A Multi-Objective Memetic Algorithm for Workflow Scheduling in Clouds

Simultaneously optimizing monetary cost and makespan of workflow execution is substantial to enhance the competitiveness of cloud services, but it still imposes challenges. Heuristics-based algorithms are often problem-dependent and well-suitable for special cases, but the complexity of workflow str...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on emerging topics in computational intelligence s. 1 - 12
Hlavní autori: Yao, Feng, Chen, Huangke, Liu, Xiaolu, Gong, Maoguo, Xing, Lining, Zhao, Wei, Zheng, Long
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2024
Predmet:
ISSN:2471-285X, 2471-285X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Simultaneously optimizing monetary cost and makespan of workflow execution is substantial to enhance the competitiveness of cloud services, but it still imposes challenges. Heuristics-based algorithms are often problem-dependent and well-suitable for special cases, but the complexity of workflow structures seriously challenges their generalization. Metaheuristics-based algorithms pose good generalization, but the elasticity and heterogeneity of cloud resources seriously impact their search efficiency. Inspired by previous works, we tailor a memetic workflow scheduling algorithm (KDMA for short) that embeds a heuristic local search operator into the multi-objective metaheuristic algorithm to combine their strengths and complement each other's shortcomings. Specifically, the proposed local search operator searches for a set of solutions with good convergence and diversity by accumulating tasks one by one. This operator is good at gathering workflow tasks into a limited range of candidate resources, thereby guiding the metaheuristic algorithm to focus on exploring potential solution regions. Moreover, KDMA includes an adaptive strategy to determine the number of solutions reproduced by the problem-special local search operator based on its past overall contribution. We compare KDMA to five representative algorithms over 25 real-world workflow instances to corroborate its superior all-around performance by performing the best on 21 workflow instances. Meanwhile, we conduct an ablation analysis to verify the performance contributions of two proposed mechanisms.
AbstractList Simultaneously optimizing monetary cost and makespan of workflow execution is substantial to enhance the competitiveness of cloud services, but it still imposes challenges. Heuristics-based algorithms are often problem-dependent and well-suitable for special cases, but the complexity of workflow structures seriously challenges their generalization. Metaheuristics-based algorithms pose good generalization, but the elasticity and heterogeneity of cloud resources seriously impact their search efficiency. Inspired by previous works, we tailor a memetic workflow scheduling algorithm (KDMA for short) that embeds a heuristic local search operator into the multi-objective metaheuristic algorithm to combine their strengths and complement each other's shortcomings. Specifically, the proposed local search operator searches for a set of solutions with good convergence and diversity by accumulating tasks one by one. This operator is good at gathering workflow tasks into a limited range of candidate resources, thereby guiding the metaheuristic algorithm to focus on exploring potential solution regions. Moreover, KDMA includes an adaptive strategy to determine the number of solutions reproduced by the problem-special local search operator based on its past overall contribution. We compare KDMA to five representative algorithms over 25 real-world workflow instances to corroborate its superior all-around performance by performing the best on 21 workflow instances. Meanwhile, we conduct an ablation analysis to verify the performance contributions of two proposed mechanisms.
Author Zhao, Wei
Liu, Xiaolu
Xing, Lining
Yao, Feng
Gong, Maoguo
Chen, Huangke
Zheng, Long
Author_xml – sequence: 1
  givenname: Feng
  surname: Yao
  fullname: Yao, Feng
  organization: College of Systems Engineering, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Huangke
  orcidid: 0000-0003-2463-5580
  surname: Chen
  fullname: Chen, Huangke
  organization: College of Systems Engineering, National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Xiaolu
  orcidid: 0000-0002-5244-790X
  surname: Liu
  fullname: Liu, Xiaolu
  organization: College of Systems Engineering, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Maoguo
  surname: Gong
  fullname: Gong, Maoguo
  organization: Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, School of Electronic Engineering, Xidian University, Xi'an, China
– sequence: 5
  givenname: Lining
  orcidid: 0000-0002-6983-4244
  surname: Xing
  fullname: Xing, Lining
  organization: Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi'an, China
– sequence: 6
  givenname: Wei
  orcidid: 0000-0001-8165-4628
  surname: Zhao
  fullname: Zhao, Wei
  organization: Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi'an, China
– sequence: 7
  givenname: Long
  surname: Zheng
  fullname: Zheng, Long
  organization: College of Systems Engineering, National University of Defense Technology, Changsha, China
BookMark eNp9kM1OAjEUhRuDiYi8gHHRFxjs70xnSQgqCYSFGN1NZjq3UCxT0yka395BWBAXrs7ZfPeefNeo1_gGELqlZEQpye9X09VkNmKEiREXKVMyvUB9JjKadP2td9av0LBtt4QQlkvKpeij6Rgv9i7aZFltQUf7CXgBO4hW47Fb-2DjZoeND_jVh3fj_Bd-1huo9842a2wbPHF-X7c36NKUroXhKQfo5aEb9ZTMl4-zyXieaJaqmGTAGVOUUiBElLXiSlSm4qBMJbiuaypBQUW1IKkpU5PnmjGe6iqveVpKmfEBYse7Ovi2DWCKj2B3ZfguKCkOLopfF8XBRXFy0UHqD6RtLKP1TQyldf-jd0fUAsDZr4xIwQj_AUfYbtI
CODEN ITETCU
CitedBy_id crossref_primary_10_1007_s00607_024_01386_8
crossref_primary_10_3390_math13111806
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TETCI.2024.3462856
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 12
ExternalDocumentID 10_1109_TETCI_2024_3462856
10705420
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation Project of Hunan Province
  grantid: 2024JJ5109; 2024JJ7098
– fundername: Science and Technology Innovation Team of Shaanxi Province
  grantid: 2023-CX-TD-07
– fundername: Key R&D Program Projects in Shaanxi Province
  grantid: 2024GH-ZDXM-48
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
EJD
ID FETCH-LOGICAL-c268t-7e3228111e004ad8384bfb3e8fb43cdd15e8eb1c406fa6f99c2236cb9d36a5573
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329020800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Sat Nov 29 05:12:11 EST 2025
Tue Nov 18 21:25:31 EST 2025
Wed Aug 27 02:17:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-7e3228111e004ad8384bfb3e8fb43cdd15e8eb1c406fa6f99c2236cb9d36a5573
ORCID 0000-0003-2463-5580
0000-0002-5244-790X
0000-0002-6983-4244
0000-0001-8165-4628
PageCount 12
ParticipantIDs crossref_primary_10_1109_TETCI_2024_3462856
ieee_primary_10705420
crossref_citationtrail_10_1109_TETCI_2024_3462856
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002951354
Score 2.2633967
Snippet Simultaneously optimizing monetary cost and makespan of workflow execution is substantial to enhance the competitiveness of cloud services, but it still...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Cloud computing
Computational modeling
Costs
Heuristic algorithms
Indexes
local search
Memetic computation
Memetics
Metaheuristics
multi-objective
Processor scheduling
Scheduling
Search problems
workflow scheduling
Title A Multi-Objective Memetic Algorithm for Workflow Scheduling in Clouds
URI https://ieeexplore.ieee.org/document/10705420
WOSCitedRecordID wos001329020800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWg4sCFRRRRNvnADblkcRz7WFWt4EBBoki9RfFWitIEdYHfZ-yEqheQuEWRLSXP9sybsZ8HoRsVhIYxFRIZ85xQzRmRNrAkZJJxE2pqpPXFJtLRiE8m4rkRq3stjDHGHz4zXffo9_J1pdYuVQYrPAWGEUGEvpumrBZrbRIqEXCFOKE_wphA3I0H4_4DhIAR7cZOgumKVG85n61qKt6ZDA__-RlH6KBhjbhXD_Mx2jHlCRr0sJfPkif5Xpst_GjmTpSIe8W0gqj_bY6Bk2KXELdF9YVfYIS0O3o-xbMS94tqrZdt9DqEP7gnTVUEoiLGVyQ1sAY5mCgD8zvXPOZUWhkbbiWNldZhYjgYYAWe2ubMCqGAATAlhY5ZniRpfIpaZVWaM4RTRbm2WjBBgUhpcPYsiYQKgDNRCbyxg8IfuDLVXBnuKlcUmQ8dApF5iDMHcdZA3EG3mz4f9YUZf7ZuO3y3WtbQnv_y_gLtu-51DuQStVaLtblCe-pzNVsurv2E-AZs-bM-
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yBX3xghPnNQ--SWcvaZo8jrHhcJuCE_ZWltucdKvson_fk7Qbe1HwrZS0tF-Sc75zki8HoTvpB5pSGXgiYiOPKEY9YXzjBVRQpgNFtDCu2ETS77PhkL-UYnWnhdFau81num4v3Vq-yuXKpspghifAMEKI0Hdt6axSrrVJqYTAFqKYrKUxPn8YtAbNDgSBIalHVoRpy1RvuZ-teirOnbSP_vkhx-iw5I24UXT0CdrRs1PUamAnoPWexUdhuHBPT60sETeycQ5x__sUAyvFNiVusvwbv0IfKbv5fIwnM9zM8pVaVNFbG_7g0SvrIngypGzpJRpmIQMjpWGEjxSLGBFGRJoZQSKpVBBrBiZYgq82I2o4l8ABqBRcRXQUx0l0hiqzfKbPEU4kYcooTjkBKqXA3dM45NIH1kQEMMcaCtZwpbI8NNzWrshSFzz4PHUQpxbitIS4hu43z3wWR2b82bpq8d1qWUB78cv9W7T_OOh1026n_3SJDuyriozIFaos5yt9jfbk13KymN-4wfED9KC2hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Objective+Memetic+Algorithm+for+Workflow+Scheduling+in+Clouds&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Yao%2C+Feng&rft.au=Chen%2C+Huangke&rft.au=Liu%2C+Xiaolu&rft.au=Gong%2C+Maoguo&rft.date=2024&rft.pub=IEEE&rft.eissn=2471-285X&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTETCI.2024.3462856&rft.externalDocID=10705420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon