A Multi-Objective Memetic Algorithm for Workflow Scheduling in Clouds
Simultaneously optimizing monetary cost and makespan of workflow execution is substantial to enhance the competitiveness of cloud services, but it still imposes challenges. Heuristics-based algorithms are often problem-dependent and well-suitable for special cases, but the complexity of workflow str...
Uložené v:
| Vydané v: | IEEE transactions on emerging topics in computational intelligence s. 1 - 12 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2024
|
| Predmet: | |
| ISSN: | 2471-285X, 2471-285X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Simultaneously optimizing monetary cost and makespan of workflow execution is substantial to enhance the competitiveness of cloud services, but it still imposes challenges. Heuristics-based algorithms are often problem-dependent and well-suitable for special cases, but the complexity of workflow structures seriously challenges their generalization. Metaheuristics-based algorithms pose good generalization, but the elasticity and heterogeneity of cloud resources seriously impact their search efficiency. Inspired by previous works, we tailor a memetic workflow scheduling algorithm (KDMA for short) that embeds a heuristic local search operator into the multi-objective metaheuristic algorithm to combine their strengths and complement each other's shortcomings. Specifically, the proposed local search operator searches for a set of solutions with good convergence and diversity by accumulating tasks one by one. This operator is good at gathering workflow tasks into a limited range of candidate resources, thereby guiding the metaheuristic algorithm to focus on exploring potential solution regions. Moreover, KDMA includes an adaptive strategy to determine the number of solutions reproduced by the problem-special local search operator based on its past overall contribution. We compare KDMA to five representative algorithms over 25 real-world workflow instances to corroborate its superior all-around performance by performing the best on 21 workflow instances. Meanwhile, we conduct an ablation analysis to verify the performance contributions of two proposed mechanisms. |
|---|---|
| AbstractList | Simultaneously optimizing monetary cost and makespan of workflow execution is substantial to enhance the competitiveness of cloud services, but it still imposes challenges. Heuristics-based algorithms are often problem-dependent and well-suitable for special cases, but the complexity of workflow structures seriously challenges their generalization. Metaheuristics-based algorithms pose good generalization, but the elasticity and heterogeneity of cloud resources seriously impact their search efficiency. Inspired by previous works, we tailor a memetic workflow scheduling algorithm (KDMA for short) that embeds a heuristic local search operator into the multi-objective metaheuristic algorithm to combine their strengths and complement each other's shortcomings. Specifically, the proposed local search operator searches for a set of solutions with good convergence and diversity by accumulating tasks one by one. This operator is good at gathering workflow tasks into a limited range of candidate resources, thereby guiding the metaheuristic algorithm to focus on exploring potential solution regions. Moreover, KDMA includes an adaptive strategy to determine the number of solutions reproduced by the problem-special local search operator based on its past overall contribution. We compare KDMA to five representative algorithms over 25 real-world workflow instances to corroborate its superior all-around performance by performing the best on 21 workflow instances. Meanwhile, we conduct an ablation analysis to verify the performance contributions of two proposed mechanisms. |
| Author | Zhao, Wei Liu, Xiaolu Xing, Lining Yao, Feng Gong, Maoguo Chen, Huangke Zheng, Long |
| Author_xml | – sequence: 1 givenname: Feng surname: Yao fullname: Yao, Feng organization: College of Systems Engineering, National University of Defense Technology, Changsha, China – sequence: 2 givenname: Huangke orcidid: 0000-0003-2463-5580 surname: Chen fullname: Chen, Huangke organization: College of Systems Engineering, National University of Defense Technology, Changsha, China – sequence: 3 givenname: Xiaolu orcidid: 0000-0002-5244-790X surname: Liu fullname: Liu, Xiaolu organization: College of Systems Engineering, National University of Defense Technology, Changsha, China – sequence: 4 givenname: Maoguo surname: Gong fullname: Gong, Maoguo organization: Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, School of Electronic Engineering, Xidian University, Xi'an, China – sequence: 5 givenname: Lining orcidid: 0000-0002-6983-4244 surname: Xing fullname: Xing, Lining organization: Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi'an, China – sequence: 6 givenname: Wei orcidid: 0000-0001-8165-4628 surname: Zhao fullname: Zhao, Wei organization: Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi'an, China – sequence: 7 givenname: Long surname: Zheng fullname: Zheng, Long organization: College of Systems Engineering, National University of Defense Technology, Changsha, China |
| BookMark | eNp9kM1OAjEUhRuDiYi8gHHRFxjs70xnSQgqCYSFGN1NZjq3UCxT0yka395BWBAXrs7ZfPeefNeo1_gGELqlZEQpye9X09VkNmKEiREXKVMyvUB9JjKadP2td9av0LBtt4QQlkvKpeij6Rgv9i7aZFltQUf7CXgBO4hW47Fb-2DjZoeND_jVh3fj_Bd-1huo9842a2wbPHF-X7c36NKUroXhKQfo5aEb9ZTMl4-zyXieaJaqmGTAGVOUUiBElLXiSlSm4qBMJbiuaypBQUW1IKkpU5PnmjGe6iqveVpKmfEBYse7Ovi2DWCKj2B3ZfguKCkOLopfF8XBRXFy0UHqD6RtLKP1TQyldf-jd0fUAsDZr4xIwQj_AUfYbtI |
| CODEN | ITETCU |
| CitedBy_id | crossref_primary_10_1007_s00607_024_01386_8 crossref_primary_10_3390_math13111806 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TETCI.2024.3462856 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2471-285X |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TETCI_2024_3462856 10705420 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation Project of Hunan Province grantid: 2024JJ5109; 2024JJ7098 – fundername: Science and Technology Innovation Team of Shaanxi Province grantid: 2023-CX-TD-07 – fundername: Key R&D Program Projects in Shaanxi Province grantid: 2024GH-ZDXM-48 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX CITATION EJD |
| ID | FETCH-LOGICAL-c268t-7e3228111e004ad8384bfb3e8fb43cdd15e8eb1c406fa6f99c2236cb9d36a5573 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329020800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2471-285X |
| IngestDate | Sat Nov 29 05:12:11 EST 2025 Tue Nov 18 21:25:31 EST 2025 Wed Aug 27 02:17:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-7e3228111e004ad8384bfb3e8fb43cdd15e8eb1c406fa6f99c2236cb9d36a5573 |
| ORCID | 0000-0003-2463-5580 0000-0002-5244-790X 0000-0002-6983-4244 0000-0001-8165-4628 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TETCI_2024_3462856 ieee_primary_10705420 crossref_citationtrail_10_1109_TETCI_2024_3462856 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on emerging topics in computational intelligence |
| PublicationTitleAbbrev | TETCI |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002951354 |
| Score | 2.2633967 |
| Snippet | Simultaneously optimizing monetary cost and makespan of workflow execution is substantial to enhance the competitiveness of cloud services, but it still... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Cloud computing Computational modeling Costs Heuristic algorithms Indexes local search Memetic computation Memetics Metaheuristics multi-objective Processor scheduling Scheduling Search problems workflow scheduling |
| Title | A Multi-Objective Memetic Algorithm for Workflow Scheduling in Clouds |
| URI | https://ieeexplore.ieee.org/document/10705420 |
| WOSCitedRecordID | wos001329020800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2471-285X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951354 issn: 2471-285X databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWg4sCFRRRRNvnADblkcRz7WFWt4EBBoki9RfFWitIEdYHfZ-yEqheQuEWRLSXP9sybsZ8HoRsVhIYxFRIZ85xQzRmRNrAkZJJxE2pqpPXFJtLRiE8m4rkRq3stjDHGHz4zXffo9_J1pdYuVQYrPAWGEUGEvpumrBZrbRIqEXCFOKE_wphA3I0H4_4DhIAR7cZOgumKVG85n61qKt6ZDA__-RlH6KBhjbhXD_Mx2jHlCRr0sJfPkif5Xpst_GjmTpSIe8W0gqj_bY6Bk2KXELdF9YVfYIS0O3o-xbMS94tqrZdt9DqEP7gnTVUEoiLGVyQ1sAY5mCgD8zvXPOZUWhkbbiWNldZhYjgYYAWe2ubMCqGAATAlhY5ZniRpfIpaZVWaM4RTRbm2WjBBgUhpcPYsiYQKgDNRCbyxg8IfuDLVXBnuKlcUmQ8dApF5iDMHcdZA3EG3mz4f9YUZf7ZuO3y3WtbQnv_y_gLtu-51DuQStVaLtblCe-pzNVsurv2E-AZs-bM- |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yBX3xghPnNQ--SWcvaZo8jrHhcJuCE_ZWltucdKvson_fk7Qbe1HwrZS0tF-Sc75zki8HoTvpB5pSGXgiYiOPKEY9YXzjBVRQpgNFtDCu2ETS77PhkL-UYnWnhdFau81num4v3Vq-yuXKpspghifAMEKI0Hdt6axSrrVJqYTAFqKYrKUxPn8YtAbNDgSBIalHVoRpy1RvuZ-teirOnbSP_vkhx-iw5I24UXT0CdrRs1PUamAnoPWexUdhuHBPT60sETeycQ5x__sUAyvFNiVusvwbv0IfKbv5fIwnM9zM8pVaVNFbG_7g0SvrIngypGzpJRpmIQMjpWGEjxSLGBFGRJoZQSKpVBBrBiZYgq82I2o4l8ABqBRcRXQUx0l0hiqzfKbPEU4kYcooTjkBKqXA3dM45NIH1kQEMMcaCtZwpbI8NNzWrshSFzz4PHUQpxbitIS4hu43z3wWR2b82bpq8d1qWUB78cv9W7T_OOh1026n_3SJDuyriozIFaos5yt9jfbk13KymN-4wfED9KC2hw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Objective+Memetic+Algorithm+for+Workflow+Scheduling+in+Clouds&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Yao%2C+Feng&rft.au=Chen%2C+Huangke&rft.au=Liu%2C+Xiaolu&rft.au=Gong%2C+Maoguo&rft.date=2024&rft.pub=IEEE&rft.eissn=2471-285X&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTETCI.2024.3462856&rft.externalDocID=10705420 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon |