare the accuracy of classification processes. We propose a procedure for estimating the optimal classification rules based on a penalized estimator of the underlying probability distribution functions. We study its asymptotic properties. Through Monte Carlo simulations, we compare our proposal with a support vector machine-based ROC curve. We illustrate its practical use in a real-world problem. Results suggest that, despite some techniques promise to improve the results provided by traditional methods, in the binary classification problem, the limit is the actual relationship among the density functions. |
| Author | Martínez-Camblor, Pablo |
| Author_xml | – sequence: 1 givenname: Pablo orcidid: 0000-0001-7845-3905 surname: Martínez-Camblor fullname: Martínez-Camblor, Pablo email: pablo.martinez-camblor@hitchcock.org, pmcamblor@hotmail.com organization: Geisel School of Medicine at Dartmouth |
| BookMark | eNqFkMtKAzEUhoNUsK0-ghBwPTWXSWYGN0rxBkU3dR0yuWDKTFKTFOnbO2PrxoXC4ZzF-f5z-Wdg4oM3AFxitMCoRtcINWXDGVsQRMiQGEaEn4ApZpwWDHM6AdORKUboDMxS2iCEMGZkCl7W7wbandeyNz7LDsbQGRgs1MYnl_djT2UXfILOwzzArfMy7qHqZErOOiXHLtzG0HamPwenVnbJXBzrHLw93K-XT8Xq9fF5ebcqFOF1LlpaUa7aBlW6ZZhVuimZtbpGkteYV6aVTJHSkroudWORrZihxFhCyRBIazoHV4e5w96PnUlZbMIu-mGlILxpGEdVWQ_UzYFSMaQUjRXK5e97c5SuExiJ0UDxY6AYDRRHAwc1-6XeRtcPv_-ruz3onLch9vIzxE6LLPddiDZKr1wS9O8RX0aliRo |
| CitedBy_id | crossref_primary_10_1016_j_csda_2022_107683 |
| Cites_doi | 10.1007/s00180-012-0333-1 10.1001/jama.1989.03430190084036 10.1111/j.1467-9469.2005.00445.x 10.1002/9780470316849 10.1016/j.jhep.2012.01.011 10.1002/9780470317082 10.1148/radiology.143.1.7063747 10.1080/02664763.2011.578616 10.1007/s10182-013-0216-y 10.1002/0471725250 10.1214/aos/1033066197 10.1002/pst.1734 10.1007/s10182-020-00385-2 10.1093/oso/9780198509844.001.0001 10.1016/S0031-3203(96)00142-2 10.1198/016214505000000907 10.1177/0962280217747009 10.1016/j.jspi.2007.07.009 10.1002/(SICI)1097-0258(20000229)19:4<493::AID-SIM352>3.0.CO;2-W 10.1177/09622802211002867 10.1007/s10182-020-00388-z 10.1111/biom.13365 10.1016/j.jmva.2014.08.003 10.18637/jss.v011.i09 10.1006/jmps.1998.1218 10.1201/b17476 10.32614/RJ-2018-043 10.1111/j.0006-341X.2002.00657.x 10.1080/01621459.2015.1066681 10.1177/0962280216672490 10.1097/SLA.0000000000003446 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/00949655.2022.2051026 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1563-5163 |
| EndPage | 2861 |
| ExternalDocumentID | 10_1080_00949655_2022_2051026 2051026 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: Financiado por MCIN/ AEI /10.13039/501100011033 grantid: PID2020-118101GB-I00 – fundername: Gobierno del Principado de Asturias grantid: GRUPIN AYUD/2021/50897 |
| GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ZL0 ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c268t-b3736cb907db5157d945ffd80a68167eba5c24f2884d9f0f75e32ef2322320dd3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000769887500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-9655 |
| IngestDate | Sun Nov 30 05:38:18 EST 2025 Sat Nov 29 06:28:00 EST 2025 Tue Nov 18 22:32:14 EST 2025 Mon Oct 20 23:47:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-b3736cb907db5157d945ffd80a68167eba5c24f2884d9f0f75e32ef2322320dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7845-3905 |
| PQID | 2699560748 |
| PQPubID | 53118 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2699560748 crossref_citationtrail_10_1080_00949655_2022_2051026 informaworld_taylorfrancis_310_1080_00949655_2022_2051026 crossref_primary_10_1080_00949655_2022_2051026 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-02 |
| PublicationDateYYYYMMDD | 2022-09-02 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Journal of statistical computation and simulation |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 Steinwart I (CIT0019) 2008 CIT0014 CIT0013 CIT0035 CIT0015 CIT0018 CIT0017 CIT0021 CIT0020 CIT0001 Pepe MS. (CIT0004) 2003 CIT0022 Lévy PP. (CIT0023) 1937 Kim J (CIT0016) 2012; 13 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0030 doi: 10.1007/s00180-012-0333-1 – ident: CIT0033 doi: 10.1001/jama.1989.03430190084036 – ident: CIT0024 doi: 10.1111/j.1467-9469.2005.00445.x – ident: CIT0020 doi: 10.1002/9780470316849 – ident: CIT0001 doi: 10.1016/j.jhep.2012.01.011 – ident: CIT0003 doi: 10.1002/9780470317082 – ident: CIT0006 doi: 10.1148/radiology.143.1.7063747 – ident: CIT0025 doi: 10.1080/02664763.2011.578616 – ident: CIT0017 doi: 10.1007/s10182-013-0216-y – ident: CIT0021 doi: 10.1002/0471725250 – ident: CIT0022 doi: 10.1214/aos/1033066197 – ident: CIT0005 doi: 10.1002/pst.1734 – ident: CIT0007 doi: 10.1007/s10182-020-00385-2 – volume-title: The statistical evaluation of medical tests for classification and prediction year: 2003 ident: CIT0004 doi: 10.1093/oso/9780198509844.001.0001 – ident: CIT0013 doi: 10.1016/S0031-3203(96)00142-2 – ident: CIT0018 doi: 10.1198/016214505000000907 – ident: CIT0034 doi: 10.1177/0962280217747009 – ident: CIT0027 doi: 10.1016/j.jspi.2007.07.009 – ident: CIT0026 doi: 10.1002/(SICI)1097-0258(20000229)19:4<493::AID-SIM352>3.0.CO;2-W – ident: CIT0035 doi: 10.1177/09622802211002867 – ident: CIT0010 doi: 10.1007/s10182-020-00388-z – ident: CIT0015 doi: 10.1111/biom.13365 – ident: CIT0029 doi: 10.1016/j.jmva.2014.08.003 – ident: CIT0031 doi: 10.18637/jss.v011.i09 – ident: CIT0011 doi: 10.1006/jmps.1998.1218 – ident: CIT0012 doi: 10.1201/b17476 – volume-title: Support vector machines year: 2008 ident: CIT0019 – ident: CIT0032 doi: 10.32614/RJ-2018-043 – ident: CIT0014 – ident: CIT0008 doi: 10.1111/j.0006-341X.2002.00657.x – volume: 13 start-page: 2529 year: 2012 ident: CIT0016 publication-title: J Mach Learn Res – ident: CIT0009 doi: 10.1080/01621459.2015.1066681 – volume-title: Théorie de L'addition des variables aléatoires year: 1937 ident: CIT0023 – ident: CIT0028 doi: 10.1177/0962280216672490 – ident: CIT0002 doi: 10.1097/SLA.0000000000003446 |
| SSID | ssj0001152 |
| Score | 2.2920163 |
| Snippet | In biomedicine, binary classification problems are involved in diagnostic but also, for instance, in personalized medicine. The objective is to use information... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2846 |
| SubjectTerms | Asymptotic properties Binary classification problem Classification Density Distribution functions kernel density estimator machine learning Probability distribution functions robust estimator Support vector machines |
| Title | The fundamental role of density functions in the binary classification problem |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00949655.2022.2051026 https://www.proquest.com/docview/2699560748 |
| Volume | 92 |
| WOSCitedRecordID | wos000769887500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Single Title from Taylor & Francis Online customDbUrl: eissn: 1563-5163 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001152 issn: 0094-9655 databaseCode: TFW dateStart: 19720101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA0yPMyD06k4nZKD12qbX02PIg4POjxM3K00v0CQTdYp-N-bL02HQ2QHhV5C-UJJXpKX8r73IXSh0ko6w6vEn2UkYZKLRFJDE0Edd8wyYlywzL_Px2M5nRaPUU1YR1kl3KFdYxQR9mpY3JWqW0XcFajhCsG5v90RyKXysCJguu2ZPWB8Mnpe7cVZU3MHIhIIaXN4futl7XRa8y79sVeHA2jU-4dP30O7kX3i6wYu-2jLzvqo11Z2wHGh99HOw8rNte6jLjDSxtD5AI09sLCD_JGmLAAGfSKeO2xACr_8hHchV6LGLzPse8EqpPxiDTwdhEkBCzhWsjlET6Pbyc1dEosyJJoIuUwUzanQyt-pjfJcKDcF484ZmVZCZiK3quKaMEekZKZwqcu5pcQ6T9z8kxpDj1BnNp_ZY4QdzWwuDFNMpUznhWLSZlxbohVNU6sHiLWTUeroWA6FM17LbGVs2gxnCcNZxuEcoMtV2Ftj2bEpoPg-0-Uy_CtxTWGTkm6IHbawKOPqr0siIF_YkzN58oeuT1EXmkHQRoaos1y82zO0rT_8jC_OA86_AN9T91Q |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gXrwsSq-zcFrtc2r6VHERXHd04rewuYFgqziroL_3kzaLoqIB4XewoSSTGYm4fu-ATg2-VAFJ4ZZzGU040rITDHHMsmCCNxz6kKSzO-V_b66v68-c2EQVol36FALRaRYjYcbH6NbSNwpwuEqKUS83lEkU0W_onIW5kXMtQjrG3TvptG4qLvuoEmGNi2L56dpvuSnL-ql36J1SkHd1f_4-TVYaQpQclZ7zDrM-FEHVtvmDqQ56x1YvpkKuo47sIRFaa3pvAH96FskIIWk7gxAEKJIngJxiIafvONYokuMycOIxFmISaxfYrFUR2xScgfSNLPZhNvuxeD8Mmv6MmSWSjXJDCuZtCZeq52J5VDpKi5CcCofSlXI0puhsJQHqhR3VchDKTyjPsTaLX65c2wL5kZPI78NJLDCl9Jxw03ObVkZrnwhrKfWsDz3dgd4uxvaNqLl2DvjURdTbdN6OTUup26WcwdOpmbPtWrHbwbV563Wk_RcEureJpr9Yrvf-oVuAsBYU4mU4Vifqd0_TH0Ei5eDm57uXfWv92AJhxK-je7D3OTl1R_Agn2Lu_9ymJz-A3r3-3U |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bSxwxFD54KbJ9qHZtqa2XPPg6OpPbZB6LurSoiw8r-hY2NxBkld1twX9vTiazKKXsg8K8hRNC8iU5Gb7zfQCHphyr4MS4iHcZLbgSslDMsUKyIAL3nLqQJPMv6uFQ3d42V5lNOMu0SnxDh1YoIp3VuLkfXegYccfIhmukEPF1R7GWKsKKylVYT-JYEdKjwc3iMK5a0x0MKTCmK-L5XzevrqdX4qX_HNbpBhpsvsPYt-BTTj_JzxYvn2HFT_qw2Vk7kLzT-_DxciHnOutDD1PSVtF5G4YRWSRgAUnrC0CQoEgeAnHIhZ8_YVsqlpiRuwmJvRCTan6JxUQdmUkJDCRb2XyB68HZ6ORXkV0ZCkulmheG1UxaEx_VzsRkqHYNFyE4VY6lqmTtzVhYygNVirsmlKEWnlEfYuYWv9I59hXWJg8T_w1IYJWvpeOGm5LbujFc-UpYT61hZentDvBuMbTNkuXonHGvq4WyaTudGqdT5-ncgaNF2GOr2bEsoHm50nqefpaE1tlEsyWxux0sdN7-M00lFgzH7Ex9f0PXB7BxdTrQF7-H5z-ghy2J3EZ3YW0-_eP34IP9Gxd_up8g_wxT9_oZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fundamental+role+of+density+functions+in+the+binary+classification+problem&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Mart%C3%ADnez-Camblor%2C+Pablo&rft.date=2022-09-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=92&rft.issue=13&rft.spage=2846&rft.epage=2861&rft_id=info:doi/10.1080%2F00949655.2022.2051026&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon |