Quaternionic Slice Regular Functions and Quaternionic Laplace Transforms

The functions studied in the paper are the quaternion-valued functions of a quaternionic variable. It is shown that the left slice regular functions and right slice regular functions are related by a particular involution, and that the intrinsic slice regular functions play a central role in the the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta mathematica scientia Ročník 43; číslo 1; s. 289 - 302
Hlavní autor: Han, Gang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.01.2023
Springer Nature B.V
Vydání:English Ed.
Témata:
ISSN:0252-9602, 1572-9087
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The functions studied in the paper are the quaternion-valued functions of a quaternionic variable. It is shown that the left slice regular functions and right slice regular functions are related by a particular involution, and that the intrinsic slice regular functions play a central role in the theory of slice regular functions. The relation between left slice regular functions, right slice regular functions and intrinsic slice regular functions is revealed. As an application, the classical Laplace transform is generalized naturally to quaternions in two different ways, which transform a quaternion-valued function of a real variable to a left or right slice regular function. The usual properties of the classical Laplace transforms are generalized to quaternionic Laplace transforms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0252-9602
1572-9087
DOI:10.1007/s10473-023-0116-5