Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation

In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical analysis and applications Jg. 16; H. 4; S. 299 - 316
Hauptverfasser: Aksyuk, I. A., Kireeva, A. E., Sabelfeld, K. K., Smirnov, D. D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.12.2023
Springer Nature B.V
Schlagworte:
ISSN:1995-4239, 1995-4247
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution and its derivatives for an anisotropic diffusion equation. It does not use grids and does not require large amounts of RAM. The second method is based on a randomized algorithm for solving large systems of linear equations and requires the introduction of a grid. The third method is also grid-based and uses a random walk algorithm. All three methods implement an iterative process, at each step of which anisotropic diffusion equations are solved. The paper provides a comparative analysis of the proposed methods and discusses the limits of applicability of each of them.
AbstractList In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed. Three different stochastic methods are proposed: the first one is based on a global algorithm of random walk on spheres to compute the solution and its derivatives for an anisotropic diffusion equation. It does not use grids and does not require large amounts of RAM. The second method is based on a randomized algorithm for solving large systems of linear equations and requires the introduction of a grid. The third method is also grid-based and uses a random walk algorithm. All three methods implement an iterative process, at each step of which anisotropic diffusion equations are solved. The paper provides a comparative analysis of the proposed methods and discusses the limits of applicability of each of them.
Author Kireeva, A. E.
Sabelfeld, K. K.
Aksyuk, I. A.
Smirnov, D. D.
Author_xml – sequence: 1
  givenname: I. A.
  surname: Aksyuk
  fullname: Aksyuk, I. A.
  email: i.aksyuk@g.nsu.ru
  organization: Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences
– sequence: 2
  givenname: A. E.
  surname: Kireeva
  fullname: Kireeva, A. E.
  email: kireeva@ssd.sscc.ru
  organization: Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences
– sequence: 3
  givenname: K. K.
  surname: Sabelfeld
  fullname: Sabelfeld, K. K.
  email: karl@osmf.sscc.ru
  organization: Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences
– sequence: 4
  givenname: D. D.
  surname: Smirnov
  fullname: Smirnov, D. D.
  email: smirnovdd@mail.ru
  organization: Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences
BookMark eNp1kMFKAzEQhoNUsNY-gLeA59Ukk812j6VULVQ8rIK3JaZJu2V30yZZwUfyOXwxs63oQZzDzDDz_TPwn6NBa1uN0CUl15QCvylonqecQc6AcELYywka9qOEM54NfnrIz9DY-y2JASybcDFED0WwaiN9qBQuqqarZahsi6f12roqbBqPjXV4EbSLizeNC1t3B8IaHDYaL2Xz-YHn--6gu0CnRtZej7_rCD3fzp9m98ny8W4xmy4TxcQkJIK-MsZkn5RKhQZIV5IoAaDFSkrNqBJKEyOyTGVgiOJaaZ5xYlYsF8TACF0d7-6c3Xfah3JrO9fGlyWwNIuepACRokdKOeu906bcuaqR7r2kpOyNK_8YFzXsqPGRbdfa_V7-X_QFOD1yAg
Cites_doi 10.1007/BF01010406
10.1090/S0025-5718-1979-0537973-X
10.1515/mcma-2016-0118
10.1002/mma.7861
10.1515/9783110315332
10.1016/j.aml.2021.107830
10.1515/mcma-2017-0113
10.1049/el:19740097
10.1214/aoms/1177728169
10.1515/mcma.1995.1.1.1
10.1016/s0020-7683(03)00364-0
10.1515/mcma-2022-2131
10.3103/S1063454108020064
10.1016/j.aml.2020.106466
10.1515/mcma-2021-2092
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023
Pleiades Publishing, Ltd. 2023.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023
– notice: Pleiades Publishing, Ltd. 2023.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1134/S199542392304002X
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Engineering Database
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1995-4247
EndPage 316
ExternalDocumentID 10_1134_S199542392304002X
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
06D
0R~
0VY
123
1N0
29N
2JN
2JY
2KG
2VQ
2~H
30V
4.4
408
409
40D
5VS
6NX
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PT4
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7XB
8FE
8FG
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c268t-61b222ab222cc56e335da0c633e6daae21c6ce0f677c73f0c4ece4740fd2960f3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001114865100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1995-4239
IngestDate Tue Oct 07 07:15:59 EDT 2025
Sat Nov 29 06:43:42 EST 2025
Fri Feb 21 02:41:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords global random walk algorithm
randomized algorithm for solving linear equations
grid-free stochastic algorithm
random walk on spheres
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-61b222ab222cc56e335da0c633e6daae21c6ce0f677c73f0c4ece4740fd2960f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3257134533
PQPubID 2043984
PageCount 18
ParticipantIDs proquest_journals_3257134533
crossref_primary_10_1134_S199542392304002X
springer_journals_10_1134_S199542392304002X
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Numerical analysis and applications
PublicationTitleAbbrev Numer. Analys. Appl
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Eremeev, V.A., Reshenie sistem lineinykh algebraicheskikh uravnenii dlya bolshikh razrezhennykh matrits. Uchebno-metodicheskoe posobie (Solving Systems of Linear Algebraic Equations for Large Sparse Matrices. Teaching Manual), Rostov-on-Don, 2008.
SabelfeldKarl K.KireevaAnastasyaA new Global Random Walk algorithm for calculation of the solution and its derivatives of elliptic equations with constant coefficients in an arbitrary set of pointsApplied Mathematics Letters2020107106466106466409934310.1016/j.aml.2020.1064661442.82005
SabelfeldK.K.Monte Carlo Methods in Boundary Value Problems1991BerlinSpringer
RouxStéphaneGeneralized Brownian motion and elasticityJournal of statistical physics19874820121391443510.1007/BF01010406
PolyaninA.D.Spravochnik po lineinym uravneniyam matematicheskoi fiziki (Handbook of Linear Equations of Mathematical Physics)2001MoscowFizmatlit0989.35001
Koshelev, A.I., Applying the Universal Iterative Process to Some Problems of Mechanics, Vest. Saint-Petersburg Univ. Ser. 1, 2008, no. 2, pp. 47–55.
BudaevB.V.BogyD.B.Probabilistic approach to the Lamé equations of linear elastostaticsInternational Journal of Solids and Structures20034062856306201180910.1016/s0020-7683(03)00364-01053.74006
KupradzeV.D.GegeliaT.G.BasheleishviliM.O.BurchuladzeT.V.Trekhmernye zadachi teorii uprugosti (Three-Dimensional Problems of Elasticity Theory)1976MoscowNauka
O’LearyDianne P.StewartG.W.VandergraftJames S.Estimating the largest eigenvalue of a positive definite matrixMathematics of Computation1979331289129253797310.1090/S0025-5718-1979-0537973-X0435.65026
SabelfeldKarl K.Random walk on spheres method for solving drift-diffusion problemsMonte Carlo Methods and Applications201622199223357492710.1515/mcma-2016-01181354.65265
ErmakovS.M.MikhailovG.A.Statisticheskoe modelirovanie (Statistical Modeling)1982MoscowNauka
MullerMervin E.Some continuous Monte Carlo methods for the Dirichlet problemThe Annals of Mathematical Statistics1956275695898878610.1214/aoms/11777281690075.28902
WalkerAlastair J.New fast method for generating discrete random numbers with arbitrary frequency distributionsElectronics Letters19741012712810.1049/el:19740097
SabelfeldKarl K.KireevaK.A Global Random Walk on Spheres Algorithm for Calculating the Solution and Its Derivatives of Drift-Diffusion-Reaction EquationsMathematical Methods in the Applied Sciences20224514201431436812710.1002/mma.7861
ShalimovaIrina A.SabelfeldKarl K.Development and implementation of branching random walk on spheres algorithms for solving the 2D elastostatics Lamé equationMonte Carlo Methods and Applications2023297993455450010.1515/mcma-2022-21311518.65008
SabelfeldK.K.A new randomized vector algorithm for iterative solution of large linear systemsApplied Mathematics Letters2022126107830107830434926810.1016/j.aml.2021.1078301483.65052
SabelfeldK.K.TalayD.Integral Formulation of the Boundary Value Problems and the Method of Random Walk on SpheresMonte Carlo Meth. Appl.19951134136879710.1515/mcma.1995.1.1.10824.65127
Joint Supercomputer Center of the Russian Academy of Sciences; http://www.jscc.ru.
StakgoldI.Green’s Functions and Boundary Value Problems1979NYWiley0421.34027
SabelfeldKarl K.SmirnovDmitriiA global random walk on grid algorithm for second order elliptic equationsMonte Carlo Methods and Applications202127211225430865110.1515/mcma-2021-209207419515
LurieA.I.Teoriya uprugosti (Theory of Elasticity)1970MoscowNauka
SabelfeldKarl K.Random walk on spheres algorithm for solving transient drift-diffusion-reaction problemsMonte Carlo Methods and Applications201723189212369206710.1515/mcma-2017-01131375.65007
SabelfeldKarl K.ShalimovaIrina A.Spherical and Plane Integral Operators for PDEs: Construction, Analysis, and Applications2013BerlinDE GRUYTER10.1515/97831103153321316.47001
StarchenkoA.V.BertsunV.N.Metody parallelnykh vychislenii. Uchebnik. Ser. Superkomp’yuternoe obrazovanie (Parallel Computing Methods. Textbook. Ser. “Supercomputer Education,”)2013TomskTomsk State University
DynkinE.B.The Theory of Markov Processes1961NYPergamon Press0091.13605
Alastair J. Walker (223_CR25) 1974; 10
Karl K. Sabelfeld (223_CR20) 2013
A.V. Starchenko (223_CR7) 2013
K.K. Sabelfeld (223_CR15) 1991
Karl K. Sabelfeld (223_CR17) 2017; 23
Karl K. Sabelfeld (223_CR21) 2021; 27
223_CR10
K.K. Sabelfeld (223_CR22) 1995; 1
223_CR1
B.V. Budaev (223_CR8) 2003; 40
E.B. Dynkin (223_CR9) 1961
K.K. Sabelfeld (223_CR14) 2022; 126
Mervin E. Muller (223_CR11) 1956; 27
Karl K. Sabelfeld (223_CR16) 2016; 22
223_CR3
Karl K. Sabelfeld (223_CR18) 2020; 107
Dianne P. O’Leary (223_CR12) 1979; 33
V.D. Kupradze (223_CR4) 1976
Karl K. Sabelfeld (223_CR19) 2022; 45
S.M. Ermakov (223_CR2) 1982
A.I. Lurie (223_CR5) 1970
Stéphane Roux (223_CR13) 1987; 48
A.D. Polyanin (223_CR6) 2001
Irina A. Shalimova (223_CR23) 2023; 29
I. Stakgold (223_CR24) 1979
References_xml – reference: SabelfeldKarl K.KireevaAnastasyaA new Global Random Walk algorithm for calculation of the solution and its derivatives of elliptic equations with constant coefficients in an arbitrary set of pointsApplied Mathematics Letters2020107106466106466409934310.1016/j.aml.2020.1064661442.82005
– reference: SabelfeldKarl K.Random walk on spheres algorithm for solving transient drift-diffusion-reaction problemsMonte Carlo Methods and Applications201723189212369206710.1515/mcma-2017-01131375.65007
– reference: Koshelev, A.I., Applying the Universal Iterative Process to Some Problems of Mechanics, Vest. Saint-Petersburg Univ. Ser. 1, 2008, no. 2, pp. 47–55.
– reference: DynkinE.B.The Theory of Markov Processes1961NYPergamon Press0091.13605
– reference: SabelfeldKarl K.Random walk on spheres method for solving drift-diffusion problemsMonte Carlo Methods and Applications201622199223357492710.1515/mcma-2016-01181354.65265
– reference: PolyaninA.D.Spravochnik po lineinym uravneniyam matematicheskoi fiziki (Handbook of Linear Equations of Mathematical Physics)2001MoscowFizmatlit0989.35001
– reference: SabelfeldK.K.TalayD.Integral Formulation of the Boundary Value Problems and the Method of Random Walk on SpheresMonte Carlo Meth. Appl.19951134136879710.1515/mcma.1995.1.1.10824.65127
– reference: KupradzeV.D.GegeliaT.G.BasheleishviliM.O.BurchuladzeT.V.Trekhmernye zadachi teorii uprugosti (Three-Dimensional Problems of Elasticity Theory)1976MoscowNauka
– reference: SabelfeldKarl K.SmirnovDmitriiA global random walk on grid algorithm for second order elliptic equationsMonte Carlo Methods and Applications202127211225430865110.1515/mcma-2021-209207419515
– reference: Joint Supercomputer Center of the Russian Academy of Sciences; http://www.jscc.ru.
– reference: MullerMervin E.Some continuous Monte Carlo methods for the Dirichlet problemThe Annals of Mathematical Statistics1956275695898878610.1214/aoms/11777281690075.28902
– reference: StakgoldI.Green’s Functions and Boundary Value Problems1979NYWiley0421.34027
– reference: ErmakovS.M.MikhailovG.A.Statisticheskoe modelirovanie (Statistical Modeling)1982MoscowNauka
– reference: RouxStéphaneGeneralized Brownian motion and elasticityJournal of statistical physics19874820121391443510.1007/BF01010406
– reference: LurieA.I.Teoriya uprugosti (Theory of Elasticity)1970MoscowNauka
– reference: SabelfeldK.K.Monte Carlo Methods in Boundary Value Problems1991BerlinSpringer
– reference: O’LearyDianne P.StewartG.W.VandergraftJames S.Estimating the largest eigenvalue of a positive definite matrixMathematics of Computation1979331289129253797310.1090/S0025-5718-1979-0537973-X0435.65026
– reference: SabelfeldKarl K.KireevaK.A Global Random Walk on Spheres Algorithm for Calculating the Solution and Its Derivatives of Drift-Diffusion-Reaction EquationsMathematical Methods in the Applied Sciences20224514201431436812710.1002/mma.7861
– reference: WalkerAlastair J.New fast method for generating discrete random numbers with arbitrary frequency distributionsElectronics Letters19741012712810.1049/el:19740097
– reference: SabelfeldKarl K.ShalimovaIrina A.Spherical and Plane Integral Operators for PDEs: Construction, Analysis, and Applications2013BerlinDE GRUYTER10.1515/97831103153321316.47001
– reference: ShalimovaIrina A.SabelfeldKarl K.Development and implementation of branching random walk on spheres algorithms for solving the 2D elastostatics Lamé equationMonte Carlo Methods and Applications2023297993455450010.1515/mcma-2022-21311518.65008
– reference: StarchenkoA.V.BertsunV.N.Metody parallelnykh vychislenii. Uchebnik. Ser. Superkomp’yuternoe obrazovanie (Parallel Computing Methods. Textbook. Ser. “Supercomputer Education,”)2013TomskTomsk State University
– reference: Eremeev, V.A., Reshenie sistem lineinykh algebraicheskikh uravnenii dlya bolshikh razrezhennykh matrits. Uchebno-metodicheskoe posobie (Solving Systems of Linear Algebraic Equations for Large Sparse Matrices. Teaching Manual), Rostov-on-Don, 2008.
– reference: BudaevB.V.BogyD.B.Probabilistic approach to the Lamé equations of linear elastostaticsInternational Journal of Solids and Structures20034062856306201180910.1016/s0020-7683(03)00364-01053.74006
– reference: SabelfeldK.K.A new randomized vector algorithm for iterative solution of large linear systemsApplied Mathematics Letters2022126107830107830434926810.1016/j.aml.2021.1078301483.65052
– volume-title: Trekhmernye zadachi teorii uprugosti (Three-Dimensional Problems of Elasticity Theory)
  year: 1976
  ident: 223_CR4
– volume: 48
  start-page: 201
  year: 1987
  ident: 223_CR13
  publication-title: Journal of statistical physics
  doi: 10.1007/BF01010406
– volume: 33
  start-page: 1289
  year: 1979
  ident: 223_CR12
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1979-0537973-X
– volume-title: Spravochnik po lineinym uravneniyam matematicheskoi fiziki (Handbook of Linear Equations of Mathematical Physics)
  year: 2001
  ident: 223_CR6
– ident: 223_CR1
– volume: 22
  start-page: 199
  year: 2016
  ident: 223_CR16
  publication-title: Monte Carlo Methods and Applications
  doi: 10.1515/mcma-2016-0118
– volume: 45
  start-page: 1420
  year: 2022
  ident: 223_CR19
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.7861
– volume-title: Spherical and Plane Integral Operators for PDEs: Construction, Analysis, and Applications
  year: 2013
  ident: 223_CR20
  doi: 10.1515/9783110315332
– volume: 126
  start-page: 107830
  year: 2022
  ident: 223_CR14
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2021.107830
– volume: 23
  start-page: 189
  year: 2017
  ident: 223_CR17
  publication-title: Monte Carlo Methods and Applications
  doi: 10.1515/mcma-2017-0113
– volume: 10
  start-page: 127
  year: 1974
  ident: 223_CR25
  publication-title: Electronics Letters
  doi: 10.1049/el:19740097
– volume-title: Teoriya uprugosti (Theory of Elasticity)
  year: 1970
  ident: 223_CR5
– volume-title: Green’s Functions and Boundary Value Problems
  year: 1979
  ident: 223_CR24
– volume: 27
  start-page: 569
  year: 1956
  ident: 223_CR11
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177728169
– volume-title: Monte Carlo Methods in Boundary Value Problems
  year: 1991
  ident: 223_CR15
– volume-title: Statisticheskoe modelirovanie (Statistical Modeling)
  year: 1982
  ident: 223_CR2
– volume: 1
  start-page: 1
  year: 1995
  ident: 223_CR22
  publication-title: Monte Carlo Meth. Appl.
  doi: 10.1515/mcma.1995.1.1.1
– ident: 223_CR10
– volume: 40
  start-page: 6285
  year: 2003
  ident: 223_CR8
  publication-title: International Journal of Solids and Structures
  doi: 10.1016/s0020-7683(03)00364-0
– volume-title: Metody parallelnykh vychislenii. Uchebnik. Ser. Superkomp’yuternoe obrazovanie (Parallel Computing Methods. Textbook. Ser. “Supercomputer Education,”)
  year: 2013
  ident: 223_CR7
– volume: 29
  start-page: 79
  year: 2023
  ident: 223_CR23
  publication-title: Monte Carlo Methods and Applications
  doi: 10.1515/mcma-2022-2131
– ident: 223_CR3
  doi: 10.3103/S1063454108020064
– volume-title: The Theory of Markov Processes
  year: 1961
  ident: 223_CR9
– volume: 107
  start-page: 106466
  year: 2020
  ident: 223_CR18
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2020.106466
– volume: 27
  start-page: 211
  year: 2021
  ident: 223_CR21
  publication-title: Monte Carlo Methods and Applications
  doi: 10.1515/mcma-2021-2092
SSID ssj0000327846
Score 2.2564392
Snippet In this paper, iterative stochastic simulation algorithms for the Lamé equation describing the displacements of an isotropic elastic body are constructed....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 299
SubjectTerms Algorithms
Approximation
Boundary conditions
Boundary value problems
Elastic bodies
Iterative methods
Iterative solution
Lame functions
Linear equations
Mathematics
Mathematics and Statistics
Numerical Analysis
Random variables
Random walk
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDLZgcODC-BWDgXLgBKrWJWnantCENoHEpkkDabeqTVOGxNZtLbwTz8GLEbcpEyC4cOkhlazIcZzPdvIZ4DzWZiJi27dc5VCL85haPlfc0uCVeYoLJEkrmk24g4E3HvtDk3DLzLXKyicWjjpOJebIW0zbVptxjU6u5gsLu0ZhddW00FiHDY1s2nilq0-HnzkWm2FZrXhghA-RkevOFDa1pNYIB3EM86LaMYy_Hk0rvPmtRFqcPL36f-e8A9sGc5JOaSS7sKZme1A3-JOY3Z3tQ3-Up3ISInMzGT1NTWMv0nl-1ELzyTQjGuGS24KHWTtJUqXUSJoQjSPJXTh9fyPdRckefgAPve799Y1l2i1Ykgov10FkpMFCiB8pHaEYc-LQloIxJeIwVLQthVR2IlxXuiyxJVdScZfbSUx1HJSwQ6jN0pk6AqJxBj7wjXzqIp-c53EaRQ7SfdGkrbjXgItK08G8ZNUIimiE8eDHsjSgWWk3MBssC1aqbcBltT6r378KO_5b2AlsYT_58r5KE2r58kWdwqZ8zZ-y5VlhXR_q6tKc
  priority: 102
  providerName: ProQuest
Title Stochastic Simulation Algorithms for Iterative Solution of the Lamé Equation
URI https://link.springer.com/article/10.1134/S199542392304002X
https://www.proquest.com/docview/3257134533
Volume 16
WOSCitedRecordID wos001114865100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1995-4247
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000327846
  issn: 1995-4239
  databaseCode: M7S
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1995-4247
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000327846
  issn: 1995-4239
  databaseCode: BENPR
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1995-4247
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000327846
  issn: 1995-4239
  databaseCode: M2P
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1995-4247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327846
  issn: 1995-4239
  databaseCode: RSV
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT8IwFH8R8KAHUdSIIunBk2ZxtF23HdFANBFCmBpuy-g6IRGmbPqd_Bx-Mdutg_jvoJde1r0s3Wvf773X93sAJ6FUExaarmELCxuUhthwqaCGBK_EEZQpkrSs2YTd7zujkTvQddxJcdu9SElmJ3Xed4See6qYWNHVqTCm3MejElSktXNUv4ahd78MrJhE5dKyqiJVfaze0NnMH6V8tkcrkPklL5qZm271Xx-6DVsaXaJ2rg47sCbmNahqpIn0Pk5qsNlbsrUmu9Dz0phPAsXYjLzpTDf0Qu3Hh3gxTSezBElki64z_mV5OKIilIbiCEkx6CaYvb-hznPOGr4Hd93O7eWVodssGBwzJ5XO41iChEANnFtMEGKFgckZIYKFQSBwizMuzIjZNrdJZHIquKA2NaMQS_8nIvtQnsdzcQBI4gtV2Dt2sa145ByH4vHYUjRfOGoJ6tThtFhs_yln0_AzL4RQ_9uy1aFR_A5fb6zEJ_KIkbMlSK3DWbH8q8e_Cjv80-wj2FBt5fNrKw0op4sXcQzr_DWdJosmVC46_cGwCaUeHqjR9pqZDn4AvcnP5g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhR5TVB7iAIlLbzXJACLGIilIhtUi9hdRxaCW6kQDik7jwE_wYM1moAMGtBy45OJIVZ8YzzzOeNwA7AaqJFZiuYesSN6QMuOFKLQ0Er8LR0iKStKTZhF2tOo2Gez0Gb3ktDF2rzG1iYqiDnqIY-YFA3SoKiejkqD8wqGsUZVfzFhqpWlzql2c8skWH5VOU7y7n52f1kwsj6ypgKG45MZ6VmugTfXooVbK0EKXAN5UlhLYC39e8qCylzdCybWWL0FRSKy1taYYBR7gfCpx3HCYlMYvRVUF-_RnTMQWl8ZKCJip8Jm69LJGKX35Qo0EaozgsGqLGV1c4xLffUrKJpzuf-2__aB5mM0zNjtNNsABjursIcxm-Zpn1ipbgqhb3VMsnZmpWa3eyxmXs-P4OFxG3OhFDBM_KCc80OgGWhwxZL2SIk1nF77y_srNByo6-DDcjWdQKTHR7Xb0KDHEUFTA3XW4TX57jSN5slojOjIdFLZ0C7OWS9fopa4iXnLaE9H6oQQE2cml6mQGJvKEoC7Cf68Pw9a-Trf092TZMX9SvKl6lXL1chxmOiC29m7MBE_HDo96EKfUUt6OHrUSzGdyOWk0-AD0EMKo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT8IwEL8oGqMPoqgRRe2DT5qFsXbd9kgUIhEIydTwtoyuExLZkE2_k5_DL2a7dRD_PRhf9rLusrR37e96d78DOA-EmtBAdzSLm4ZGSGBoDuFEE-AV25xQSZKWNZuw-n17OHQGqs9pUmS7FyHJvKZBsjRFaX0WhKoHCam7srBYUtfJK01h08NVWCMyj1666-7D4pJFxzKullUYyUpk-YWKbP4o5fPZtAScX2Kk2dHTLv_7p3dgW6FO1MzVZBdWeFSBskKgSNl3UoGt3oLFNdmDnpvGbOxLJmfkTqaq0RdqPj3G80k6niZIIF7UyXiZxaaJiis2FIdIiEFdf_r-hlrPOZv4Pty3W3dXN5pqv6Axg9qpcCpHAjz48sGYSTnGZuDrjGLMaeD73GgwyrgeUstiFg51RjjjxCJ6GBjCLwrxAZSiOOKHgATukAW_I8ewJL-cbRNjNDIl_ZcRNjixq3BRTLw3y1k2vMw7wcT7Nm1VqBVL4ymDSzwsth4xWoDXKlwWS7F8_auwoz-NPoONwXXb63b6t8ewKTvP55ktNSil8xd-AuvsNZ0k89NMDT8ADifYLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Simulation+Algorithms+for+Iterative+Solution+of+the+Lam%C3%A9+Equation&rft.jtitle=Numerical+analysis+and+applications&rft.au=Aksyuk%2C+I.+A.&rft.au=Kireeva%2C+A.+E.&rft.au=Sabelfeld%2C+K.+K.&rft.au=Smirnov%2C+D.+D.&rft.date=2023-12-01&rft.issn=1995-4239&rft.eissn=1995-4247&rft.volume=16&rft.issue=4&rft.spage=299&rft.epage=316&rft_id=info:doi/10.1134%2FS199542392304002X&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S199542392304002X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-4239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-4239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-4239&client=summon