From Soft Clustering to Hard Clustering: A Collaborative Annealing Fuzzy c-means Algorithm

The fuzzy c-means clustering algorithm is the most widely used soft clustering algorithm. In contrast to hard clustering, the cluster membership of data generated using the fuzzy c-means algorithm is ambiguous. Similar to hard clustering algorithms, the clustering results of the fuzzy cmeans cluster...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on fuzzy systems Ročník 32; číslo 3; s. 1 - 15
Hlavní autori: Li, Hongzong, Wang, Jun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.03.2024
Predmet:
ISSN:1063-6706, 1941-0034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The fuzzy c-means clustering algorithm is the most widely used soft clustering algorithm. In contrast to hard clustering, the cluster membership of data generated using the fuzzy c-means algorithm is ambiguous. Similar to hard clustering algorithms, the clustering results of the fuzzy cmeans clustering algorithm are also sub-optimal with varied performance depending on initial solutions. In this paper, a collaborative annealing fuzzy c-means algorithm is presented. To address the issue of ambiguity, the proposed algorithm leverages an annealing procedure to phase out the fuzzy cluster membership degree toward a crispy one by reducing the exponent gradually according to a cooling schedule. To address the issue of sub-optimality, the proposed algorithm employs multiple fuzzy c-means modules to generate alternative clusters based on membership srepeatedly re-initialized using a meta-heuristic rule. Experimental results on eight benchmark datasets are elaborated to demonstrate the superiority of the proposed algorithm to thirteen prevailing hard and soft algorithms in terms of internal and external cluster validity indices.
AbstractList The fuzzy c-means clustering algorithm is the most widely used soft clustering algorithm. In contrast to hard clustering, the cluster membership of data generated using the fuzzy c-means algorithm is ambiguous. Similar to hard clustering algorithms, the clustering results of the fuzzy cmeans clustering algorithm are also sub-optimal with varied performance depending on initial solutions. In this paper, a collaborative annealing fuzzy c-means algorithm is presented. To address the issue of ambiguity, the proposed algorithm leverages an annealing procedure to phase out the fuzzy cluster membership degree toward a crispy one by reducing the exponent gradually according to a cooling schedule. To address the issue of sub-optimality, the proposed algorithm employs multiple fuzzy c-means modules to generate alternative clusters based on membership srepeatedly re-initialized using a meta-heuristic rule. Experimental results on eight benchmark datasets are elaborated to demonstrate the superiority of the proposed algorithm to thirteen prevailing hard and soft algorithms in terms of internal and external cluster validity indices.
Author Wang, Jun
Li, Hongzong
Author_xml – sequence: 1
  givenname: Hongzong
  surname: Li
  fullname: Li, Hongzong
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
BookMark eNp9kM1Kw0AQgBdRsK2-gHjYF0id2U3WxFsoxgoFD7aXXsImma2RJCubrdA-vantoXjwNMMw3_x8Y3bZ2Y4Yu0OYIkLysMxW6_VUgJBTKTFRSl6wESYhBgAyvBxyUDJQj6Cu2bjvPwEwjDAesXXmbMvfrfF81mx7T67uNtxbPteuOis98ZTPbNPowjrt62_iadeRbg7d2Xa_3_EyaEl3PU-bjXW1_2hv2JXRTU-3pzhhq-x5OZsHi7eX11m6CEqhYh_oqIoBgWJRxLKgsExMhYkQQiagKpMoPVyNKGj4BIw0CsoyMjpShBSpIpQTJo5zS2f73pHJv1zdarfLEfKDnfzXTn6wk5_sDFD8ByprPzxmO-903fyP3h_RmojOdgkVYajkD7oSdVk
CODEN IEFSEV
CitedBy_id crossref_primary_10_1109_JSEN_2024_3464513
crossref_primary_10_1007_s12555_024_0931_z
crossref_primary_10_1016_j_inffus_2025_103524
crossref_primary_10_1109_TFUZZ_2025_3580408
crossref_primary_10_1109_TNSM_2024_3522115
crossref_primary_10_1109_ACCESS_2025_3527924
crossref_primary_10_1109_TFUZZ_2025_3581679
crossref_primary_10_1080_15568318_2024_2356141
crossref_primary_10_1007_s11227_025_07678_w
crossref_primary_10_1016_j_buildenv_2024_112423
crossref_primary_10_1109_TFUZZ_2024_3456091
crossref_primary_10_3390_en18123188
crossref_primary_10_1109_TFUZZ_2025_3581918
crossref_primary_10_1109_TFUZZ_2025_3576588
crossref_primary_10_1007_s10489_024_06078_6
crossref_primary_10_1007_s11227_025_07728_3
crossref_primary_10_1016_j_neucom_2025_130615
crossref_primary_10_3390_electronics13193798
Cites_doi 10.1109/3468.736364
10.1145/3136625
10.1109/34.1000236
10.1109/TFUZZ.2016.2637373
10.1109/TNNLS.2021.3097748
10.1109/42.996338
10.1016/j.neunet.2022.07.018
10.1016/S0165-0114(96)00232-1
10.1007/BF02289588
10.1137/1.9781611972719.6
10.1016/j.patrec.2009.09.011
10.1109/TNNLS.2020.2968848
10.1109/TFUZZ.2020.2991306
10.1109/TFUZZ.2013.2276863
10.1109/SmartGridComm.2018.8587498
10.1007/BF00114162
10.1109/TNN.2005.845141
10.5555/2980539.2980649
10.1145/331499.331504
10.1109/IEMBS.2003.1279866
10.1109/TFUZZ.2021.3052362
10.1109/TFUZZ.2022.3220925
10.1109/TETCI.2022.3221491
10.1109/91.227387
10.5721/EuJRS20134617
10.1016/j.patcog.2007.11.011
10.1109/TFUZZ.2021.3058572
10.1109/91.873580
10.1109/JSTSP.2010.2096797
10.1109/TIT.1982.1056489
10.1016/j.asoc.2012.12.022
10.1109/TKDE.2007.1048
10.1109/TIP.2010.2040763
10.1109/TFUZZ.2010.2077640
10.1038/2021034a0
10.1109/TFUZZ.2020.2985004
10.1007/978-1-4757-0450-1
10.1109/TSMCB.2004.831165
10.1109/TFUZZ.2014.2370676
10.1016/j.patrec.2003.10.004
10.1109/MCI.2018.2881643
10.1016/j.patcog.2006.07.011
10.1109/TFUZZ.2012.2201485
10.1109/TFUZZ.2020.3042645
10.1109/TNNLS.2018.2861209
10.1016/j.inffus.2017.04.008
10.1109/34.868688
10.1016/j.knosys.2022.109593
10.1109/TSMCB.2008.2004818
10.1109/TPAMI.2020.3047489
10.1016/j.knosys.2022.110241
10.1109/TFUZZ.2023.3235384
10.1080/01969727308546046
10.1109/TFUZZ.2022.3195298
10.1016/S0167-8655(98)00121-4
10.1109/TFUZZ.2017.2659739
10.1007/s11806-008-0017-8
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TFUZZ.2023.3319663
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 15
ExternalDocumentID 10_1109_TFUZZ_2023_3319663
10265146
Genre orig-research
GrantInformation_xml – fundername: Government of the Hong Kong Special Administrative Region, and Laboratory for AI-Powered Financial Technologies
– fundername: Research Grants Council of the Hong Kong Special Administrative Region of China
  grantid: 11202318; 11202019; 11203721
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
VH1
ID FETCH-LOGICAL-c268t-a5d8010e82b83be4c9fd192223906df96a706112e0030f3f60cc5fa56e1e56b43
IEDL.DBID RIE
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001179721500057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sat Nov 29 03:12:45 EST 2025
Tue Nov 18 21:32:25 EST 2025
Wed Aug 27 02:13:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-a5d8010e82b83be4c9fd192223906df96a706112e0030f3f60cc5fa56e1e56b43
ORCID 0000-0002-5774-7557
0000-0002-1305-5735
PageCount 15
ParticipantIDs crossref_primary_10_1109_TFUZZ_2023_3319663
crossref_citationtrail_10_1109_TFUZZ_2023_3319663
ieee_primary_10265146
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Chakraborty (ref7) 2020
A.-Fdez (ref61) 2011; 17
ref51
ref50
Tiwari (ref15) 2020
ref46
Li (ref42) 2008; 10
ref45
ref48
ref47
ref41
Li (ref65) 1995
ref44
ref43
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
Kennedy (ref58) 1995
ref23
ref26
ref64
ref63
ref22
ref66
ref21
ref28
ref27
ref29
Hou (ref49) 2005; 31
ref60
Bilmes (ref20) 1997
Xu (ref25) 2019
ref62
References_xml – ident: ref14
  doi: 10.1109/3468.736364
– ident: ref60
  doi: 10.1145/3136625
– ident: ref21
  doi: 10.1109/34.1000236
– ident: ref54
  doi: 10.1109/TFUZZ.2016.2637373
– ident: ref24
  doi: 10.1109/TNNLS.2021.3097748
– ident: ref55
  doi: 10.1109/42.996338
– ident: ref59
  doi: 10.1016/j.neunet.2022.07.018
– start-page: 1942
  volume-title: Proc. Int. Conf. Neural Netw.
  year: 1995
  ident: ref58
  article-title: Particle swarm optimization
– ident: ref48
  doi: 10.1016/S0165-0114(96)00232-1
– ident: ref12
  doi: 10.1007/BF02289588
– ident: ref16
  doi: 10.1137/1.9781611972719.6
– ident: ref2
  doi: 10.1016/j.patrec.2009.09.011
– ident: ref4
  doi: 10.1109/TNNLS.2020.2968848
– ident: ref33
  doi: 10.1109/TFUZZ.2020.2991306
– ident: ref47
  doi: 10.1109/TFUZZ.2013.2276863
– ident: ref62
  doi: 10.1109/SmartGridComm.2018.8587498
– ident: ref63
  doi: 10.1007/BF00114162
– volume: 17
  start-page: 255
  year: 2011
  ident: ref61
  article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Mult.-Valued Log. Soft Comput.
– ident: ref3
  doi: 10.1109/TNN.2005.845141
– ident: ref18
  doi: 10.5555/2980539.2980649
– ident: ref1
  doi: 10.1145/331499.331504
– ident: ref40
  doi: 10.1109/IEMBS.2003.1279866
– start-page: 6921
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2019
  ident: ref25
  article-title: Power k-means clustering
– ident: ref35
  doi: 10.1109/TFUZZ.2021.3052362
– ident: ref36
  doi: 10.1109/TFUZZ.2022.3220925
– ident: ref10
  doi: 10.1109/TETCI.2022.3221491
– start-page: 10211
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2020
  ident: ref15
  article-title: Banditpam: Almost linear time k-medoids clustering via multi-armed bandits
– ident: ref28
  doi: 10.1109/91.227387
– ident: ref53
  doi: 10.5721/EuJRS20134617
– ident: ref64
  doi: 10.1016/j.patcog.2007.11.011
– ident: ref9
  doi: 10.1109/TFUZZ.2021.3058572
– ident: ref39
  doi: 10.1109/91.873580
– start-page: 2227
  volume-title: Proc. IEEE Int. Conf. Fuzzy Syst..
  year: 1995
  ident: ref65
  article-title: A maximum-entropy approach to fuzzy clustering
– ident: ref43
  doi: 10.1109/JSTSP.2010.2096797
– start-page: 691
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  year: 2020
  ident: ref7
  article-title: Entropy weighted power k-means clustering
– volume: 10
  start-page: 168
  issue: 3
  year: 2008
  ident: ref42
  article-title: A novel fuzzy weighted c-means method for image classification
  publication-title: Int. J. Fuzzy Syst.
– ident: ref13
  doi: 10.1109/TIT.1982.1056489
– ident: ref52
  doi: 10.1016/j.asoc.2012.12.022
– ident: ref6
  doi: 10.1109/TKDE.2007.1048
– ident: ref45
  doi: 10.1109/TIP.2010.2040763
– ident: ref30
  doi: 10.1109/TFUZZ.2010.2077640
– ident: ref11
  doi: 10.1038/2021034a0
– ident: ref34
  doi: 10.1109/TFUZZ.2020.2985004
– ident: ref32
  doi: 10.1007/978-1-4757-0450-1
– ident: ref56
  doi: 10.1109/TSMCB.2004.831165
– ident: ref46
  doi: 10.1109/TFUZZ.2014.2370676
– ident: ref51
  doi: 10.1016/j.patrec.2003.10.004
– volume: 31
  start-page: 152
  issue: 17
  year: 2005
  ident: ref49
  article-title: An improved fuzzy c-means algorithm based on genetic algorithm
  publication-title: Comput. Eng.
– ident: ref29
  doi: 10.1109/MCI.2018.2881643
– ident: ref41
  doi: 10.1016/j.patcog.2006.07.011
– ident: ref66
  doi: 10.1109/TFUZZ.2012.2201485
– ident: ref22
  doi: 10.1109/TFUZZ.2020.3042645
– year: 1997
  ident: ref20
  article-title: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models
– ident: ref19
  doi: 10.1109/TNNLS.2018.2861209
– ident: ref23
  doi: 10.1016/j.inffus.2017.04.008
– ident: ref17
  doi: 10.1109/34.868688
– ident: ref26
  doi: 10.1016/j.knosys.2022.109593
– ident: ref44
  doi: 10.1109/TSMCB.2008.2004818
– ident: ref8
  doi: 10.1109/TPAMI.2020.3047489
– ident: ref27
  doi: 10.1016/j.knosys.2022.110241
– ident: ref37
  doi: 10.1109/TFUZZ.2023.3235384
– ident: ref57
  doi: 10.1080/01969727308546046
– ident: ref5
  doi: 10.1109/TFUZZ.2022.3195298
– ident: ref38
  doi: 10.1016/S0167-8655(98)00121-4
– ident: ref31
  doi: 10.1109/TFUZZ.2017.2659739
– ident: ref50
  doi: 10.1007/s11806-008-0017-8
SSID ssj0014518
Score 2.5611446
Snippet The fuzzy c-means clustering algorithm is the most widely used soft clustering algorithm. In contrast to hard clustering, the cluster membership of data...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> k</tex-math> </inline-formula>-means clustering
Annealing
annealing procedure
Classification algorithms
Clustering algorithms
Clustering methods
collaborative clustering
Cooling
fuzzy <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> c</tex-math> </inline-formula>-means clustering
Linear programming
Schedules
Title From Soft Clustering to Hard Clustering: A Collaborative Annealing Fuzzy c-means Algorithm
URI https://ieeexplore.ieee.org/document/10265146
Volume 32
WOSCitedRecordID wos001179721500057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCD0zlxfpGDN8nsR5qm3saweBqCG4xdSpq86mBbpbYD99ebtN2cBwVv5ZFAye99tS_v_RC6lcoyY80l4VQlhHKwSSBcQVRMnUQ7ZRoLXpJN-MMhn0yC57pZveyFAYDy8hn0zGNZy1epLMyvMm3hDtMBnjVQw_f9qllrWzKgnl31vTGXMN9imw4ZK7gfhePptGeIwnuuUTnm_ohCO7QqZVQJW_98n2N0VKePuF_hfYL2YNlGrQ01A64ttY0Od-YMnqJpmKUL_KI9Lh7MCzMaQYtxnmJTt98RPeA-HnwrxgpwX7thYTrWcVis159YkgXo4Ib789c0m-Vviw4ah4-jwROpSRWIdBjPifCUDkoWcCfmbgxUBonSWZ7OEgKLqSRgQp-dTsLAmH_iJsyS0kuEx8AGj8XUPUPNZbqEc4QlCCqp4jaAR0FxITyNrpvEhv5IMquL7M0hR7KeOG6IL-ZR-eVhBVEJTGSAiWpguuhuu-e9mrfx5-qOQWVnZQXIxS_yS3Sgt9PqDtkVauZZAddoX67y2Ud2U-rTFxHiyNk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gXqwPvHtHrzJ1jw268ZbKQbFWgQrSC9hsztRoW2kpoL99e4maa0HBW9h2YSw3-zMJLPffACnSju2rbmigumUMoEuDaUvqU6YlxqnzBIpCrGJi3ZbPD2F9xVZveDCIGJx-Azr9rKo5etMjeyvMrPDPW4CPJ-HxYAxzy3pWtOiAQvckvnGfcovHD7hyDjheSd67HbrViq87luj4_6PODQjrFLElaj2zzdah7UqgSSNEvENmMPBJtQm4gyk2qubsDrTaXALutEw65MH43NJszeyzRHMMMkzYiv3M0OXpEGa36bxgaRhHLG0nHUSjcbjT6JoH014I43eczZ8zV_62_AYXXWa17SSVaDK4yKnMtAmLDkovET4CTIVptrkeSZPCB2u05BLs3YmDUPrAFI_5Y5SQSoDji4GPGH-DiwMsgHuAlEomWJauIgBQy2kDAy-fppYASTFnT1wJ4scq6rnuJW-6MXFt4cTxgUwsQUmroDZg7PpPW9lx40_Z29bVGZmloDs_zJ-AsvXnbtW3Lpp3x7AinkUK0-UHcJCPhzhESypj_z1fXhc2NYXr9rMIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Soft+Clustering+to+Hard+Clustering%3A+A+Collaborative+Annealing+Fuzzy+c-means+Algorithm&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Li%2C+Hongzong&rft.au=Wang%2C+Jun&rft.date=2024-03-01&rft.pub=IEEE&rft.issn=1063-6706&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTFUZZ.2023.3319663&rft.externalDocID=10265146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon