Distributed Adaptive Dynamic Programming for Consensus Control of Multiagent Systems Within Hierarchical Stackelberg-Nash Game Framework
This article investigates the leader-follower consensus for nonlinear multiagent systems (MASs) and proposes an adaptive dynamic programming (ADP)-based hierarchical Stackelberg-Nash optimal game control method. Initially, a coupled performance index function associated with consensus errors is cons...
Uloženo v:
| Vydáno v: | IEEE transactions on systems, man, and cybernetics. Systems Ročník 55; číslo 6; s. 4286 - 4300 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2025
|
| Témata: | |
| ISSN: | 2168-2216, 2168-2232 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This article investigates the leader-follower consensus for nonlinear multiagent systems (MASs) and proposes an adaptive dynamic programming (ADP)-based hierarchical Stackelberg-Nash optimal game control method. Initially, a coupled performance index function associated with consensus errors is constructed. As the positive-definite function with the quadratic form is allocated to the constructed consensus errors-based performance index function, the original system stabilization problem is converted into the issue of seeking an optimal control strategy profile for the leader and followers. Under the hierarchical Stackelberg-Nash differential game framework, the optimal control strategies are derived in sequence and further proved to compose the equilibrium points of Stackelberg-Nash differential games. Afterward, based on the ADP technique, a modified single-critic neural network (NN) is implemented and the coupled Hamilton-Jacobi-Bellman (HJB) equation is approximately identified. Under the proposed control scheme, the leader-follower consensus of the considered MAS can be achieved while consuming less control cost. Meanwhile, all signals of the MAS are ensured to be uniformly ultimately bounded. Finally, a numerical simulation and an application to the electrode regulating system of the three-phase electric arc furnace are given to verify the effectiveness of the proposed control method. |
|---|---|
| AbstractList | This article investigates the leader-follower consensus for nonlinear multiagent systems (MASs) and proposes an adaptive dynamic programming (ADP)-based hierarchical Stackelberg-Nash optimal game control method. Initially, a coupled performance index function associated with consensus errors is constructed. As the positive-definite function with the quadratic form is allocated to the constructed consensus errors-based performance index function, the original system stabilization problem is converted into the issue of seeking an optimal control strategy profile for the leader and followers. Under the hierarchical Stackelberg-Nash differential game framework, the optimal control strategies are derived in sequence and further proved to compose the equilibrium points of Stackelberg-Nash differential games. Afterward, based on the ADP technique, a modified single-critic neural network (NN) is implemented and the coupled Hamilton-Jacobi-Bellman (HJB) equation is approximately identified. Under the proposed control scheme, the leader-follower consensus of the considered MAS can be achieved while consuming less control cost. Meanwhile, all signals of the MAS are ensured to be uniformly ultimately bounded. Finally, a numerical simulation and an application to the electrode regulating system of the three-phase electric arc furnace are given to verify the effectiveness of the proposed control method. |
| Author | Zhang, Yingwei Zhao, Xudong Su, Chun-Yi Zhang, Haoyan |
| Author_xml | – sequence: 1 givenname: Haoyan orcidid: 0000-0003-3067-0710 surname: Zhang fullname: Zhang, Haoyan email: 1169384997@qq.com organization: School of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 2 givenname: Yingwei orcidid: 0000-0001-9736-6583 surname: Zhang fullname: Zhang, Yingwei email: zhangyingwei@mail.neu.edu.cn organization: State Laboratory of Synthesis Automation of Process Industry, Northeastern University, Shenyang, China – sequence: 3 givenname: Xudong orcidid: 0000-0002-1864-4686 surname: Zhao fullname: Zhao, Xudong email: xdzhaohit@gmail.com organization: Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China – sequence: 4 givenname: Chun-Yi orcidid: 0000-0002-1869-5563 surname: Su fullname: Su, Chun-Yi email: chun-yi.su@concordia.ca organization: State Laboratory of Synthesis Automation of Process Industry, Northeastern University, Shenyang, China |
| BookMark | eNp9kMtKAzEUhoNUsF4eQHCRF5ia22QmS6m2FawKVVwOmcxJGzsXSVKlb-Bj26Ei4sLNOf_ifD-c7xgN2q4FhM4pGVFK1OXTYj4eMcLSEU9Fzqk6QENGZZ4wxtngJ1N5hM5CeCWEUJZLTuQQfV67EL0rNxEqfFXpt-jeAV9vW904gx99t_S6aVy7xLbzeNy1AdqwCX2KvqtxZ_F8U0enl9BGvNiGCE3ALy6uXItnDrz2ZuWMrvEiarOGugS_TO51WOGpbgBPdvXw0fn1KTq0ug5w9r1P0PPk5mk8S-4eprfjq7vEMJnHRFgJOedVVgmRKVEpVRLBZWosgCLAOLVClYJZLSktlTRaKluWGc_yHFJe8ROU7XuN70LwYAvjoo6u_0e7uqCk6J0WvdOid1p8O92R9A_55l2j_fZf5mLPOAD4da94LnbjC5A9h2U |
| CODEN | ITSMFE |
| CitedBy_id | crossref_primary_10_1109_TASE_2025_3591792 |
| Cites_doi | 10.1016/j.automatica.2021.109687 10.1016/j.nahs.2021.101092 10.1002/rnc.6269 10.1109/TII.2019.2932109 10.1109/TSMC.2022.3218654 10.1080/00207179.2021.1916078 10.1016/j.automatica.2021.110077 10.1109/TASE.2023.3303359 10.1109/TNSE.2022.3196316 10.1109/tim.2023.3277987 10.1109/TNSE.2023.3240687 10.1109/TAC.2015.2406976 10.1109/TNNLS.2019.2904277 10.1109/TCYB.2020.3037321 10.1016/j.jfranklin.2021.04.048 10.1016/j.automatica.2018.03.020 10.1109/TCYB.2022.3232599 10.1109/TSMC.2023.3247888 10.1109/TSG.2022.3140927 10.1109/TSMC.2023.3248227 10.1109/TCYB.2022.3215619 10.1109/TNNLS.2020.3042331 10.1016/j.ast.2022.107840 10.1016/j.ins.2022.08.025 10.1109/TAC.2023.3300365 10.1109/TSG.2023.3275697 10.1109/TII.2021.3051961 10.1016/j.automatica.2022.110231 10.1109/TSMC.2024.3373016 10.1109/TSMC.2020.3042876 10.1016/j.ins.2021.08.062 10.1109/TCYB.2021.3090067 10.1109/JAS.2024.124803 10.1109/TSMC.2024.3489662 10.1109/TCYB.2021.3091532 10.1109/TNNLS.2020.2984944 10.1109/TNNLS.2022.3183991 10.1109/TASE.2023.3298343 10.1109/TFUZZ.2020.3036931 10.1109/JAS.2023.123201 10.1109/TAC.2019.2926554 10.1109/TNNLS.2018.2850763 10.1109/TNNLS.2023.3237586 10.1109/TAC.2018.2833140 10.1109/TNNLS.2015.2461452 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TSMC.2025.3548319 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-2232 |
| EndPage | 4300 |
| ExternalDocumentID | 10_1109_TSMC_2025_3548319 10938409 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: LiaoNing Revitalization Talents Program grantid: XLYC2008020 funderid: 10.13039/501100018617 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c268t-4f6e833d7d44794d99b04365cfee90e231f49b42fa611b96ca69fbb73788e53d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470646600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2216 |
| IngestDate | Tue Nov 18 21:27:22 EST 2025 Sat Nov 29 06:56:10 EST 2025 Wed Nov 19 08:27:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-4f6e833d7d44794d99b04365cfee90e231f49b42fa611b96ca69fbb73788e53d3 |
| ORCID | 0000-0001-9736-6583 0000-0002-1869-5563 0000-0002-1864-4686 0000-0003-3067-0710 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSMC_2025_3548319 crossref_primary_10_1109_TSMC_2025_3548319 ieee_primary_10938409 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
| PublicationTitleAbbrev | TSMC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref33 doi: 10.1016/j.automatica.2021.109687 – ident: ref21 doi: 10.1016/j.nahs.2021.101092 – ident: ref45 doi: 10.1002/rnc.6269 – ident: ref6 doi: 10.1109/TII.2019.2932109 – ident: ref11 doi: 10.1109/TSMC.2022.3218654 – ident: ref27 doi: 10.1080/00207179.2021.1916078 – ident: ref15 doi: 10.1016/j.automatica.2021.110077 – ident: ref36 doi: 10.1109/TASE.2023.3303359 – ident: ref3 doi: 10.1109/TNSE.2022.3196316 – ident: ref44 doi: 10.1109/tim.2023.3277987 – ident: ref29 doi: 10.1109/TNSE.2023.3240687 – ident: ref32 doi: 10.1109/TAC.2015.2406976 – ident: ref2 doi: 10.1109/TNNLS.2019.2904277 – ident: ref39 doi: 10.1109/TCYB.2020.3037321 – ident: ref25 doi: 10.1016/j.jfranklin.2021.04.048 – ident: ref1 doi: 10.1016/j.automatica.2018.03.020 – ident: ref42 doi: 10.1109/TCYB.2022.3232599 – ident: ref40 doi: 10.1109/TSMC.2023.3247888 – ident: ref8 doi: 10.1109/TSG.2022.3140927 – ident: ref12 doi: 10.1109/TSMC.2023.3248227 – ident: ref13 doi: 10.1109/TCYB.2022.3215619 – ident: ref22 doi: 10.1109/TNNLS.2020.3042331 – ident: ref26 doi: 10.1016/j.ast.2022.107840 – ident: ref24 doi: 10.1016/j.ins.2022.08.025 – ident: ref31 doi: 10.1109/TAC.2023.3300365 – ident: ref9 doi: 10.1109/TSG.2023.3275697 – ident: ref7 doi: 10.1109/TII.2021.3051961 – ident: ref23 doi: 10.1016/j.automatica.2022.110231 – ident: ref16 doi: 10.1109/TSMC.2024.3373016 – ident: ref37 doi: 10.1109/TSMC.2020.3042876 – ident: ref34 doi: 10.1016/j.ins.2021.08.062 – ident: ref43 doi: 10.1109/TCYB.2021.3090067 – ident: ref19 doi: 10.1109/JAS.2024.124803 – ident: ref20 doi: 10.1109/TSMC.2024.3489662 – ident: ref30 doi: 10.1109/TCYB.2021.3091532 – ident: ref5 doi: 10.1109/TNNLS.2020.2984944 – ident: ref35 doi: 10.1109/TNNLS.2022.3183991 – ident: ref4 doi: 10.1109/TASE.2023.3298343 – ident: ref28 doi: 10.1109/TFUZZ.2020.3036931 – ident: ref10 doi: 10.1109/JAS.2023.123201 – ident: ref14 doi: 10.1109/TAC.2019.2926554 – ident: ref17 doi: 10.1109/TNNLS.2018.2850763 – ident: ref41 doi: 10.1109/TNNLS.2023.3237586 – ident: ref18 doi: 10.1109/TAC.2018.2833140 – ident: ref38 doi: 10.1109/TNNLS.2015.2461452 |
| SSID | ssj0001286306 |
| Score | 2.3248456 |
| Snippet | This article investigates the leader-follower consensus for nonlinear multiagent systems (MASs) and proposes an adaptive dynamic programming (ADP)-based... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 4286 |
| SubjectTerms | Artificial neural networks Differential games Distributed adaptive dynamic programming (ADP) Dynamic programming Games hierarchical Stackelberg-Nash game leader-follower consensus Multi-agent systems Nash equilibrium nonlinear multiagent systems (MASs) Optimal control Performance analysis single-critic neural network (NN) Topology |
| Title | Distributed Adaptive Dynamic Programming for Consensus Control of Multiagent Systems Within Hierarchical Stackelberg-Nash Game Framework |
| URI | https://ieeexplore.ieee.org/document/10938409 |
| Volume | 55 |
| WOSCitedRecordID | wos001470646600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2232 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286306 issn: 2168-2216 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8IwFA5TdtgO--mY-0UOOw2qtWnT5ig652UizDFvJWleUdAqWvc37M9eXlpHLxvsUkJJoPRrk-8l730fIY9KKg0aDU281HUMA1eOWRSk-eMV4wrCMPK1NZsIR6NoOhXjsljd1sIAgE0-gxY27Vm-XiU73Cpro_QRBiQ1UgtDXhRrVTZUIs6sl6bX4QZ9cy1PMc2w9uTttWeiQS9oMcPRGQrrVNahirGKXVcGp_98ojNyUhJI2i0QPycHkF2Q44qs4CX56qMaLhpZgaZdLdc4pdF-4T1Px0VG1tJ0pYaxUrTsRL-LLbYwbZ2uUmrrciWWXdFS05x-zPPZPKPDOZYsWweVBTVU1cwCVibLGcntjL7IJdDBPuGrQd4Hz5Pe0CkdF5zE41Hu-CmHiDEdah-V57UQCiXqgyQFEC4YLpj6QvleKnmnowRPJBepUiGK0kPANLsi9WyVwTWhePynUN0viJShZNoE4RhMam0YXiC5bhJ3__7jpJQjR1eMRWzDElfECFmMkMUlZE3y9DNkXWhx_NW5gXBVOhZI3fxy_5Yc4fAiC-yO1PPNDu7JYfKZz7ebB_upfQNhRtJF |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA06BfXBz4nzMw8-CZ1d06bN49icE7cycOLeStKkrLAvts7f4M82N-2kLwq-lFCSUnra5tzk3nMQuhdcSCXB0MRJbEszcGHpSYHrL14QKpTvB640ZhN-GAajERsUxeqmFkYpZZLPVB2aZi9fzuM1LJU9gvQRBCTbaMdzXcfOy7VKSyoBJcZN02lQjb8-FvuYeuDj8K3f0vGg49WJZukEpHVKM1HJWsXMLJ2jf97TMTosKCRu5pifoC01O0UHJWHBM_TVBj1csLJSEjclX8BPDbdz93k8yHOypror1pwVg2knOF6soAWJ63ieYFOZy6HwCheq5vgjzcbpDHdTKFo2HioTrMmq_g8YoSwr5KsxfuZThTublK8qeu88DVtdq_BcsGKHBpnlJlQFhEhfuqA9LxkTIFLvxYlSzFaaDSYuE66TcNpoCEZjTlkihA-y9Mojkpyjymw-UxcIwwagAH0_LxCalEkdhkM4KaXmeB6nsobszfOP4kKQHHwxJpEJTGwWAWQRQBYVkNXQw8-QRa7G8VfnKsBV6pgjdfnL-Tu01x32e1HvJXy9QvtwqTwn7BpVsuVa3aDd-DNLV8tb89p9A3jU1Yw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Adaptive+Dynamic+Programming+for+Consensus+Control+of+Multiagent+Systems+Within+Hierarchical+Stackelberg-Nash+Game+Framework&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Zhang%2C+Haoyan&rft.au=Zhang%2C+Yingwei&rft.au=Zhao%2C+Xudong&rft.au=Su%2C+Chun-Yi&rft.date=2025-06-01&rft.pub=IEEE&rft.issn=2168-2216&rft.volume=55&rft.issue=6&rft.spage=4286&rft.epage=4300&rft_id=info:doi/10.1109%2FTSMC.2025.3548319&rft.externalDocID=10938409 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |