On the Achievable Level of Accuracy for the Solution of Abstract Ill-Posed Problems and Nonlinear Operator Equations in a Banach Space
It has been shown that, for a wide class of ill–posed problems of finding the value of a discontinuous operator by an approximately specified element in a Banach space, the level of accuracy for the resulting solution cannot be higher in order than the level of error in input data. A similar result...
Uloženo v:
| Vydáno v: | Russian mathematics Ročník 66; číslo 3; s. 16 - 21 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.03.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1066-369X, 1934-810X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | It has been shown that, for a wide class of ill–posed problems of finding the value of a discontinuous operator by an approximately specified element in a Banach space, the level of accuracy for the resulting solution cannot be higher in order than the level of error in input data. A similar result is established for a class of nonlinear operator equations with an approximate right side. The classes of problems for which these orders are coincident are specified. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1066-369X 1934-810X |
| DOI: | 10.3103/S1066369X22030057 |