On Integral Equations the Kernels of Which are Homogeneous Functions of Degree (−1)

The present paper deals with integral equations the kernels of which are homogeneous functions of degree (−1). Factorization approach to such equations is developed. The constructed operator factorization is applied to the equation with a positive symmetric kernel. We prove that in the conservative...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of contemporary mathematical analysis Ročník 53; číslo 1; s. 47 - 55
Hlavní autor: Barseghyan, A. G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.01.2018
Springer Nature B.V
Témata:
ISSN:1068-3623, 1934-9416
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The present paper deals with integral equations the kernels of which are homogeneous functions of degree (−1). Factorization approach to such equations is developed. The constructed operator factorization is applied to the equation with a positive symmetric kernel. We prove that in the conservative case, both the homogeneous equation and the corresponding nonhomogeneous equation with a positive free term can possess positive solutions simultaneously.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1068-3623
1934-9416
DOI:10.3103/S1068362318010089