From Soft Clustering to Hard Clustering: A Collaborative Annealing Fuzzy c-means Algorithm
The fuzzy c-means clustering algorithm is the most widely used soft clustering algorithm. In contrast to hard clustering, the cluster membership of data generated using the fuzzy c-means algorithm is ambiguous. Similar to hard clustering algorithms, the clustering results of the fuzzy cmeans cluster...
Uložené v:
| Vydané v: | IEEE transactions on fuzzy systems Ročník 32; číslo 3; s. 1 - 15 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.03.2024
|
| Predmet: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The fuzzy c-means clustering algorithm is the most widely used soft clustering algorithm. In contrast to hard clustering, the cluster membership of data generated using the fuzzy c-means algorithm is ambiguous. Similar to hard clustering algorithms, the clustering results of the fuzzy cmeans clustering algorithm are also sub-optimal with varied performance depending on initial solutions. In this paper, a collaborative annealing fuzzy c-means algorithm is presented. To address the issue of ambiguity, the proposed algorithm leverages an annealing procedure to phase out the fuzzy cluster membership degree toward a crispy one by reducing the exponent gradually according to a cooling schedule. To address the issue of sub-optimality, the proposed algorithm employs multiple fuzzy c-means modules to generate alternative clusters based on membership srepeatedly re-initialized using a meta-heuristic rule. Experimental results on eight benchmark datasets are elaborated to demonstrate the superiority of the proposed algorithm to thirteen prevailing hard and soft algorithms in terms of internal and external cluster validity indices. |
|---|---|
| AbstractList | The fuzzy c-means clustering algorithm is the most widely used soft clustering algorithm. In contrast to hard clustering, the cluster membership of data generated using the fuzzy c-means algorithm is ambiguous. Similar to hard clustering algorithms, the clustering results of the fuzzy cmeans clustering algorithm are also sub-optimal with varied performance depending on initial solutions. In this paper, a collaborative annealing fuzzy c-means algorithm is presented. To address the issue of ambiguity, the proposed algorithm leverages an annealing procedure to phase out the fuzzy cluster membership degree toward a crispy one by reducing the exponent gradually according to a cooling schedule. To address the issue of sub-optimality, the proposed algorithm employs multiple fuzzy c-means modules to generate alternative clusters based on membership srepeatedly re-initialized using a meta-heuristic rule. Experimental results on eight benchmark datasets are elaborated to demonstrate the superiority of the proposed algorithm to thirteen prevailing hard and soft algorithms in terms of internal and external cluster validity indices. |
| Author | Wang, Jun Li, Hongzong |
| Author_xml | – sequence: 1 givenname: Hongzong surname: Li fullname: Li, Hongzong organization: Department of Computer Science, City University of Hong Kong, Hong Kong – sequence: 2 givenname: Jun surname: Wang fullname: Wang, Jun organization: Department of Computer Science, City University of Hong Kong, Hong Kong |
| BookMark | eNp9kM1Kw0AQgBdRsK2-gHjYF0id2U3WxFsoxgoFD7aXXsImma2RJCubrdA-vantoXjwNMMw3_x8Y3bZ2Y4Yu0OYIkLysMxW6_VUgJBTKTFRSl6wESYhBgAyvBxyUDJQj6Cu2bjvPwEwjDAesXXmbMvfrfF81mx7T67uNtxbPteuOis98ZTPbNPowjrt62_iadeRbg7d2Xa_3_EyaEl3PU-bjXW1_2hv2JXRTU-3pzhhq-x5OZsHi7eX11m6CEqhYh_oqIoBgWJRxLKgsExMhYkQQiagKpMoPVyNKGj4BIw0CsoyMjpShBSpIpQTJo5zS2f73pHJv1zdarfLEfKDnfzXTn6wk5_sDFD8ByprPzxmO-903fyP3h_RmojOdgkVYajkD7oSdVk |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1109_JSEN_2024_3464513 crossref_primary_10_1007_s12555_024_0931_z crossref_primary_10_1016_j_inffus_2025_103524 crossref_primary_10_1109_TFUZZ_2025_3580408 crossref_primary_10_1109_TNSM_2024_3522115 crossref_primary_10_1109_ACCESS_2025_3527924 crossref_primary_10_1109_TFUZZ_2025_3581679 crossref_primary_10_1080_15568318_2024_2356141 crossref_primary_10_1007_s11227_025_07678_w crossref_primary_10_1016_j_buildenv_2024_112423 crossref_primary_10_1109_TFUZZ_2024_3456091 crossref_primary_10_3390_en18123188 crossref_primary_10_1109_TFUZZ_2025_3581918 crossref_primary_10_1109_TFUZZ_2025_3576588 crossref_primary_10_1007_s10489_024_06078_6 crossref_primary_10_1007_s11227_025_07728_3 crossref_primary_10_1016_j_neucom_2025_130615 crossref_primary_10_3390_electronics13193798 |
| Cites_doi | 10.1109/3468.736364 10.1145/3136625 10.1109/34.1000236 10.1109/TFUZZ.2016.2637373 10.1109/TNNLS.2021.3097748 10.1109/42.996338 10.1016/j.neunet.2022.07.018 10.1016/S0165-0114(96)00232-1 10.1007/BF02289588 10.1137/1.9781611972719.6 10.1016/j.patrec.2009.09.011 10.1109/TNNLS.2020.2968848 10.1109/TFUZZ.2020.2991306 10.1109/TFUZZ.2013.2276863 10.1109/SmartGridComm.2018.8587498 10.1007/BF00114162 10.1109/TNN.2005.845141 10.5555/2980539.2980649 10.1145/331499.331504 10.1109/IEMBS.2003.1279866 10.1109/TFUZZ.2021.3052362 10.1109/TFUZZ.2022.3220925 10.1109/TETCI.2022.3221491 10.1109/91.227387 10.5721/EuJRS20134617 10.1016/j.patcog.2007.11.011 10.1109/TFUZZ.2021.3058572 10.1109/91.873580 10.1109/JSTSP.2010.2096797 10.1109/TIT.1982.1056489 10.1016/j.asoc.2012.12.022 10.1109/TKDE.2007.1048 10.1109/TIP.2010.2040763 10.1109/TFUZZ.2010.2077640 10.1038/2021034a0 10.1109/TFUZZ.2020.2985004 10.1007/978-1-4757-0450-1 10.1109/TSMCB.2004.831165 10.1109/TFUZZ.2014.2370676 10.1016/j.patrec.2003.10.004 10.1109/MCI.2018.2881643 10.1016/j.patcog.2006.07.011 10.1109/TFUZZ.2012.2201485 10.1109/TFUZZ.2020.3042645 10.1109/TNNLS.2018.2861209 10.1016/j.inffus.2017.04.008 10.1109/34.868688 10.1016/j.knosys.2022.109593 10.1109/TSMCB.2008.2004818 10.1109/TPAMI.2020.3047489 10.1016/j.knosys.2022.110241 10.1109/TFUZZ.2023.3235384 10.1080/01969727308546046 10.1109/TFUZZ.2022.3195298 10.1016/S0167-8655(98)00121-4 10.1109/TFUZZ.2017.2659739 10.1007/s11806-008-0017-8 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TFUZZ.2023.3319663 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 15 |
| ExternalDocumentID | 10_1109_TFUZZ_2023_3319663 10265146 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Government of the Hong Kong Special Administrative Region, and Laboratory for AI-Powered Financial Technologies – fundername: Research Grants Council of the Hong Kong Special Administrative Region of China grantid: 11202318; 11202019; 11203721 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 ICLAB IFJZH VH1 |
| ID | FETCH-LOGICAL-c268t-a5d8010e82b83be4c9fd192223906df96a706112e0030f3f60cc5fa56e1e56b43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001179721500057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Sat Nov 29 03:12:45 EST 2025 Tue Nov 18 21:32:25 EST 2025 Wed Aug 27 02:13:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-a5d8010e82b83be4c9fd192223906df96a706112e0030f3f60cc5fa56e1e56b43 |
| ORCID | 0000-0002-5774-7557 0000-0002-1305-5735 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TFUZZ_2023_3319663 crossref_citationtrail_10_1109_TFUZZ_2023_3319663 ieee_primary_10265146 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref56 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Chakraborty (ref7) 2020 A.-Fdez (ref61) 2011; 17 ref51 ref50 Tiwari (ref15) 2020 ref46 Li (ref42) 2008; 10 ref45 ref48 ref47 ref41 Li (ref65) 1995 ref44 ref43 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 Kennedy (ref58) 1995 ref23 ref26 ref64 ref63 ref22 ref66 ref21 ref28 ref27 ref29 Hou (ref49) 2005; 31 ref60 Bilmes (ref20) 1997 Xu (ref25) 2019 ref62 |
| References_xml | – ident: ref14 doi: 10.1109/3468.736364 – ident: ref60 doi: 10.1145/3136625 – ident: ref21 doi: 10.1109/34.1000236 – ident: ref54 doi: 10.1109/TFUZZ.2016.2637373 – ident: ref24 doi: 10.1109/TNNLS.2021.3097748 – ident: ref55 doi: 10.1109/42.996338 – ident: ref59 doi: 10.1016/j.neunet.2022.07.018 – start-page: 1942 volume-title: Proc. Int. Conf. Neural Netw. year: 1995 ident: ref58 article-title: Particle swarm optimization – ident: ref48 doi: 10.1016/S0165-0114(96)00232-1 – ident: ref12 doi: 10.1007/BF02289588 – ident: ref16 doi: 10.1137/1.9781611972719.6 – ident: ref2 doi: 10.1016/j.patrec.2009.09.011 – ident: ref4 doi: 10.1109/TNNLS.2020.2968848 – ident: ref33 doi: 10.1109/TFUZZ.2020.2991306 – ident: ref47 doi: 10.1109/TFUZZ.2013.2276863 – ident: ref62 doi: 10.1109/SmartGridComm.2018.8587498 – ident: ref63 doi: 10.1007/BF00114162 – volume: 17 start-page: 255 year: 2011 ident: ref61 article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J. Mult.-Valued Log. Soft Comput. – ident: ref3 doi: 10.1109/TNN.2005.845141 – ident: ref18 doi: 10.5555/2980539.2980649 – ident: ref1 doi: 10.1145/331499.331504 – ident: ref40 doi: 10.1109/IEMBS.2003.1279866 – start-page: 6921 volume-title: Proc. Int. Conf. Mach. Learn. year: 2019 ident: ref25 article-title: Power k-means clustering – ident: ref35 doi: 10.1109/TFUZZ.2021.3052362 – ident: ref36 doi: 10.1109/TFUZZ.2022.3220925 – ident: ref10 doi: 10.1109/TETCI.2022.3221491 – start-page: 10211 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2020 ident: ref15 article-title: Banditpam: Almost linear time k-medoids clustering via multi-armed bandits – ident: ref28 doi: 10.1109/91.227387 – ident: ref53 doi: 10.5721/EuJRS20134617 – ident: ref64 doi: 10.1016/j.patcog.2007.11.011 – ident: ref9 doi: 10.1109/TFUZZ.2021.3058572 – ident: ref39 doi: 10.1109/91.873580 – start-page: 2227 volume-title: Proc. IEEE Int. Conf. Fuzzy Syst.. year: 1995 ident: ref65 article-title: A maximum-entropy approach to fuzzy clustering – ident: ref43 doi: 10.1109/JSTSP.2010.2096797 – start-page: 691 volume-title: Proc. Int. Conf. Artif. Intell. Statist. year: 2020 ident: ref7 article-title: Entropy weighted power k-means clustering – volume: 10 start-page: 168 issue: 3 year: 2008 ident: ref42 article-title: A novel fuzzy weighted c-means method for image classification publication-title: Int. J. Fuzzy Syst. – ident: ref13 doi: 10.1109/TIT.1982.1056489 – ident: ref52 doi: 10.1016/j.asoc.2012.12.022 – ident: ref6 doi: 10.1109/TKDE.2007.1048 – ident: ref45 doi: 10.1109/TIP.2010.2040763 – ident: ref30 doi: 10.1109/TFUZZ.2010.2077640 – ident: ref11 doi: 10.1038/2021034a0 – ident: ref34 doi: 10.1109/TFUZZ.2020.2985004 – ident: ref32 doi: 10.1007/978-1-4757-0450-1 – ident: ref56 doi: 10.1109/TSMCB.2004.831165 – ident: ref46 doi: 10.1109/TFUZZ.2014.2370676 – ident: ref51 doi: 10.1016/j.patrec.2003.10.004 – volume: 31 start-page: 152 issue: 17 year: 2005 ident: ref49 article-title: An improved fuzzy c-means algorithm based on genetic algorithm publication-title: Comput. Eng. – ident: ref29 doi: 10.1109/MCI.2018.2881643 – ident: ref41 doi: 10.1016/j.patcog.2006.07.011 – ident: ref66 doi: 10.1109/TFUZZ.2012.2201485 – ident: ref22 doi: 10.1109/TFUZZ.2020.3042645 – year: 1997 ident: ref20 article-title: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models – ident: ref19 doi: 10.1109/TNNLS.2018.2861209 – ident: ref23 doi: 10.1016/j.inffus.2017.04.008 – ident: ref17 doi: 10.1109/34.868688 – ident: ref26 doi: 10.1016/j.knosys.2022.109593 – ident: ref44 doi: 10.1109/TSMCB.2008.2004818 – ident: ref8 doi: 10.1109/TPAMI.2020.3047489 – ident: ref27 doi: 10.1016/j.knosys.2022.110241 – ident: ref37 doi: 10.1109/TFUZZ.2023.3235384 – ident: ref57 doi: 10.1080/01969727308546046 – ident: ref5 doi: 10.1109/TFUZZ.2022.3195298 – ident: ref38 doi: 10.1016/S0167-8655(98)00121-4 – ident: ref31 doi: 10.1109/TFUZZ.2017.2659739 – ident: ref50 doi: 10.1007/s11806-008-0017-8 |
| SSID | ssj0014518 |
| Score | 2.5611446 |
| Snippet | The fuzzy c-means clustering algorithm is the most widely used soft clustering algorithm. In contrast to hard clustering, the cluster membership of data... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> k</tex-math> </inline-formula>-means clustering Annealing annealing procedure Classification algorithms Clustering algorithms Clustering methods collaborative clustering Cooling fuzzy <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> c</tex-math> </inline-formula>-means clustering Linear programming Schedules |
| Title | From Soft Clustering to Hard Clustering: A Collaborative Annealing Fuzzy c-means Algorithm |
| URI | https://ieeexplore.ieee.org/document/10265146 |
| Volume | 32 |
| WOSCitedRecordID | wos001179721500057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCD0zlxfpGDN8nsR5qm3saweBqCG4xdSpq86mBbpbYD99ebtN2cBwVv5ZFAye99tS_v_RC6lcoyY80l4VQlhHKwSSBcQVRMnUQ7ZRoLXpJN-MMhn0yC57pZveyFAYDy8hn0zGNZy1epLMyvMm3hDtMBnjVQw_f9qllrWzKgnl31vTGXMN9imw4ZK7gfhePptGeIwnuuUTnm_ohCO7QqZVQJW_98n2N0VKePuF_hfYL2YNlGrQ01A64ttY0Od-YMnqJpmKUL_KI9Lh7MCzMaQYtxnmJTt98RPeA-HnwrxgpwX7thYTrWcVis159YkgXo4Ib789c0m-Vviw4ah4-jwROpSRWIdBjPifCUDkoWcCfmbgxUBonSWZ7OEgKLqSRgQp-dTsLAmH_iJsyS0kuEx8AGj8XUPUPNZbqEc4QlCCqp4jaAR0FxITyNrpvEhv5IMquL7M0hR7KeOG6IL-ZR-eVhBVEJTGSAiWpguuhuu-e9mrfx5-qOQWVnZQXIxS_yS3Sgt9PqDtkVauZZAddoX67y2Ud2U-rTFxHiyNk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gXqwPvHtHrzJ1jw268ZbKQbFWgQrSC9hsztRoW2kpoL99e4maa0HBW9h2YSw3-zMJLPffACnSju2rbmigumUMoEuDaUvqU6YlxqnzBIpCrGJi3ZbPD2F9xVZveDCIGJx-Azr9rKo5etMjeyvMrPDPW4CPJ-HxYAxzy3pWtOiAQvckvnGfcovHD7hyDjheSd67HbrViq87luj4_6PODQjrFLElaj2zzdah7UqgSSNEvENmMPBJtQm4gyk2qubsDrTaXALutEw65MH43NJszeyzRHMMMkzYiv3M0OXpEGa36bxgaRhHLG0nHUSjcbjT6JoH014I43eczZ8zV_62_AYXXWa17SSVaDK4yKnMtAmLDkovET4CTIVptrkeSZPCB2u05BLs3YmDUPrAFI_5Y5SQSoDji4GPGH-DiwMsgHuAlEomWJauIgBQy2kDAy-fppYASTFnT1wJ4scq6rnuJW-6MXFt4cTxgUwsQUmroDZg7PpPW9lx40_Z29bVGZmloDs_zJ-AsvXnbtW3Lpp3x7AinkUK0-UHcJCPhzhESypj_z1fXhc2NYXr9rMIA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Soft+Clustering+to+Hard+Clustering%3A+A+Collaborative+Annealing+Fuzzy+c-means+Algorithm&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Li%2C+Hongzong&rft.au=Wang%2C+Jun&rft.date=2024-03-01&rft.pub=IEEE&rft.issn=1063-6706&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTFUZZ.2023.3319663&rft.externalDocID=10265146 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |