Physics-Informed Graph Capsule Generative Autoencoder for Probabilistic AC Optimal Power Flow

Due to the increasing demand for electricity and the inherent uncertainty in power generation, finding efficient solutions to the stochastic alternating current optimal power flow (AC-OPF) problem has become crucial. However, the nonlinear and non-convex nature of AC-OPF, coupled with the growing st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on emerging topics in computational intelligence Ročník 8; číslo 5; s. 3382 - 3395
Hlavní autoři: Saffari, Mohsen, Khodayar, Mahdi, Khodayar, Mohammad E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.10.2024
Témata:
ISSN:2471-285X, 2471-285X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the increasing demand for electricity and the inherent uncertainty in power generation, finding efficient solutions to the stochastic alternating current optimal power flow (AC-OPF) problem has become crucial. However, the nonlinear and non-convex nature of AC-OPF, coupled with the growing stochasticity resulting from the integration of renewable energy sources, presents significant challenges in achieving fast and reliable solutions. To address these challenges, this study proposes a novel graph-based generative methodology that effectively captures the uncertainties in power system measurements, enabling the learning of probability distribution functions for generation dispatch and voltage setpoints. Our approach involves modeling the power system as a weighted graph and utilizing a deep spectral graph convolution network to extract powerful spatial patterns from the input graph measurements. A unique variational approach is introduced to identify the most relevant latent features that accurately describe the setpoints of the AC-OPF problem. Additionally, a capsule network with a new greedy dynamic routing algorithm is proposed to precisely decode the latent features and estimate the probabilistic AC-OPF problem. Further, a set of carefully designed physics-informed loss functions is incorporated in the training procedure of the model to ensure adherence to the fundamental physics rules governing power systems. Notably, the proposed physics-informed loss functions not only enhance the accuracy of AC-OPF estimation by effectively regularizing the deep learning model but also significantly reduce the time complexity. Extensive experimental evaluations conducted on various benchmarks demonstrate our proposed model's superiority over both probabilistic and deterministic approaches in terms of relevant criteria.
AbstractList Due to the increasing demand for electricity and the inherent uncertainty in power generation, finding efficient solutions to the stochastic alternating current optimal power flow (AC-OPF) problem has become crucial. However, the nonlinear and non-convex nature of AC-OPF, coupled with the growing stochasticity resulting from the integration of renewable energy sources, presents significant challenges in achieving fast and reliable solutions. To address these challenges, this study proposes a novel graph-based generative methodology that effectively captures the uncertainties in power system measurements, enabling the learning of probability distribution functions for generation dispatch and voltage setpoints. Our approach involves modeling the power system as a weighted graph and utilizing a deep spectral graph convolution network to extract powerful spatial patterns from the input graph measurements. A unique variational approach is introduced to identify the most relevant latent features that accurately describe the setpoints of the AC-OPF problem. Additionally, a capsule network with a new greedy dynamic routing algorithm is proposed to precisely decode the latent features and estimate the probabilistic AC-OPF problem. Further, a set of carefully designed physics-informed loss functions is incorporated in the training procedure of the model to ensure adherence to the fundamental physics rules governing power systems. Notably, the proposed physics-informed loss functions not only enhance the accuracy of AC-OPF estimation by effectively regularizing the deep learning model but also significantly reduce the time complexity. Extensive experimental evaluations conducted on various benchmarks demonstrate our proposed model's superiority over both probabilistic and deterministic approaches in terms of relevant criteria.
Author Saffari, Mohsen
Khodayar, Mohammad E.
Khodayar, Mahdi
Author_xml – sequence: 1
  givenname: Mohsen
  orcidid: 0000-0002-8336-8542
  surname: Saffari
  fullname: Saffari, Mohsen
  email: mohsen-saffari@utulsa.edu
  organization: Department of Computer Science, University of Tulsa, Tulsa, OK, USA
– sequence: 2
  givenname: Mahdi
  orcidid: 0000-0003-4683-7810
  surname: Khodayar
  fullname: Khodayar, Mahdi
  email: mahdi-khodayar@utulsa.edu
  organization: Department of Computer Science, University of Tulsa, Tulsa, OK, USA
– sequence: 3
  givenname: Mohammad E.
  orcidid: 0000-0003-3856-5704
  surname: Khodayar
  fullname: Khodayar, Mohammad E.
  email: mkhodayar@smu.edu
  organization: Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, USA
BookMark eNp9UMFqAjEUDMVCrfUHSg_5gbVJNtlNjiLVCoIeLPRSlmT3LaasmyVZK_59Y_VQeig8eHOYeW9m7tGgdS0g9EjJhFKinrcv29lywgjjkzTN8yynN2jIeE4TJsX74Be-Q-MQPgkhTAmaCj5EH5vdKdgyJMu2dn4PFV543e3wTHfh0ABeQAte9_YL8PTQO2hLV4HHkYs33hltbGNDb0s8neF119u9bvDGHSNl3rjjA7qtdRNgfN0j9DaPZl-T1XqxnE1XScky2ScqF4YLQ5TiKiaADCptuKx0qZmWNGIaR5lMKg2SlLnguaFQm5qLWug0HSF2uVt6F4KHuuh8tOJPBSXFuaPip6Pi3FFx7SiK5B9RafsY1bW917b5X_p0kVoA-PWLS8l5nn4DgER4Ig
CODEN ITETCU
CitedBy_id crossref_primary_10_3390_en18184867
Cites_doi 10.1109/SEST50973.2021.9543326
10.1109/TPWRS.2010.2051168
10.1115/1.4050542
10.1109/tnnls.2023.3280078
10.1007/978-3-030-89698-0_55
10.1109/ISGT.2017.8086083
10.1002/9781119480402.ch6
10.1155/2021/1015367
10.1109/TIE.2018.2803732
10.1109/TPWRS.2020.3026379
10.1016/j.ijepes.2021.106908
10.1109/TSG.2019.2895333
10.1080/23789689.2019.1708182
10.1109/TIA.2022.3213008
10.1109/ACCESS.2020.3015473
10.1016/j.epsr.2022.108282
10.1016/j.ijepes.2022.108484
10.1016/j.epsr.2021.107216
10.1016/j.apenergy.2022.119672
10.3390/su11226293
10.1002/etep.2312
10.1561/2200000006
10.1109/OAJPE.2022.3140314
10.1007/s00202-013-0277-7
10.1016/j.cma.2020.113547
10.1007/s00202-021-01223-7
10.1016/j.solener.2019.04.014
10.1109/JSYST.2022.3201041
10.1109/TPWRS.2020.2987292
10.1016/j.ijepes.2020.106492
10.1109/AEEICB.2017.7972430
10.1016/j.epsr.2022.108353
10.1109/TPWRS.2020.3001919
10.1109/TSTE.2018.2847558
10.1109/SmartGridComm47815.2020.9303008
10.1016/j.ejor.2023.01.019
10.1109/ACCESS.2018.2870430
10.1109/TSTE.2019.2927135
10.1109/EEEIC/ICPSEurope51590.2021.9584602
10.1016/j.apenergy.2020.115124
10.1109/MLSP.2019.8918690
10.1109/TPWRS.2018.2848207
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TETCI.2024.3377671
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 3395
ExternalDocumentID 10_1109_TETCI_2024_3377671
10488447
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c268t-975b45b09949337e6edab48daca2a81ab41b419b689ae80c7547b1efbf45f5a33
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197902000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Sat Nov 29 05:12:10 EST 2025
Tue Nov 18 22:23:59 EST 2025
Wed Aug 27 02:18:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-975b45b09949337e6edab48daca2a81ab41b419b689ae80c7547b1efbf45f5a33
ORCID 0000-0002-8336-8542
0000-0003-4683-7810
0000-0003-3856-5704
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TETCI_2024_3377671
ieee_primary_10488447
crossref_primary_10_1109_TETCI_2024_3377671
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
Kipf (ref38) 2016
ref12
ref34
ref15
ref14
ref31
Chatzos (ref23) 2020
ref30
ref11
ref33
ref10
ref32
ref2
ref1
Miller (ref36) 2010
Knoblauch (ref37) 2022; 23
ref17
ref16
ref19
ref18
ref24
ref46
ref45
ref26
ref48
ref25
ref47
ref20
ref42
ref41
ref22
ref44
Navidi (ref8) 2016
ref21
ref43
Sabour (ref39) 2017
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref24
  doi: 10.1109/SEST50973.2021.9543326
– ident: ref42
  doi: 10.1109/TPWRS.2010.2051168
– ident: ref32
  doi: 10.1115/1.4050542
– ident: ref31
  doi: 10.1109/tnnls.2023.3280078
– ident: ref48
  doi: 10.1007/978-3-030-89698-0_55
– ident: ref7
  doi: 10.1109/ISGT.2017.8086083
– ident: ref34
  doi: 10.1002/9781119480402.ch6
– ident: ref22
  doi: 10.1155/2021/1015367
– ident: ref41
  doi: 10.1109/TIE.2018.2803732
– volume: 23
  start-page: 1
  issue: 132
  year: 2022
  ident: ref37
  article-title: An optimization-centric view on Bayes rule: Reviewing and generalizing variational inference
  publication-title: J. Mach. Learn. Res.
– ident: ref11
  doi: 10.1109/TPWRS.2020.3026379
– ident: ref13
  doi: 10.1016/j.ijepes.2021.106908
– volume-title: Inverse Transform Sampling
  year: 2010
  ident: ref36
– ident: ref35
  doi: 10.1109/TSG.2019.2895333
– ident: ref4
  doi: 10.1080/23789689.2019.1708182
– ident: ref28
  doi: 10.1109/TIA.2022.3213008
– ident: ref19
  doi: 10.1109/ACCESS.2020.3015473
– ident: ref14
  doi: 10.1016/j.epsr.2022.108282
– ident: ref29
  doi: 10.1016/j.ijepes.2022.108484
– ident: ref46
  doi: 10.1016/j.epsr.2021.107216
– ident: ref26
  doi: 10.1016/j.apenergy.2022.119672
– ident: ref3
  doi: 10.3390/su11226293
– ident: ref5
  doi: 10.1002/etep.2312
– year: 2016
  ident: ref38
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref40
  doi: 10.1561/2200000006
– ident: ref12
  doi: 10.1109/OAJPE.2022.3140314
– ident: ref21
  doi: 10.1007/s00202-013-0277-7
– start-page: 3859
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref39
  article-title: Dynamic routing between capsules
– ident: ref33
  doi: 10.1016/j.cma.2020.113547
– ident: ref30
  doi: 10.1007/s00202-021-01223-7
– ident: ref43
  doi: 10.1016/j.solener.2019.04.014
– ident: ref15
  doi: 10.1109/JSYST.2022.3201041
– ident: ref17
  doi: 10.1109/TPWRS.2020.2987292
– ident: ref18
  doi: 10.1016/j.ijepes.2020.106492
– year: 2016
  ident: ref8
  article-title: Predicting solutions to the optimal power flow problem
– ident: ref20
  doi: 10.1109/AEEICB.2017.7972430
– year: 2020
  ident: ref23
  article-title: High-fidelity machine learning approximations of large-scale optimal power flow
– ident: ref10
  doi: 10.1016/j.epsr.2022.108353
– ident: ref1
  doi: 10.1109/TPWRS.2020.3001919
– ident: ref45
  doi: 10.1109/TSTE.2018.2847558
– ident: ref16
  doi: 10.1109/SmartGridComm47815.2020.9303008
– ident: ref6
  doi: 10.1016/j.ejor.2023.01.019
– ident: ref47
  doi: 10.1109/ACCESS.2018.2870430
– ident: ref2
  doi: 10.1109/TSTE.2019.2927135
– ident: ref27
  doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584602
– ident: ref25
  doi: 10.1016/j.apenergy.2020.115124
– ident: ref9
  doi: 10.1109/MLSP.2019.8918690
– ident: ref44
  doi: 10.1109/TPWRS.2018.2848207
SSID ssj0002951354
Score 2.2964911
Snippet Due to the increasing demand for electricity and the inherent uncertainty in power generation, finding efficient solutions to the stochastic alternating...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 3382
SubjectTerms AC optimal power flow
capsule network
dynamic routing
Generators
graph analysis
Heuristic algorithms
physics-informed neural network
probabilistic estimation
Probabilistic logic
Reactive power
Symmetric matrices
Training
Transmission line matrix methods
Title Physics-Informed Graph Capsule Generative Autoencoder for Probabilistic AC Optimal Power Flow
URI https://ieeexplore.ieee.org/document/10488447
Volume 8
WOSCitedRecordID wos001197902000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uePDiB078Jgdv0tk0SdMcx3DqZe4wYRcp-XgFYa7Sdfrvm6TdmAcFoYdQXmjzy9d7yXu_h9CNMsQAKWTEDOPeQOGRYhIioBAbASzWRIdkE2I8zmYzOWmD1UMsDAAE5zPo-2K4y7elWfmjMjfD3XBjTHRQR4i0CdbaHKgkTlegnK0DY2J5N72fDp-cCZiwPqWetYb82Hy2sqmEzWR08M_fOET7rdaIB003H6EdWByj1-C9aZZRE1IEFj949mk8VM7ynQNuGKX9coYHq7r0jJUWKuxk8aRy09i7xXqWZjwY4me3cry7L0x80jQ8mpdfPfQyci17jNpsCZFJ0qyOpOCace00PiZdcyEFqzTLrDIqURlxZeIeqdNMKshcR3AmNIFCF4wXXFF6grqLcgGnCCsDhcxSCkRbpilVcZGAUDSx0mhp2Rkiaxhz01KJ-4wW8zyYFLHMA_S5hz5voT9Dt5s6Hw2Rxp_SPY_7lmQD-fkv7y_Qnq_eeNldom5dreAK7ZrP-m1ZXYeB8g3i374a
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86Bb34gYrzMwdv0tk0L2tzHMO54Zw7TNhFSpK-gjA32Yf--yZpN-ZBQeghlNc2-eXrvfS93yPkRhlmkOUyAAPCGSgiUCAxQI6hiRFCzbRPNhH3eslwKPtlsLqPhUFE73yGNVf0__KziVm4ozI7w-1wA4g3yZYAiMIiXGt1pBJZbYELWIbGhPJucD9odqwRGEGNc8dbw35sP2v5VPx20tr_Z0UOyF6pN9JG0dGHZAPHR-TV-2-aWVAEFWFGHxz_NG0qa_uOkBac0m5Bo43FfOI4KzOcUitL-1M7kZ1jrONppo0mfbZrx7v9Qt-lTaOt0eTrmLy0bMvaQZkvITBRPZkHMhYahLY6H0jbXKxjpjQkmTIqUgmzZWYvqeuJVJjYrhAQa4a5zkHkQnF-QirjyRhPCVUGc5nUOTKdgeZchXmEseJRJo2WGVQJW8KYmpJM3OW0GKXeqAhl6qFPHfRpCX2V3K6e-SioNP6UPna4r0kWkJ_9cv-a7LQHT9202-k9npNd96rC5-6CVObTBV6SbfM5f5tNr_yg-Qbw_sFh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-Informed+Graph+Capsule+Generative+Autoencoder+for+Probabilistic+AC+Optimal+Power+Flow&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Saffari%2C+Mohsen&rft.au=Khodayar%2C+Mahdi&rft.au=Khodayar%2C+Mohammad+E.&rft.date=2024-10-01&rft.issn=2471-285X&rft.eissn=2471-285X&rft.volume=8&rft.issue=5&rft.spage=3382&rft.epage=3395&rft_id=info:doi/10.1109%2FTETCI.2024.3377671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TETCI_2024_3377671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon