Approximation Algorithms with Constant Factors for a Series of Asymmetric Routing Problems
In this paper, the first fixed-ratio approximation algorithms are proposed for a series of asymmetric settings of well-known combinatorial routing problems. Among them are the Steiner cycle problem, the prize-collecting traveling salesman problem, the minimum cost cycle cover problem by a bounded nu...
Uloženo v:
| Vydáno v: | Doklady. Mathematics Ročník 108; číslo 3; s. 499 - 505 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.12.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1064-5624, 1531-8362 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, the first fixed-ratio approximation algorithms are proposed for a series of asymmetric settings of well-known combinatorial routing problems. Among them are the Steiner cycle problem, the prize-collecting traveling salesman problem, the minimum cost cycle cover problem by a bounded number of cycles, etc. Almost all of the proposed algorithms rely on original reductions of the considered problems to auxiliary instances of the asymmetric traveling salesman problem and employ the breakthrough approximation results for this problem obtained recently by O. Svensson, J. Tarnawski, L. Végh, V. Traub, and J. Vygen. On the other hand, approximation of the cycle cover problem was proved by applying a deeper extension of their approach. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1064-5624 1531-8362 |
| DOI: | 10.1134/S1064562423701454 |