EIS-OBEA: Enhanced Image Steganalysis via Opposition-Based Evolutionary Algorithm
Recent years have witnessed a spurt progress in steganography, which poses challenges for steganalysis. However, previous steganalysis methods attach equal attention to various feature information, while key feature information in detection is ubiquitously ignored, and the detection time-space cost...
Saved in:
| Published in: | IEEE transactions on information forensics and security Vol. 20; pp. 3616 - 3631 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2025
|
| Subjects: | |
| ISSN: | 1556-6013, 1556-6021 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recent years have witnessed a spurt progress in steganography, which poses challenges for steganalysis. However, previous steganalysis methods attach equal attention to various feature information, while key feature information in detection is ubiquitously ignored, and the detection time-space cost is burdened consequently. To alleviate this predicament, this paper proposes an enhanced image steganalysis via opposition-based evolutionary algorithm (EIS-OBEA), which can guide steganalysis showing more solicitude for key feature information and reduce detection time overhead. Specifically, evolutionary algorithm is introduced into enhanced steganalysis. To elevate searching ability for steganalysis key feature submodels, Tent map is applied in enhanced steganalysis population initialization because of its great randomness. Secondly, considering that opposition-based learning can dynamically adjust searching space of enhanced steganalysis population, opposition-based learning via lens imaging strategy is proposed to help enhanced steganalysis escape from local optimal solutions. Then, to reasonably evaluate the detection contribution of steganalysis key feature submodels, the pearson correlation coefficient for steganalysis is designed. On this basis, fitness function is devised to select superior individuals and obtain steganalysis key feature submodels after iteration. It is noted that EIS-OBEA can optimize steganalysis training samples into quite small-size data, so that computational cost can be significantly reduced when maintaining or even improving detection accuracy. Extensive experimental results substantiate that compared with the state-of-the-art peer algorithms, EIS-OBEA not only achieves highly competitive or even better detection performance, but also meliorates steganalysis time-space cost to a large extent. |
|---|---|
| AbstractList | Recent years have witnessed a spurt progress in steganography, which poses challenges for steganalysis. However, previous steganalysis methods attach equal attention to various feature information, while key feature information in detection is ubiquitously ignored, and the detection time-space cost is burdened consequently. To alleviate this predicament, this paper proposes an enhanced image steganalysis via opposition-based evolutionary algorithm (EIS-OBEA), which can guide steganalysis showing more solicitude for key feature information and reduce detection time overhead. Specifically, evolutionary algorithm is introduced into enhanced steganalysis. To elevate searching ability for steganalysis key feature submodels, Tent map is applied in enhanced steganalysis population initialization because of its great randomness. Secondly, considering that opposition-based learning can dynamically adjust searching space of enhanced steganalysis population, opposition-based learning via lens imaging strategy is proposed to help enhanced steganalysis escape from local optimal solutions. Then, to reasonably evaluate the detection contribution of steganalysis key feature submodels, the pearson correlation coefficient for steganalysis is designed. On this basis, fitness function is devised to select superior individuals and obtain steganalysis key feature submodels after iteration. It is noted that EIS-OBEA can optimize steganalysis training samples into quite small-size data, so that computational cost can be significantly reduced when maintaining or even improving detection accuracy. Extensive experimental results substantiate that compared with the state-of-the-art peer algorithms, EIS-OBEA not only achieves highly competitive or even better detection performance, but also meliorates steganalysis time-space cost to a large extent. |
| Author | Xu, Lige Ma, Yuanyuan Zhang, Yi Luo, Xiangyang Zhang, Qianqian Xin, Xianwei |
| Author_xml | – sequence: 1 givenname: Yuanyuan orcidid: 0000-0001-9318-8724 surname: Ma fullname: Ma, Yuanyuan email: yuanyuanma821@126.com organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China – sequence: 2 givenname: Lige surname: Xu fullname: Xu, Lige email: xulige@stu.htu.edu.cn organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China – sequence: 3 givenname: Qianqian surname: Zhang fullname: Zhang, Qianqian email: zhangqianqian@htu.edu.cn organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China – sequence: 4 givenname: Yi orcidid: 0000-0003-1832-1235 surname: Zhang fullname: Zhang, Yi email: tzyy4001@sina.com organization: Henan Province Key Laboratory of Cyberspace Situation Awareness, Information Engineering University, Zhengzhou, China – sequence: 5 givenname: Xianwei surname: Xin fullname: Xin, Xianwei email: xinxianwei@htu.edu.cn organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China – sequence: 6 givenname: Xiangyang orcidid: 0000-0001-6062-2950 surname: Luo fullname: Luo, Xiangyang email: xiangyangluo@126.com organization: Henan Province Key Laboratory of Cyberspace Situation Awareness, Information Engineering University, Zhengzhou, China |
| BookMark | eNp9kNtqwkAQQJdioWr7AYU-5Adi95K99U0ltgFBivY5TNZd3RITyaaCf98EpZQ-9GlmYM5czggNqrqyCD0SPCEE6-dNtlhPKKZ8wniihaY3aEg4F7HAlAx-csLu0CiET4yThAg1RO9pto5Xs3T6EqXVHipjt1F2gJ2N1q3dQQXlOfgQnTxEq-OxDr71dRXPIHR96akuv_oamnM0LXd149v94R7dOiiDfbjGMfpYpJv5W7xcvWbz6TI2VKg21g6KrZHEsS4WmAhQsuBWApYU7DbBUmvnpFbMglEFl9pIbp01BRWOEWBjRC5zTVOH0FiXHxt_6E7JCc57J3nvJO-d5FcnHSP_MMa30L_QNuDLf8mnC-mttb82aaIUw-wbKoNycA |
| CODEN | ITIFA6 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_102167 |
| Cites_doi | 10.1109/TIFS.2018.2871749 10.1109/TDSC.2021.3132987 10.1109/TIFS.2015.2470220 10.1109/TCSVT.2019.2954041 10.1109/LSP.2016.2548421 10.1186/1687-417x-2014-1 10.1109/TIFS.2023.3268884 10.1109/TIFS.2022.3215901 10.1109/TIFS.2021.3111748 10.1145/2482513.2482965 10.1109/TIFS.2013.2247399 10.1109/TDSC.2019.2962672 10.1109/TMM.2018.2872863 10.1109/TIFS.2023.3268843 10.1109/TIFS.2020.3013204 10.1109/TIFS.2022.3196265 10.1109/JSAC.2011.110807 10.1145/2756601.2756608 10.1109/TIFS.2014.2364918 10.1109/WIFS.2012.6412655 10.1117/12.907495 10.1109/TDSC.2022.3154967 10.1109/TIFS.2020.3025438 10.3390/sym13101775 10.1109/ACCESS.2020.3018709 10.1109/TIFS.2012.2190402 10.1109/TIFS.2017.2710946 10.1007/978-3-642-24178-9_5 10.1016/j.diin.2013.12.001 10.1109/cimca.2005.1631345 10.1109/TIFS.2019.2936913 10.1109/TIFS.2022.3226909 10.1109/SMC.2019.8914047 10.1109/TIFS.2011.2175919 10.1109/TIFS.2023.3328455 10.1109/TCSVT.2018.2867786 10.1109/tcsvt.2018.2799243 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TIFS.2025.3549692 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1556-6021 |
| EndPage | 3631 |
| ExternalDocumentID | 10_1109_TIFS_2025_3549692 10918830 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: the National Key Research and Development Program of China grantid: 2022YFB3102900 – fundername: National Natural Science Foundation of China grantid: 62172435; U23A20305 – fundername: Key Research and Development Project of Henan Province grantid: 221111321200 funderid: 10.13039/501100013142 – fundername: Henan Province Science Foundation for Youths grantid: 222300420058 funderid: 10.13039/501100010010 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c268t-9fabdc71f3abdb016a87b5e7a072aed40799ff7983eac8b579c75efecb26f31a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001457502700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1556-6013 |
| IngestDate | Sat Nov 29 08:04:16 EST 2025 Tue Nov 18 22:14:28 EST 2025 Wed Aug 27 02:05:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-9fabdc71f3abdb016a87b5e7a072aed40799ff7983eac8b579c75efecb26f31a3 |
| ORCID | 0000-0001-6062-2950 0000-0001-9318-8724 0000-0003-1832-1235 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_10918830 crossref_citationtrail_10_1109_TIFS_2025_3549692 crossref_primary_10_1109_TIFS_2025_3549692 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on information forensics and security |
| PublicationTitleAbbrev | TIFS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 Cogranne (ref39) 2019 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Bas (ref38) 2007 |
| References_xml | – ident: ref25 doi: 10.1109/TIFS.2018.2871749 – ident: ref14 doi: 10.1109/TDSC.2021.3132987 – ident: ref22 doi: 10.1109/TIFS.2015.2470220 – ident: ref21 doi: 10.1109/TCSVT.2019.2954041 – ident: ref24 doi: 10.1109/LSP.2016.2548421 – ident: ref10 doi: 10.1186/1687-417x-2014-1 – ident: ref13 doi: 10.1109/TIFS.2023.3268884 – ident: ref11 doi: 10.1109/TIFS.2022.3215901 – ident: ref4 doi: 10.1109/TIFS.2021.3111748 – ident: ref15 doi: 10.1145/2482513.2482965 – ident: ref20 doi: 10.1109/TIFS.2013.2247399 – ident: ref12 doi: 10.1109/TDSC.2019.2962672 – ident: ref18 doi: 10.1109/TMM.2018.2872863 – ident: ref6 doi: 10.1109/TIFS.2023.3268843 – ident: ref19 doi: 10.1109/TIFS.2020.3013204 – ident: ref8 doi: 10.1109/TIFS.2022.3196265 – ident: ref16 doi: 10.1109/JSAC.2011.110807 – ident: ref28 doi: 10.1145/2756601.2756608 – ident: ref29 doi: 10.1109/TIFS.2014.2364918 – ident: ref7 doi: 10.1109/WIFS.2012.6412655 – ident: ref27 doi: 10.1117/12.907495 – ident: ref17 doi: 10.1109/TDSC.2022.3154967 – ident: ref5 doi: 10.1109/TIFS.2020.3025438 – ident: ref32 doi: 10.3390/sym13101775 – ident: ref31 doi: 10.1109/ACCESS.2020.3018709 – ident: ref26 doi: 10.1109/TIFS.2012.2190402 – ident: ref2 doi: 10.1109/TIFS.2017.2710946 – year: 2007 ident: ref38 publication-title: BOWS-2 – year: 2019 ident: ref39 article-title: Documentation of Alaskav2 dataset scripts: A hint moving towards steganography and steganalysis into the wild – ident: ref35 doi: 10.1007/978-3-642-24178-9_5 – ident: ref33 doi: 10.1016/j.diin.2013.12.001 – ident: ref34 doi: 10.1109/cimca.2005.1631345 – ident: ref37 doi: 10.1109/TIFS.2019.2936913 – ident: ref1 doi: 10.1109/TIFS.2022.3226909 – ident: ref9 doi: 10.1109/SMC.2019.8914047 – ident: ref36 doi: 10.1109/TIFS.2011.2175919 – ident: ref3 doi: 10.1109/TIFS.2023.3328455 – ident: ref23 doi: 10.1109/TCSVT.2018.2867786 – ident: ref30 doi: 10.1109/tcsvt.2018.2799243 |
| SSID | ssj0044168 |
| Score | 2.4221308 |
| Snippet | Recent years have witnessed a spurt progress in steganography, which poses challenges for steganalysis. However, previous steganalysis methods attach equal... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 3616 |
| SubjectTerms | Accuracy coefficient for steganalysis Costs Data mining Deep learning Enhanced steganalysis evolutionary algorithm Evolutionary computation Feature extraction Lenses opposition-based learning Optimization Steganography Training |
| Title | EIS-OBEA: Enhanced Image Steganalysis via Opposition-Based Evolutionary Algorithm |
| URI | https://ieeexplore.ieee.org/document/10918830 |
| Volume | 20 |
| WOSCitedRecordID | wos001457502700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1556-6021 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044168 issn: 1556-6013 databaseCode: RIE dateStart: 20060101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG-U-KAPoogRv9IHn0wG27qtq29gRiQxoAET3pa264QEBsFB4n_vdSsGHzTxaR-5W5pde9ffXe8OoTuR6k0GSy3X8ykAFBZYjMCjYJ4iIgmZzYtE4Wfa74fjMXsxyepFLoxSqjh8ppr6tojlJwu51q6yli5iGYYEEPo-pUGZrLVVu2DWy7w33w8sQBnEhDCBpzXqdYcABV2_SQAOBcz9YYR2uqoURqVb_edwTtCx2T3idinuU7SnshqqbjszYLNQa-hop8zgGXqNekNr0InaDzjKJkXIH_fmoEjwMFfv3JQlwZspx4Pl9hSX1QH7luBoY-YmX33i9ux9sZrmk3kdvXWj0eOTZVopWNINwtxiKReJpE5K4Cpgm8dDKnxFuU1drhJAdUw7b1lIQBGHwqdMUl-lSgo3SInDyTmqZItMXSCcOoLCN20gSzwBK9jhgUe9hDBHumkgG8je_ttYmjrjut3FLC7whs1iLY5YiyM24mig-2-WZVlk4y_iuhbFDmEphctf3l-hQ81euk2uUSVfrdUNOpCbfPqxui3m0Bc0isPR |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yBfXBj6n4bR58Erq1Tds0vk3psDg3ZRP2VpI03Qa6yawD_3svbSrzQcGnfnAJpZfc3e8ud4fQpci0kcEyy_V8CgCFBRYj8CiYp4hIQ2bzIlG4Q7vdcDhkjyZZvciFUUoVh89UQ98Wsfx0Jj-0q6ypi1iGIQGEvup7nmuX6VqV4AXFXma--X5gAc4gJogJo5qDuN0HMOj6DQKAKGDuDzW01FelUCvt7X9-0A7aMvYjbpUM30UralpH21VvBmy2ah1tLhUa3ENPUdy3ejdR6xpH03ER9MfxK4gS3M_ViJvCJHgx4bj3Vp3jsm5Aw6U4WpjVyeefuPUyms0n-fh1Hz23o8HtnWWaKVjSDcLcYhkXqaRORuAqwNDjIRW-otymLlcp4Dqm3bcsJCCKQ-FTJqmvMiWFG2TE4eQA1aazqTpEOHMEhTltIEs9AXvY4YFHvZQwR7pZII-QXf3bRJpK47rhxUtSIA6bJZodiWZHYthxhK6-h7yVZTb-It7XrFgiLLlw_Mv7C7R-N3joJJ24e3-CNvRUpRPlFNXy-Yc6Q2tykU_e5-fFevoCj8THGA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EIS-OBEA%3A+Enhanced+Image+Steganalysis+via+Opposition-Based+Evolutionary+Algorithm&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Ma%2C+Yuanyuan&rft.au=Xu%2C+Lige&rft.au=Zhang%2C+Qianqian&rft.au=Zhang%2C+Yi&rft.date=2025&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=20&rft.spage=3616&rft.epage=3631&rft_id=info:doi/10.1109%2FTIFS.2025.3549692&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2025_3549692 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |