On Integral Equations the Kernels of Which are Homogeneous Functions of Degree (−1)
The present paper deals with integral equations the kernels of which are homogeneous functions of degree (−1). Factorization approach to such equations is developed. The constructed operator factorization is applied to the equation with a positive symmetric kernel. We prove that in the conservative...
Uloženo v:
| Vydáno v: | Journal of contemporary mathematical analysis Ročník 53; číslo 1; s. 47 - 55 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.01.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 1068-3623, 1934-9416 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The present paper deals with integral equations the kernels of which are homogeneous functions of degree (−1). Factorization approach to such equations is developed. The constructed operator factorization is applied to the equation with a positive symmetric kernel. We prove that in the conservative case, both the homogeneous equation and the corresponding nonhomogeneous equation with a positive free term can possess positive solutions simultaneously. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1068-3623 1934-9416 |
| DOI: | 10.3103/S1068362318010089 |