The fundamental role of density functions in the binary classification problem

In biomedicine, binary classification problems are involved in diagnostic but also, for instance, in personalized medicine. The objective is to use information for correctly allocating subjects in groups. Frequently, this information implies high-dimensional data. An adequate classification rule is...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of statistical computation and simulation Ročník 92; číslo 13; s. 2846 - 2861
Hlavný autor: Martínez-Camblor, Pablo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 02.09.2022
Taylor & Francis Ltd
Predmet:
ISSN:0094-9655, 1563-5163
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In biomedicine, binary classification problems are involved in diagnostic but also, for instance, in personalized medicine. The objective is to use information for correctly allocating subjects in groups. Frequently, this information implies high-dimensional data. An adequate classification rule is a trade-off between the sensitivity and the specificity. The ROC curve helps to understand, evaluate and compare the accuracy of classification processes. We propose a procedure for estimating the optimal classification rules based on a penalized estimator of the underlying probability distribution functions. We study its asymptotic properties. Through Monte Carlo simulations, we compare our proposal with a support vector machine-based ROC curve. We illustrate its practical use in a real-world problem. Results suggest that, despite some techniques promise to improve the results provided by traditional methods, in the binary classification problem, the limit is the actual relationship among the density functions.
AbstractList In biomedicine, binary classification problems are involved in diagnostic but also, for instance, in personalized medicine. The objective is to use information for correctly allocating subjects in groups. Frequently, this information implies high-dimensional data. An adequate classification rule is a trade-off between the sensitivity and the specificity. The ROC curve helps to understand, evaluate and compare the accuracy of classification processes. We propose a procedure for estimating the optimal classification rules based on a penalized estimator of the underlying probability distribution functions. We study its asymptotic properties. Through Monte Carlo simulations, we compare our proposal with a support vector machine-based ROC curve. We illustrate its practical use in a real-world problem. Results suggest that, despite some techniques promise to improve the results provided by traditional methods, in the binary classification problem, the limit is the actual relationship among the density functions.
Author Martínez-Camblor, Pablo
Author_xml – sequence: 1
  givenname: Pablo
  orcidid: 0000-0001-7845-3905
  surname: Martínez-Camblor
  fullname: Martínez-Camblor, Pablo
  email: pablo.martinez-camblor@hitchcock.org, pmcamblor@hotmail.com
  organization: Geisel School of Medicine at Dartmouth
BookMark eNqFkMtKAzEUhoNUsK0-ghBwPTWXSWYGN0rxBkU3dR0yuWDKTFKTFOnbO2PrxoXC4ZzF-f5z-Wdg4oM3AFxitMCoRtcINWXDGVsQRMiQGEaEn4ApZpwWDHM6AdORKUboDMxS2iCEMGZkCl7W7wbandeyNz7LDsbQGRgs1MYnl_djT2UXfILOwzzArfMy7qHqZErOOiXHLtzG0HamPwenVnbJXBzrHLw93K-XT8Xq9fF5ebcqFOF1LlpaUa7aBlW6ZZhVuimZtbpGkteYV6aVTJHSkroudWORrZihxFhCyRBIazoHV4e5w96PnUlZbMIu-mGlILxpGEdVWQ_UzYFSMaQUjRXK5e97c5SuExiJ0UDxY6AYDRRHAwc1-6XeRtcPv_-ruz3onLch9vIzxE6LLPddiDZKr1wS9O8RX0aliRo
CitedBy_id crossref_primary_10_1016_j_csda_2022_107683
Cites_doi 10.1007/s00180-012-0333-1
10.1001/jama.1989.03430190084036
10.1111/j.1467-9469.2005.00445.x
10.1002/9780470316849
10.1016/j.jhep.2012.01.011
10.1002/9780470317082
10.1148/radiology.143.1.7063747
10.1080/02664763.2011.578616
10.1007/s10182-013-0216-y
10.1002/0471725250
10.1214/aos/1033066197
10.1002/pst.1734
10.1007/s10182-020-00385-2
10.1093/oso/9780198509844.001.0001
10.1016/S0031-3203(96)00142-2
10.1198/016214505000000907
10.1177/0962280217747009
10.1016/j.jspi.2007.07.009
10.1002/(SICI)1097-0258(20000229)19:4<493::AID-SIM352>3.0.CO;2-W
10.1177/09622802211002867
10.1007/s10182-020-00388-z
10.1111/biom.13365
10.1016/j.jmva.2014.08.003
10.18637/jss.v011.i09
10.1006/jmps.1998.1218
10.1201/b17476
10.32614/RJ-2018-043
10.1111/j.0006-341X.2002.00657.x
10.1080/01621459.2015.1066681
10.1177/0962280216672490
10.1097/SLA.0000000000003446
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949655.2022.2051026
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 2861
ExternalDocumentID 10_1080_00949655_2022_2051026
2051026
Genre Research Article
GrantInformation_xml – fundername: Financiado por MCIN/ AEI /10.13039/501100011033
  grantid: PID2020-118101GB-I00
– fundername: Gobierno del Principado de Asturias
  grantid: GRUPIN AYUD/2021/50897
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c268t-b3736cb907db5157d945ffd80a68167eba5c24f2884d9f0f75e32ef2322320dd3
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000769887500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-9655
IngestDate Sun Nov 30 05:38:18 EST 2025
Sat Nov 29 06:28:00 EST 2025
Tue Nov 18 22:32:14 EST 2025
Mon Oct 20 23:47:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-b3736cb907db5157d945ffd80a68167eba5c24f2884d9f0f75e32ef2322320dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7845-3905
PQID 2699560748
PQPubID 53118
PageCount 16
ParticipantIDs proquest_journals_2699560748
crossref_citationtrail_10_1080_00949655_2022_2051026
informaworld_taylorfrancis_310_1080_00949655_2022_2051026
crossref_primary_10_1080_00949655_2022_2051026
PublicationCentury 2000
PublicationDate 2022-09-02
PublicationDateYYYYMMDD 2022-09-02
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Steinwart I (CIT0019) 2008
CIT0014
CIT0013
CIT0035
CIT0015
CIT0018
CIT0017
CIT0021
CIT0020
CIT0001
Pepe MS. (CIT0004) 2003
CIT0022
Lévy PP. (CIT0023) 1937
Kim J (CIT0016) 2012; 13
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0030
  doi: 10.1007/s00180-012-0333-1
– ident: CIT0033
  doi: 10.1001/jama.1989.03430190084036
– ident: CIT0024
  doi: 10.1111/j.1467-9469.2005.00445.x
– ident: CIT0020
  doi: 10.1002/9780470316849
– ident: CIT0001
  doi: 10.1016/j.jhep.2012.01.011
– ident: CIT0003
  doi: 10.1002/9780470317082
– ident: CIT0006
  doi: 10.1148/radiology.143.1.7063747
– ident: CIT0025
  doi: 10.1080/02664763.2011.578616
– ident: CIT0017
  doi: 10.1007/s10182-013-0216-y
– ident: CIT0021
  doi: 10.1002/0471725250
– ident: CIT0022
  doi: 10.1214/aos/1033066197
– ident: CIT0005
  doi: 10.1002/pst.1734
– ident: CIT0007
  doi: 10.1007/s10182-020-00385-2
– volume-title: The statistical evaluation of medical tests for classification and prediction
  year: 2003
  ident: CIT0004
  doi: 10.1093/oso/9780198509844.001.0001
– ident: CIT0013
  doi: 10.1016/S0031-3203(96)00142-2
– ident: CIT0018
  doi: 10.1198/016214505000000907
– ident: CIT0034
  doi: 10.1177/0962280217747009
– ident: CIT0027
  doi: 10.1016/j.jspi.2007.07.009
– ident: CIT0026
  doi: 10.1002/(SICI)1097-0258(20000229)19:4<493::AID-SIM352>3.0.CO;2-W
– ident: CIT0035
  doi: 10.1177/09622802211002867
– ident: CIT0010
  doi: 10.1007/s10182-020-00388-z
– ident: CIT0015
  doi: 10.1111/biom.13365
– ident: CIT0029
  doi: 10.1016/j.jmva.2014.08.003
– ident: CIT0031
  doi: 10.18637/jss.v011.i09
– ident: CIT0011
  doi: 10.1006/jmps.1998.1218
– ident: CIT0012
  doi: 10.1201/b17476
– volume-title: Support vector machines
  year: 2008
  ident: CIT0019
– ident: CIT0032
  doi: 10.32614/RJ-2018-043
– ident: CIT0014
– ident: CIT0008
  doi: 10.1111/j.0006-341X.2002.00657.x
– volume: 13
  start-page: 2529
  year: 2012
  ident: CIT0016
  publication-title: J Mach Learn Res
– ident: CIT0009
  doi: 10.1080/01621459.2015.1066681
– volume-title: Théorie de L'addition des variables aléatoires
  year: 1937
  ident: CIT0023
– ident: CIT0028
  doi: 10.1177/0962280216672490
– ident: CIT0002
  doi: 10.1097/SLA.0000000000003446
SSID ssj0001152
Score 2.2920163
Snippet In biomedicine, binary classification problems are involved in diagnostic but also, for instance, in personalized medicine. The objective is to use information...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2846
SubjectTerms Asymptotic properties
Binary classification problem
Classification
Density
Distribution functions
kernel density estimator
machine learning
Probability distribution functions
robust estimator
Support vector machines
Title The fundamental role of density functions in the binary classification problem
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2022.2051026
https://www.proquest.com/docview/2699560748
Volume 92
WOSCitedRecordID wos000769887500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Single Title from Taylor & Francis Online
  customDbUrl:
  eissn: 1563-5163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001152
  issn: 0094-9655
  databaseCode: TFW
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA0yPMyD06k4nZKD12qbX02PIg4POjxM3K00v0CQTdYp-N-bL02HQ2QHhV5C-UJJXpKX8r73IXSh0ko6w6vEn2UkYZKLRFJDE0Edd8wyYlywzL_Px2M5nRaPUU1YR1kl3KFdYxQR9mpY3JWqW0XcFajhCsG5v90RyKXysCJguu2ZPWB8Mnpe7cVZU3MHIhIIaXN4futl7XRa8y79sVeHA2jU-4dP30O7kX3i6wYu-2jLzvqo11Z2wHGh99HOw8rNte6jLjDSxtD5AI09sLCD_JGmLAAGfSKeO2xACr_8hHchV6LGLzPse8EqpPxiDTwdhEkBCzhWsjlET6Pbyc1dEosyJJoIuUwUzanQyt-pjfJcKDcF484ZmVZCZiK3quKaMEekZKZwqcu5pcQ6T9z8kxpDj1BnNp_ZY4QdzWwuDFNMpUznhWLSZlxbohVNU6sHiLWTUeroWA6FM17LbGVs2gxnCcNZxuEcoMtV2Ftj2bEpoPg-0-Uy_CtxTWGTkm6IHbawKOPqr0siIF_YkzN58oeuT1EXmkHQRoaos1y82zO0rT_8jC_OA86_AN9T91Q
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gXrwsSq-zcFrtc2r6VHERXHd04rewuYFgqziroL_3kzaLoqIB4XewoSSTGYm4fu-ATg2-VAFJ4ZZzGU040rITDHHMsmCCNxz6kKSzO-V_b66v68-c2EQVol36FALRaRYjYcbH6NbSNwpwuEqKUS83lEkU0W_onIW5kXMtQjrG3TvptG4qLvuoEmGNi2L56dpvuSnL-ql36J1SkHd1f_4-TVYaQpQclZ7zDrM-FEHVtvmDqQ56x1YvpkKuo47sIRFaa3pvAH96FskIIWk7gxAEKJIngJxiIafvONYokuMycOIxFmISaxfYrFUR2xScgfSNLPZhNvuxeD8Mmv6MmSWSjXJDCuZtCZeq52J5VDpKi5CcCofSlXI0puhsJQHqhR3VchDKTyjPsTaLX65c2wL5kZPI78NJLDCl9Jxw03ObVkZrnwhrKfWsDz3dgd4uxvaNqLl2DvjURdTbdN6OTUup26WcwdOpmbPtWrHbwbV563Wk_RcEureJpr9Yrvf-oVuAsBYU4mU4Vifqd0_TH0Ei5eDm57uXfWv92AJhxK-je7D3OTl1R_Agn2Lu_9ymJz-A3r3-3U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bSxwxFD54KbJ9qHZtqa2XPPg6OpPbZB6LurSoiw8r-hY2NxBkld1twX9vTiazKKXsg8K8hRNC8iU5Gb7zfQCHphyr4MS4iHcZLbgSslDMsUKyIAL3nLqQJPMv6uFQ3d42V5lNOMu0SnxDh1YoIp3VuLkfXegYccfIhmukEPF1R7GWKsKKylVYT-JYEdKjwc3iMK5a0x0MKTCmK-L5XzevrqdX4qX_HNbpBhpsvsPYt-BTTj_JzxYvn2HFT_qw2Vk7kLzT-_DxciHnOutDD1PSVtF5G4YRWSRgAUnrC0CQoEgeAnHIhZ8_YVsqlpiRuwmJvRCTan6JxUQdmUkJDCRb2XyB68HZ6ORXkV0ZCkulmheG1UxaEx_VzsRkqHYNFyE4VY6lqmTtzVhYygNVirsmlKEWnlEfYuYWv9I59hXWJg8T_w1IYJWvpeOGm5LbujFc-UpYT61hZentDvBuMbTNkuXonHGvq4WyaTudGqdT5-ncgaNF2GOr2bEsoHm50nqefpaE1tlEsyWxux0sdN7-M00lFgzH7Ex9f0PXB7BxdTrQF7-H5z-ghy2J3EZ3YW0-_eP34IP9Gxd_up8g_wxT9_oZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fundamental+role+of+density+functions+in+the+binary+classification+problem&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Mart%C3%ADnez-Camblor%2C+Pablo&rft.date=2022-09-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=92&rft.issue=13&rft.spage=2846&rft.epage=2861&rft_id=info:doi/10.1080%2F00949655.2022.2051026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon