EIS-OBEA: Enhanced Image Steganalysis via Opposition-Based Evolutionary Algorithm

Recent years have witnessed a spurt progress in steganography, which poses challenges for steganalysis. However, previous steganalysis methods attach equal attention to various feature information, while key feature information in detection is ubiquitously ignored, and the detection time-space cost...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security Vol. 20; pp. 3616 - 3631
Main Authors: Ma, Yuanyuan, Xu, Lige, Zhang, Qianqian, Zhang, Yi, Xin, Xianwei, Luo, Xiangyang
Format: Journal Article
Language:English
Published: IEEE 2025
Subjects:
ISSN:1556-6013, 1556-6021
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent years have witnessed a spurt progress in steganography, which poses challenges for steganalysis. However, previous steganalysis methods attach equal attention to various feature information, while key feature information in detection is ubiquitously ignored, and the detection time-space cost is burdened consequently. To alleviate this predicament, this paper proposes an enhanced image steganalysis via opposition-based evolutionary algorithm (EIS-OBEA), which can guide steganalysis showing more solicitude for key feature information and reduce detection time overhead. Specifically, evolutionary algorithm is introduced into enhanced steganalysis. To elevate searching ability for steganalysis key feature submodels, Tent map is applied in enhanced steganalysis population initialization because of its great randomness. Secondly, considering that opposition-based learning can dynamically adjust searching space of enhanced steganalysis population, opposition-based learning via lens imaging strategy is proposed to help enhanced steganalysis escape from local optimal solutions. Then, to reasonably evaluate the detection contribution of steganalysis key feature submodels, the pearson correlation coefficient for steganalysis is designed. On this basis, fitness function is devised to select superior individuals and obtain steganalysis key feature submodels after iteration. It is noted that EIS-OBEA can optimize steganalysis training samples into quite small-size data, so that computational cost can be significantly reduced when maintaining or even improving detection accuracy. Extensive experimental results substantiate that compared with the state-of-the-art peer algorithms, EIS-OBEA not only achieves highly competitive or even better detection performance, but also meliorates steganalysis time-space cost to a large extent.
AbstractList Recent years have witnessed a spurt progress in steganography, which poses challenges for steganalysis. However, previous steganalysis methods attach equal attention to various feature information, while key feature information in detection is ubiquitously ignored, and the detection time-space cost is burdened consequently. To alleviate this predicament, this paper proposes an enhanced image steganalysis via opposition-based evolutionary algorithm (EIS-OBEA), which can guide steganalysis showing more solicitude for key feature information and reduce detection time overhead. Specifically, evolutionary algorithm is introduced into enhanced steganalysis. To elevate searching ability for steganalysis key feature submodels, Tent map is applied in enhanced steganalysis population initialization because of its great randomness. Secondly, considering that opposition-based learning can dynamically adjust searching space of enhanced steganalysis population, opposition-based learning via lens imaging strategy is proposed to help enhanced steganalysis escape from local optimal solutions. Then, to reasonably evaluate the detection contribution of steganalysis key feature submodels, the pearson correlation coefficient for steganalysis is designed. On this basis, fitness function is devised to select superior individuals and obtain steganalysis key feature submodels after iteration. It is noted that EIS-OBEA can optimize steganalysis training samples into quite small-size data, so that computational cost can be significantly reduced when maintaining or even improving detection accuracy. Extensive experimental results substantiate that compared with the state-of-the-art peer algorithms, EIS-OBEA not only achieves highly competitive or even better detection performance, but also meliorates steganalysis time-space cost to a large extent.
Author Xu, Lige
Ma, Yuanyuan
Zhang, Yi
Luo, Xiangyang
Zhang, Qianqian
Xin, Xianwei
Author_xml – sequence: 1
  givenname: Yuanyuan
  orcidid: 0000-0001-9318-8724
  surname: Ma
  fullname: Ma, Yuanyuan
  email: yuanyuanma821@126.com
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
– sequence: 2
  givenname: Lige
  surname: Xu
  fullname: Xu, Lige
  email: xulige@stu.htu.edu.cn
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
– sequence: 3
  givenname: Qianqian
  surname: Zhang
  fullname: Zhang, Qianqian
  email: zhangqianqian@htu.edu.cn
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
– sequence: 4
  givenname: Yi
  orcidid: 0000-0003-1832-1235
  surname: Zhang
  fullname: Zhang, Yi
  email: tzyy4001@sina.com
  organization: Henan Province Key Laboratory of Cyberspace Situation Awareness, Information Engineering University, Zhengzhou, China
– sequence: 5
  givenname: Xianwei
  surname: Xin
  fullname: Xin, Xianwei
  email: xinxianwei@htu.edu.cn
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
– sequence: 6
  givenname: Xiangyang
  orcidid: 0000-0001-6062-2950
  surname: Luo
  fullname: Luo, Xiangyang
  email: xiangyangluo@126.com
  organization: Henan Province Key Laboratory of Cyberspace Situation Awareness, Information Engineering University, Zhengzhou, China
BookMark eNp9kNtqwkAQQJdioWr7AYU-5Adi95K99U0ltgFBivY5TNZd3RITyaaCf98EpZQ-9GlmYM5czggNqrqyCD0SPCEE6-dNtlhPKKZ8wniihaY3aEg4F7HAlAx-csLu0CiET4yThAg1RO9pto5Xs3T6EqXVHipjt1F2gJ2N1q3dQQXlOfgQnTxEq-OxDr71dRXPIHR96akuv_oamnM0LXd149v94R7dOiiDfbjGMfpYpJv5W7xcvWbz6TI2VKg21g6KrZHEsS4WmAhQsuBWApYU7DbBUmvnpFbMglEFl9pIbp01BRWOEWBjRC5zTVOH0FiXHxt_6E7JCc57J3nvJO-d5FcnHSP_MMa30L_QNuDLf8mnC-mttb82aaIUw-wbKoNycA
CODEN ITIFA6
CitedBy_id crossref_primary_10_1016_j_swevo_2025_102167
Cites_doi 10.1109/TIFS.2018.2871749
10.1109/TDSC.2021.3132987
10.1109/TIFS.2015.2470220
10.1109/TCSVT.2019.2954041
10.1109/LSP.2016.2548421
10.1186/1687-417x-2014-1
10.1109/TIFS.2023.3268884
10.1109/TIFS.2022.3215901
10.1109/TIFS.2021.3111748
10.1145/2482513.2482965
10.1109/TIFS.2013.2247399
10.1109/TDSC.2019.2962672
10.1109/TMM.2018.2872863
10.1109/TIFS.2023.3268843
10.1109/TIFS.2020.3013204
10.1109/TIFS.2022.3196265
10.1109/JSAC.2011.110807
10.1145/2756601.2756608
10.1109/TIFS.2014.2364918
10.1109/WIFS.2012.6412655
10.1117/12.907495
10.1109/TDSC.2022.3154967
10.1109/TIFS.2020.3025438
10.3390/sym13101775
10.1109/ACCESS.2020.3018709
10.1109/TIFS.2012.2190402
10.1109/TIFS.2017.2710946
10.1007/978-3-642-24178-9_5
10.1016/j.diin.2013.12.001
10.1109/cimca.2005.1631345
10.1109/TIFS.2019.2936913
10.1109/TIFS.2022.3226909
10.1109/SMC.2019.8914047
10.1109/TIFS.2011.2175919
10.1109/TIFS.2023.3328455
10.1109/TCSVT.2018.2867786
10.1109/tcsvt.2018.2799243
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIFS.2025.3549692
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 3631
ExternalDocumentID 10_1109_TIFS_2025_3549692
10918830
Genre orig-research
GrantInformation_xml – fundername: the National Key Research and Development Program of China
  grantid: 2022YFB3102900
– fundername: National Natural Science Foundation of China
  grantid: 62172435; U23A20305
– fundername: Key Research and Development Project of Henan Province
  grantid: 221111321200
  funderid: 10.13039/501100013142
– fundername: Henan Province Science Foundation for Youths
  grantid: 222300420058
  funderid: 10.13039/501100010010
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c268t-9fabdc71f3abdb016a87b5e7a072aed40799ff7983eac8b579c75efecb26f31a3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001457502700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-6013
IngestDate Sat Nov 29 08:04:16 EST 2025
Tue Nov 18 22:14:28 EST 2025
Wed Aug 27 02:05:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-9fabdc71f3abdb016a87b5e7a072aed40799ff7983eac8b579c75efecb26f31a3
ORCID 0000-0001-6062-2950
0000-0001-9318-8724
0000-0003-1832-1235
PageCount 16
ParticipantIDs ieee_primary_10918830
crossref_citationtrail_10_1109_TIFS_2025_3549692
crossref_primary_10_1109_TIFS_2025_3549692
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
Cogranne (ref39) 2019
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Bas (ref38) 2007
References_xml – ident: ref25
  doi: 10.1109/TIFS.2018.2871749
– ident: ref14
  doi: 10.1109/TDSC.2021.3132987
– ident: ref22
  doi: 10.1109/TIFS.2015.2470220
– ident: ref21
  doi: 10.1109/TCSVT.2019.2954041
– ident: ref24
  doi: 10.1109/LSP.2016.2548421
– ident: ref10
  doi: 10.1186/1687-417x-2014-1
– ident: ref13
  doi: 10.1109/TIFS.2023.3268884
– ident: ref11
  doi: 10.1109/TIFS.2022.3215901
– ident: ref4
  doi: 10.1109/TIFS.2021.3111748
– ident: ref15
  doi: 10.1145/2482513.2482965
– ident: ref20
  doi: 10.1109/TIFS.2013.2247399
– ident: ref12
  doi: 10.1109/TDSC.2019.2962672
– ident: ref18
  doi: 10.1109/TMM.2018.2872863
– ident: ref6
  doi: 10.1109/TIFS.2023.3268843
– ident: ref19
  doi: 10.1109/TIFS.2020.3013204
– ident: ref8
  doi: 10.1109/TIFS.2022.3196265
– ident: ref16
  doi: 10.1109/JSAC.2011.110807
– ident: ref28
  doi: 10.1145/2756601.2756608
– ident: ref29
  doi: 10.1109/TIFS.2014.2364918
– ident: ref7
  doi: 10.1109/WIFS.2012.6412655
– ident: ref27
  doi: 10.1117/12.907495
– ident: ref17
  doi: 10.1109/TDSC.2022.3154967
– ident: ref5
  doi: 10.1109/TIFS.2020.3025438
– ident: ref32
  doi: 10.3390/sym13101775
– ident: ref31
  doi: 10.1109/ACCESS.2020.3018709
– ident: ref26
  doi: 10.1109/TIFS.2012.2190402
– ident: ref2
  doi: 10.1109/TIFS.2017.2710946
– year: 2007
  ident: ref38
  publication-title: BOWS-2
– year: 2019
  ident: ref39
  article-title: Documentation of Alaskav2 dataset scripts: A hint moving towards steganography and steganalysis into the wild
– ident: ref35
  doi: 10.1007/978-3-642-24178-9_5
– ident: ref33
  doi: 10.1016/j.diin.2013.12.001
– ident: ref34
  doi: 10.1109/cimca.2005.1631345
– ident: ref37
  doi: 10.1109/TIFS.2019.2936913
– ident: ref1
  doi: 10.1109/TIFS.2022.3226909
– ident: ref9
  doi: 10.1109/SMC.2019.8914047
– ident: ref36
  doi: 10.1109/TIFS.2011.2175919
– ident: ref3
  doi: 10.1109/TIFS.2023.3328455
– ident: ref23
  doi: 10.1109/TCSVT.2018.2867786
– ident: ref30
  doi: 10.1109/tcsvt.2018.2799243
SSID ssj0044168
Score 2.4221308
Snippet Recent years have witnessed a spurt progress in steganography, which poses challenges for steganalysis. However, previous steganalysis methods attach equal...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 3616
SubjectTerms Accuracy
coefficient for steganalysis
Costs
Data mining
Deep learning
Enhanced steganalysis
evolutionary algorithm
Evolutionary computation
Feature extraction
Lenses
opposition-based learning
Optimization
Steganography
Training
Title EIS-OBEA: Enhanced Image Steganalysis via Opposition-Based Evolutionary Algorithm
URI https://ieeexplore.ieee.org/document/10918830
Volume 20
WOSCitedRecordID wos001457502700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1556-6021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044168
  issn: 1556-6013
  databaseCode: RIE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG-U-KAPoogRv9IHn0wG27qtq29gRiQxoAET3pa264QEBsFB4n_vdSsGHzTxaR-5W5pde9ffXe8OoTuR6k0GSy3X8ykAFBZYjMCjYJ4iIgmZzYtE4Wfa74fjMXsxyepFLoxSqjh8ppr6tojlJwu51q6yli5iGYYEEPo-pUGZrLVVu2DWy7w33w8sQBnEhDCBpzXqdYcABV2_SQAOBcz9YYR2uqoURqVb_edwTtCx2T3idinuU7SnshqqbjszYLNQa-hop8zgGXqNekNr0InaDzjKJkXIH_fmoEjwMFfv3JQlwZspx4Pl9hSX1QH7luBoY-YmX33i9ux9sZrmk3kdvXWj0eOTZVopWNINwtxiKReJpE5K4Cpgm8dDKnxFuU1drhJAdUw7b1lIQBGHwqdMUl-lSgo3SInDyTmqZItMXSCcOoLCN20gSzwBK9jhgUe9hDBHumkgG8je_ttYmjrjut3FLC7whs1iLY5YiyM24mig-2-WZVlk4y_iuhbFDmEphctf3l-hQ81euk2uUSVfrdUNOpCbfPqxui3m0Bc0isPR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yBfXBj6n4bR58Erq1Tds0vk3psDg3ZRP2VpI03Qa6yawD_3svbSrzQcGnfnAJpZfc3e8ud4fQpci0kcEyy_V8CgCFBRYj8CiYp4hIQ2bzIlG4Q7vdcDhkjyZZvciFUUoVh89UQ98Wsfx0Jj-0q6ypi1iGIQGEvup7nmuX6VqV4AXFXma--X5gAc4gJogJo5qDuN0HMOj6DQKAKGDuDzW01FelUCvt7X9-0A7aMvYjbpUM30UralpH21VvBmy2ah1tLhUa3ENPUdy3ejdR6xpH03ER9MfxK4gS3M_ViJvCJHgx4bj3Vp3jsm5Aw6U4WpjVyeefuPUyms0n-fh1Hz23o8HtnWWaKVjSDcLcYhkXqaRORuAqwNDjIRW-otymLlcp4Dqm3bcsJCCKQ-FTJqmvMiWFG2TE4eQA1aazqTpEOHMEhTltIEs9AXvY4YFHvZQwR7pZII-QXf3bRJpK47rhxUtSIA6bJZodiWZHYthxhK6-h7yVZTb-It7XrFgiLLlw_Mv7C7R-N3joJJ24e3-CNvRUpRPlFNXy-Yc6Q2tykU_e5-fFevoCj8THGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EIS-OBEA%3A+Enhanced+Image+Steganalysis+via+Opposition-Based+Evolutionary+Algorithm&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Ma%2C+Yuanyuan&rft.au=Xu%2C+Lige&rft.au=Zhang%2C+Qianqian&rft.au=Zhang%2C+Yi&rft.date=2025&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=20&rft.spage=3616&rft.epage=3631&rft_id=info:doi/10.1109%2FTIFS.2025.3549692&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2025_3549692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon