Distributed Adaptive Dynamic Programming for Consensus Control of Multiagent Systems Within Hierarchical Stackelberg-Nash Game Framework

This article investigates the leader-follower consensus for nonlinear multiagent systems (MASs) and proposes an adaptive dynamic programming (ADP)-based hierarchical Stackelberg-Nash optimal game control method. Initially, a coupled performance index function associated with consensus errors is cons...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on systems, man, and cybernetics. Systems Ročník 55; číslo 6; s. 4286 - 4300
Hlavní autoři: Zhang, Haoyan, Zhang, Yingwei, Zhao, Xudong, Su, Chun-Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2025
Témata:
ISSN:2168-2216, 2168-2232
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article investigates the leader-follower consensus for nonlinear multiagent systems (MASs) and proposes an adaptive dynamic programming (ADP)-based hierarchical Stackelberg-Nash optimal game control method. Initially, a coupled performance index function associated with consensus errors is constructed. As the positive-definite function with the quadratic form is allocated to the constructed consensus errors-based performance index function, the original system stabilization problem is converted into the issue of seeking an optimal control strategy profile for the leader and followers. Under the hierarchical Stackelberg-Nash differential game framework, the optimal control strategies are derived in sequence and further proved to compose the equilibrium points of Stackelberg-Nash differential games. Afterward, based on the ADP technique, a modified single-critic neural network (NN) is implemented and the coupled Hamilton-Jacobi-Bellman (HJB) equation is approximately identified. Under the proposed control scheme, the leader-follower consensus of the considered MAS can be achieved while consuming less control cost. Meanwhile, all signals of the MAS are ensured to be uniformly ultimately bounded. Finally, a numerical simulation and an application to the electrode regulating system of the three-phase electric arc furnace are given to verify the effectiveness of the proposed control method.
AbstractList This article investigates the leader-follower consensus for nonlinear multiagent systems (MASs) and proposes an adaptive dynamic programming (ADP)-based hierarchical Stackelberg-Nash optimal game control method. Initially, a coupled performance index function associated with consensus errors is constructed. As the positive-definite function with the quadratic form is allocated to the constructed consensus errors-based performance index function, the original system stabilization problem is converted into the issue of seeking an optimal control strategy profile for the leader and followers. Under the hierarchical Stackelberg-Nash differential game framework, the optimal control strategies are derived in sequence and further proved to compose the equilibrium points of Stackelberg-Nash differential games. Afterward, based on the ADP technique, a modified single-critic neural network (NN) is implemented and the coupled Hamilton-Jacobi-Bellman (HJB) equation is approximately identified. Under the proposed control scheme, the leader-follower consensus of the considered MAS can be achieved while consuming less control cost. Meanwhile, all signals of the MAS are ensured to be uniformly ultimately bounded. Finally, a numerical simulation and an application to the electrode regulating system of the three-phase electric arc furnace are given to verify the effectiveness of the proposed control method.
Author Zhang, Yingwei
Zhao, Xudong
Su, Chun-Yi
Zhang, Haoyan
Author_xml – sequence: 1
  givenname: Haoyan
  orcidid: 0000-0003-3067-0710
  surname: Zhang
  fullname: Zhang, Haoyan
  email: 1169384997@qq.com
  organization: School of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Yingwei
  orcidid: 0000-0001-9736-6583
  surname: Zhang
  fullname: Zhang, Yingwei
  email: zhangyingwei@mail.neu.edu.cn
  organization: State Laboratory of Synthesis Automation of Process Industry, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Xudong
  orcidid: 0000-0002-1864-4686
  surname: Zhao
  fullname: Zhao, Xudong
  email: xdzhaohit@gmail.com
  organization: Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
– sequence: 4
  givenname: Chun-Yi
  orcidid: 0000-0002-1869-5563
  surname: Su
  fullname: Su, Chun-Yi
  email: chun-yi.su@concordia.ca
  organization: State Laboratory of Synthesis Automation of Process Industry, Northeastern University, Shenyang, China
BookMark eNp9kMtKAzEUhoNUsF4eQHCRF5ia22QmS6m2FawKVVwOmcxJGzsXSVKlb-Bj26Ei4sLNOf_ifD-c7xgN2q4FhM4pGVFK1OXTYj4eMcLSEU9Fzqk6QENGZZ4wxtngJ1N5hM5CeCWEUJZLTuQQfV67EL0rNxEqfFXpt-jeAV9vW904gx99t_S6aVy7xLbzeNy1AdqwCX2KvqtxZ_F8U0enl9BGvNiGCE3ALy6uXItnDrz2ZuWMrvEiarOGugS_TO51WOGpbgBPdvXw0fn1KTq0ug5w9r1P0PPk5mk8S-4eprfjq7vEMJnHRFgJOedVVgmRKVEpVRLBZWosgCLAOLVClYJZLSktlTRaKluWGc_yHFJe8ROU7XuN70LwYAvjoo6u_0e7uqCk6J0WvdOid1p8O92R9A_55l2j_fZf5mLPOAD4da94LnbjC5A9h2U
CODEN ITSMFE
CitedBy_id crossref_primary_10_1109_TASE_2025_3591792
Cites_doi 10.1016/j.automatica.2021.109687
10.1016/j.nahs.2021.101092
10.1002/rnc.6269
10.1109/TII.2019.2932109
10.1109/TSMC.2022.3218654
10.1080/00207179.2021.1916078
10.1016/j.automatica.2021.110077
10.1109/TASE.2023.3303359
10.1109/TNSE.2022.3196316
10.1109/tim.2023.3277987
10.1109/TNSE.2023.3240687
10.1109/TAC.2015.2406976
10.1109/TNNLS.2019.2904277
10.1109/TCYB.2020.3037321
10.1016/j.jfranklin.2021.04.048
10.1016/j.automatica.2018.03.020
10.1109/TCYB.2022.3232599
10.1109/TSMC.2023.3247888
10.1109/TSG.2022.3140927
10.1109/TSMC.2023.3248227
10.1109/TCYB.2022.3215619
10.1109/TNNLS.2020.3042331
10.1016/j.ast.2022.107840
10.1016/j.ins.2022.08.025
10.1109/TAC.2023.3300365
10.1109/TSG.2023.3275697
10.1109/TII.2021.3051961
10.1016/j.automatica.2022.110231
10.1109/TSMC.2024.3373016
10.1109/TSMC.2020.3042876
10.1016/j.ins.2021.08.062
10.1109/TCYB.2021.3090067
10.1109/JAS.2024.124803
10.1109/TSMC.2024.3489662
10.1109/TCYB.2021.3091532
10.1109/TNNLS.2020.2984944
10.1109/TNNLS.2022.3183991
10.1109/TASE.2023.3298343
10.1109/TFUZZ.2020.3036931
10.1109/JAS.2023.123201
10.1109/TAC.2019.2926554
10.1109/TNNLS.2018.2850763
10.1109/TNNLS.2023.3237586
10.1109/TAC.2018.2833140
10.1109/TNNLS.2015.2461452
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSMC.2025.3548319
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 4300
ExternalDocumentID 10_1109_TSMC_2025_3548319
10938409
Genre orig-research
GrantInformation_xml – fundername: LiaoNing Revitalization Talents Program
  grantid: XLYC2008020
  funderid: 10.13039/501100018617
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c268t-4f6e833d7d44794d99b04365cfee90e231f49b42fa611b96ca69fbb73788e53d3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470646600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2216
IngestDate Tue Nov 18 21:27:22 EST 2025
Sat Nov 29 06:56:10 EST 2025
Wed Nov 19 08:27:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-4f6e833d7d44794d99b04365cfee90e231f49b42fa611b96ca69fbb73788e53d3
ORCID 0000-0001-9736-6583
0000-0002-1869-5563
0000-0002-1864-4686
0000-0003-3067-0710
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TSMC_2025_3548319
crossref_primary_10_1109_TSMC_2025_3548319
ieee_primary_10938409
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref33
  doi: 10.1016/j.automatica.2021.109687
– ident: ref21
  doi: 10.1016/j.nahs.2021.101092
– ident: ref45
  doi: 10.1002/rnc.6269
– ident: ref6
  doi: 10.1109/TII.2019.2932109
– ident: ref11
  doi: 10.1109/TSMC.2022.3218654
– ident: ref27
  doi: 10.1080/00207179.2021.1916078
– ident: ref15
  doi: 10.1016/j.automatica.2021.110077
– ident: ref36
  doi: 10.1109/TASE.2023.3303359
– ident: ref3
  doi: 10.1109/TNSE.2022.3196316
– ident: ref44
  doi: 10.1109/tim.2023.3277987
– ident: ref29
  doi: 10.1109/TNSE.2023.3240687
– ident: ref32
  doi: 10.1109/TAC.2015.2406976
– ident: ref2
  doi: 10.1109/TNNLS.2019.2904277
– ident: ref39
  doi: 10.1109/TCYB.2020.3037321
– ident: ref25
  doi: 10.1016/j.jfranklin.2021.04.048
– ident: ref1
  doi: 10.1016/j.automatica.2018.03.020
– ident: ref42
  doi: 10.1109/TCYB.2022.3232599
– ident: ref40
  doi: 10.1109/TSMC.2023.3247888
– ident: ref8
  doi: 10.1109/TSG.2022.3140927
– ident: ref12
  doi: 10.1109/TSMC.2023.3248227
– ident: ref13
  doi: 10.1109/TCYB.2022.3215619
– ident: ref22
  doi: 10.1109/TNNLS.2020.3042331
– ident: ref26
  doi: 10.1016/j.ast.2022.107840
– ident: ref24
  doi: 10.1016/j.ins.2022.08.025
– ident: ref31
  doi: 10.1109/TAC.2023.3300365
– ident: ref9
  doi: 10.1109/TSG.2023.3275697
– ident: ref7
  doi: 10.1109/TII.2021.3051961
– ident: ref23
  doi: 10.1016/j.automatica.2022.110231
– ident: ref16
  doi: 10.1109/TSMC.2024.3373016
– ident: ref37
  doi: 10.1109/TSMC.2020.3042876
– ident: ref34
  doi: 10.1016/j.ins.2021.08.062
– ident: ref43
  doi: 10.1109/TCYB.2021.3090067
– ident: ref19
  doi: 10.1109/JAS.2024.124803
– ident: ref20
  doi: 10.1109/TSMC.2024.3489662
– ident: ref30
  doi: 10.1109/TCYB.2021.3091532
– ident: ref5
  doi: 10.1109/TNNLS.2020.2984944
– ident: ref35
  doi: 10.1109/TNNLS.2022.3183991
– ident: ref4
  doi: 10.1109/TASE.2023.3298343
– ident: ref28
  doi: 10.1109/TFUZZ.2020.3036931
– ident: ref10
  doi: 10.1109/JAS.2023.123201
– ident: ref14
  doi: 10.1109/TAC.2019.2926554
– ident: ref17
  doi: 10.1109/TNNLS.2018.2850763
– ident: ref41
  doi: 10.1109/TNNLS.2023.3237586
– ident: ref18
  doi: 10.1109/TAC.2018.2833140
– ident: ref38
  doi: 10.1109/TNNLS.2015.2461452
SSID ssj0001286306
Score 2.3248456
Snippet This article investigates the leader-follower consensus for nonlinear multiagent systems (MASs) and proposes an adaptive dynamic programming (ADP)-based...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 4286
SubjectTerms Artificial neural networks
Differential games
Distributed adaptive dynamic programming (ADP)
Dynamic programming
Games
hierarchical Stackelberg-Nash game
leader-follower consensus
Multi-agent systems
Nash equilibrium
nonlinear multiagent systems (MASs)
Optimal control
Performance analysis
single-critic neural network (NN)
Topology
Title Distributed Adaptive Dynamic Programming for Consensus Control of Multiagent Systems Within Hierarchical Stackelberg-Nash Game Framework
URI https://ieeexplore.ieee.org/document/10938409
Volume 55
WOSCitedRecordID wos001470646600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2232
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286306
  issn: 2168-2216
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8IwFA5TdtgO--mY-0UOOw2qtWnT5ig652UizDFvJWleUdAqWvc37M9eXlpHLxvsUkJJoPRrk-8l730fIY9KKg0aDU281HUMA1eOWRSk-eMV4wrCMPK1NZsIR6NoOhXjsljd1sIAgE0-gxY27Vm-XiU73Cpro_QRBiQ1UgtDXhRrVTZUIs6sl6bX4QZ9cy1PMc2w9uTttWeiQS9oMcPRGQrrVNahirGKXVcGp_98ojNyUhJI2i0QPycHkF2Q44qs4CX56qMaLhpZgaZdLdc4pdF-4T1Px0VG1tJ0pYaxUrTsRL-LLbYwbZ2uUmrrciWWXdFS05x-zPPZPKPDOZYsWweVBTVU1cwCVibLGcntjL7IJdDBPuGrQd4Hz5Pe0CkdF5zE41Hu-CmHiDEdah-V57UQCiXqgyQFEC4YLpj6QvleKnmnowRPJBepUiGK0kPANLsi9WyVwTWhePynUN0viJShZNoE4RhMam0YXiC5bhJ3__7jpJQjR1eMRWzDElfECFmMkMUlZE3y9DNkXWhx_NW5gXBVOhZI3fxy_5Yc4fAiC-yO1PPNDu7JYfKZz7ebB_upfQNhRtJF
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA06BfXBz4nzMw8-CZ1d06bN49icE7cycOLeStKkrLAvts7f4M82N-2kLwq-lFCSUnra5tzk3nMQuhdcSCXB0MRJbEszcGHpSYHrL14QKpTvB640ZhN-GAajERsUxeqmFkYpZZLPVB2aZi9fzuM1LJU9gvQRBCTbaMdzXcfOy7VKSyoBJcZN02lQjb8-FvuYeuDj8K3f0vGg49WJZukEpHVKM1HJWsXMLJ2jf97TMTosKCRu5pifoC01O0UHJWHBM_TVBj1csLJSEjclX8BPDbdz93k8yHOypror1pwVg2knOF6soAWJ63ieYFOZy6HwCheq5vgjzcbpDHdTKFo2HioTrMmq_g8YoSwr5KsxfuZThTublK8qeu88DVtdq_BcsGKHBpnlJlQFhEhfuqA9LxkTIFLvxYlSzFaaDSYuE66TcNpoCEZjTlkihA-y9Mojkpyjymw-UxcIwwagAH0_LxCalEkdhkM4KaXmeB6nsobszfOP4kKQHHwxJpEJTGwWAWQRQBYVkNXQw8-QRa7G8VfnKsBV6pgjdfnL-Tu01x32e1HvJXy9QvtwqTwn7BpVsuVa3aDd-DNLV8tb89p9A3jU1Yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Adaptive+Dynamic+Programming+for+Consensus+Control+of+Multiagent+Systems+Within+Hierarchical+Stackelberg-Nash+Game+Framework&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Zhang%2C+Haoyan&rft.au=Zhang%2C+Yingwei&rft.au=Zhao%2C+Xudong&rft.au=Su%2C+Chun-Yi&rft.date=2025-06-01&rft.pub=IEEE&rft.issn=2168-2216&rft.volume=55&rft.issue=6&rft.spage=4286&rft.epage=4300&rft_id=info:doi/10.1109%2FTSMC.2025.3548319&rft.externalDocID=10938409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon