Efficient Algorithms for Minimizing the Kirchhoff Index via Adding Edges

The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance, where lower values signify enhanced performance. In this paper, we study the problem of minimizing the Kirchhoff index by adding edges. We first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering Jg. 37; H. 6; S. 3342 - 3355
Hauptverfasser: Zhou, Xiaotian, Zehmakan, Ahad N., Zhang, Zhongzhi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2025
Schlagworte:
ISSN:1041-4347, 1558-2191
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance, where lower values signify enhanced performance. In this paper, we study the problem of minimizing the Kirchhoff index by adding edges. We first provide a greedy algorithm for solving this problem and give an analysis of its quality based on the bounds of the submodularity ratio and the curvature. Then, we introduce a gradient-based greedy algorithm as a new paradigm to solve this problem. To accelerate the computation cost, we leverage geometric properties, convex hull approximation, and approximation of the projected coordinate of each point. To further improve this algorithm, we use pre-pruning and fast update techniques, making it particularly suitable for large networks. Our proposed algorithms have nearly-linear time complexity. We provide extensive experiments on ten real networks to evaluate the quality of our algorithms. The results demonstrate that our proposed algorithms outperform the state-of-the-art methods in terms of efficiency and effectiveness. Moreover, our algorithms are scalable to large graphs with over 5 million nodes and 12 million edges.
AbstractList The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance, where lower values signify enhanced performance. In this paper, we study the problem of minimizing the Kirchhoff index by adding edges. We first provide a greedy algorithm for solving this problem and give an analysis of its quality based on the bounds of the submodularity ratio and the curvature. Then, we introduce a gradient-based greedy algorithm as a new paradigm to solve this problem. To accelerate the computation cost, we leverage geometric properties, convex hull approximation, and approximation of the projected coordinate of each point. To further improve this algorithm, we use pre-pruning and fast update techniques, making it particularly suitable for large networks. Our proposed algorithms have nearly-linear time complexity. We provide extensive experiments on ten real networks to evaluate the quality of our algorithms. The results demonstrate that our proposed algorithms outperform the state-of-the-art methods in terms of efficiency and effectiveness. Moreover, our algorithms are scalable to large graphs with over 5 million nodes and 12 million edges.
Author Zhou, Xiaotian
Zhang, Zhongzhi
Zehmakan, Ahad N.
Author_xml – sequence: 1
  givenname: Xiaotian
  orcidid: 0000-0002-2150-6284
  surname: Zhou
  fullname: Zhou, Xiaotian
  email: 22110240080@m.fudan.edu.cn
  organization: Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
– sequence: 2
  givenname: Ahad N.
  orcidid: 0000-0002-8569-6347
  surname: Zehmakan
  fullname: Zehmakan, Ahad N.
  email: ahadn.zehmakan@anu.edu.au
  organization: School of Computing, Australian National University, Canberra, ACT, Australia
– sequence: 3
  givenname: Zhongzhi
  orcidid: 0000-0003-1260-2079
  surname: Zhang
  fullname: Zhang, Zhongzhi
  email: zhangzz@fudan.edu.cn
  organization: Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China
BookMark eNp9kM1Kw0AURgepYFt9AMHFvEDi_GdmWWq0pRU3dR2mkzvNSDuRSRD16W1oF-LC1b2Xy_k-OBM0im0EhG4pySkl5n6zeihzRpjMuZRMCXGBxlRKnTFq6Oi4E0EzwUVxhSZd90YI0YWmY7QovQ8uQOzxbL9rU-ibQ4d9m_BziOEQvkPc4b4BvArJNU3rPV7GGj7xR7B4VtfDu6x30F2jS2_3Hdyc5xS9Ppab-SJbvzwt57N15pjSfSaUd5RRS32ttSAatJEF87AVQgqmgIEBBdZYwa22w0G0d0aBVPW2AOBTRE-5LrVdl8BX7ykcbPqqKKkGFdWgohpUVGcVR6b4w7jQ2z60sU827P8l705kAIBfTYaTwnD-A0Obbkw
CODEN ITKEEH
CitedBy_id crossref_primary_10_1007_s11227_025_07578_z
crossref_primary_10_1016_j_chaos_2025_116897
Cites_doi 10.1007/BF01164627
10.1109/ECC.2015.7330605
10.1145/1805964.1805971
10.1109/TKDE.2023.3309987
10.1080/03610926.2012.741742
10.1137/1.9781611975031.153
10.1145/2591796.2591833
10.1109/TIT.2019.2940263
10.1145/3366423.3380093
10.1016/j.laa.2011.02.024
10.1515/9781400873173
10.1137/050645452
10.1609/aaai.v29i1.9277
10.1007/s10479-014-1707-2
10.1145/3459637.3482274
10.1090/conm/026/737400
10.1109/JPROC.2018.2821924
10.1109/TCYB.2018.2868124
10.1109/TCNS.2017.2655731
10.1145/3637528.3671859
10.1109/ASONAM55673.2022.10068613
10.1109/JSAC.2010.100105
10.1145/2898361
10.1145/3447548.3467361
10.1145/3448016.3457329
10.1145/3588696
10.1109/TKDE.2018.2807452
10.24963/ijcai.2018/491
10.24963/ijcai.2018/503
10.1145/1374376.1374456
10.1109/TNET.2015.2475616
10.1145/2953882
10.1109/TCYB.2017.2781714
10.1016/j.orl.2023.10.002
10.1016/j.dam.2006.09.008
10.1109/TPAMI.2007.1103
10.1145/3588922
10.1109/CVPR.2008.4587840
10.1145/375551.375608
10.1109/TAC.2018.2863203
10.1109/TKDE.2018.2849727
10.1109/ICDM54844.2022.00095
10.1145/1993636.1993674
10.23919/DATE56975.2023.10137201
10.1609/aaai.v33i01.3301501
10.1145/2588555.2610497
10.1109/TCNS.2014.2357552
10.1109/TAC.2015.2426317
10.1103/PhysRevE.96.032311
10.1145/3308558.3313490
10.1137/0716029
10.1109/TKDE.2007.46
10.1016/j.neucom.2020.12.075
10.1109/TITS.2018.2868955
10.1109/TKDE.2022.3163672
10.1137/0124033
10.1137/08074489X
10.1007/s00453-014-9886-4
10.1145/2736277.2741125
10.1007/978-3-031-21131-7_33
10.1109/CDC.2006.377282
10.1145/3654937
10.1007/BF02573985
10.1140/epjb/e2014-50276-0
10.1016/j.amc.2018.09.002
10.1137/090771430
10.1109/TIT.2019.2925610
10.1080/00029890.2002.11919905
10.1137/1.9781611973730.134
10.1007/s10479-020-03557-0
10.1145/3514221.3517874
10.1145/237814.237880
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TKDE.2025.3552644
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 3355
ExternalDocumentID 10_1109_TKDE_2025_3552644
10930793
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62372112; 61872093
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c268t-46fc121a1fd88408e89572feb445426e2e9e6ea9a43a8ae9e608fc96e56db7ee3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001480467000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Tue Nov 18 21:43:03 EST 2025
Sat Nov 29 07:58:35 EST 2025
Wed Aug 27 01:53:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-46fc121a1fd88408e89572feb445426e2e9e6ea9a43a8ae9e608fc96e56db7ee3
ORCID 0000-0002-2150-6284
0000-0002-8569-6347
0000-0003-1260-2079
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2025_3552644
ieee_primary_10930793
crossref_primary_10_1109_TKDE_2025_3552644
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
Gutman (ref67) 2012; 1
ref18
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
Black (ref23)
ref3
ref6
ref5
ref81
ref40
Summers (ref39) 2017
ref80
ref35
ref79
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref77
ref32
ref76
Angriman (ref60)
ref2
ref1
ref38
Alev (ref4)
ref71
ref70
ref73
ref72
Awasthi (ref50)
ref24
ref68
ref26
Das (ref33)
ref25
ref69
ref20
ref63
ref22
ref66
ref21
ref65
Bian (ref34)
ref28
ref27
ref29
Hayashi (ref64)
ref62
ref61
References_xml – ident: ref14
  doi: 10.1007/BF01164627
– ident: ref29
  doi: 10.1109/ECC.2015.7330605
– ident: ref41
  doi: 10.1145/1805964.1805971
– ident: ref22
  doi: 10.1109/TKDE.2023.3309987
– ident: ref68
  doi: 10.1080/03610926.2012.741742
– ident: ref24
  doi: 10.1137/1.9781611975031.153
– ident: ref56
  doi: 10.1145/2591796.2591833
– ident: ref77
  doi: 10.1109/TIT.2019.2940263
– ident: ref72
  doi: 10.1145/3366423.3380093
– ident: ref35
  doi: 10.1016/j.laa.2011.02.024
– ident: ref48
  doi: 10.1515/9781400873173
– ident: ref15
  doi: 10.1137/050645452
– ident: ref61
  doi: 10.1609/aaai.v29i1.9277
– ident: ref52
  doi: 10.1007/s10479-014-1707-2
– ident: ref47
  doi: 10.1145/3459637.3482274
– ident: ref53
  doi: 10.1090/conm/026/737400
– ident: ref13
  doi: 10.1109/JPROC.2018.2821924
– ident: ref21
  doi: 10.1109/TCYB.2018.2868124
– ident: ref46
  doi: 10.1109/TCNS.2017.2655731
– ident: ref74
  doi: 10.1145/3637528.3671859
– ident: ref30
  doi: 10.1109/ASONAM55673.2022.10068613
– start-page: 1
  volume-title: Proc. 28th Annu. Eur. Symp. Algorithms
  ident: ref60
  article-title: Approximation of the diagonal of a Laplacian’s pseudoinverse for complex network analysis
– volume: 1
  start-page: 27
  issue: 2
  year: 2012
  ident: ref67
  article-title: Degree resistance distance of unicyclic graphs
  publication-title: Trans. Comb.
– ident: ref17
  doi: 10.1109/JSAC.2010.100105
– ident: ref62
  doi: 10.1145/2898361
– ident: ref42
  doi: 10.1145/3447548.3467361
– ident: ref11
  doi: 10.1145/3448016.3457329
– ident: ref44
  doi: 10.1145/3588696
– ident: ref7
  doi: 10.1109/TKDE.2018.2807452
– ident: ref9
  doi: 10.24963/ijcai.2018/491
– ident: ref25
  doi: 10.24963/ijcai.2018/503
– ident: ref1
  doi: 10.1145/1374376.1374456
– ident: ref18
  doi: 10.1109/TNET.2015.2475616
– ident: ref75
  doi: 10.1145/2953882
– ident: ref20
  doi: 10.1109/TCYB.2017.2781714
– ident: ref36
  doi: 10.1016/j.orl.2023.10.002
– start-page: 1057
  volume-title: Proc. 28th Int. Conf. Mach. Learn.
  ident: ref33
  article-title: Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection
– ident: ref66
  doi: 10.1016/j.dam.2006.09.008
– start-page: 41:1
  volume-title: Proc. 9th Innovations Theor. Comput. Sci. Conf.
  ident: ref4
  article-title: Graph clustering using effective resistance
– ident: ref5
  doi: 10.1109/TPAMI.2007.1103
– ident: ref45
  doi: 10.1145/3588922
– ident: ref8
  doi: 10.1109/CVPR.2008.4587840
– ident: ref54
  doi: 10.1145/375551.375608
– ident: ref71
  doi: 10.1109/TAC.2018.2863203
– ident: ref27
  doi: 10.1109/TKDE.2018.2849727
– start-page: 2528
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref23
  article-title: Understanding oversquashing in GNNs through the lens of effective resistance
– ident: ref79
  doi: 10.1109/ICDM54844.2022.00095
– ident: ref2
  doi: 10.1145/1993636.1993674
– ident: ref43
  doi: 10.23919/DATE56975.2023.10137201
– ident: ref76
  doi: 10.1609/aaai.v33i01.3301501
– ident: ref12
  doi: 10.1145/2588555.2610497
– ident: ref19
  doi: 10.1109/TCNS.2014.2357552
– ident: ref70
  doi: 10.1109/TAC.2015.2426317
– ident: ref58
  doi: 10.1103/PhysRevE.96.032311
– ident: ref10
  doi: 10.1145/3308558.3313490
– ident: ref80
  doi: 10.1137/0716029
– ident: ref6
  doi: 10.1109/TKDE.2007.46
– ident: ref26
  doi: 10.1016/j.neucom.2020.12.075
– ident: ref31
  doi: 10.1109/TITS.2018.2868955
– ident: ref28
  doi: 10.1109/TKDE.2022.3163672
– ident: ref38
  doi: 10.1137/0124033
– ident: ref81
  doi: 10.1137/08074489X
– start-page: 498
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref34
  article-title: Guarantees for greedy maximization of non-submodular functions with applications
– ident: ref78
  doi: 10.1007/s00453-014-9886-4
– ident: ref63
  doi: 10.1145/2736277.2741125
– ident: ref37
  doi: 10.1007/978-3-031-21131-7_33
– ident: ref40
  doi: 10.1109/CDC.2006.377282
– ident: ref73
  doi: 10.1145/3654937
– ident: ref49
  doi: 10.1007/BF02573985
– ident: ref59
  doi: 10.1140/epjb/e2014-50276-0
– ident: ref32
  doi: 10.1016/j.amc.2018.09.002
– ident: ref55
  doi: 10.1137/090771430
– year: 2017
  ident: ref39
  article-title: Correction to “topology design for optimal network coherence”
– start-page: 1387
  volume-title: Proc. Int. Conf. Artif. Intell. Stat.
  ident: ref50
  article-title: Robust vertex enumeration for convex hulls in high dimensions
– ident: ref16
  doi: 10.1109/TIT.2019.2925610
– ident: ref69
  doi: 10.1080/00029890.2002.11919905
– ident: ref3
  doi: 10.1137/1.9781611973730.134
– ident: ref51
  doi: 10.1007/s10479-020-03557-0
– ident: ref57
  doi: 10.1145/3514221.3517874
– start-page: 3733
  volume-title: Proc. Int. Joint Conf. Artif. Intell.
  ident: ref64
  article-title: Efficient algorithms for spanning tree centrality
– ident: ref65
  doi: 10.1145/237814.237880
SSID ssj0008781
Score 2.4855196
Snippet The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance,...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 3342
SubjectTerms Approximation algorithms
Data mining
Error analysis
graph algorithm
Greedy algorithms
Indexes
Kirchhoff index
Laplace equations
Optimization
Resistance
Resistance distance
Time complexity
Vectors
Title Efficient Algorithms for Minimizing the Kirchhoff Index via Adding Edges
URI https://ieeexplore.ieee.org/document/10930793
Volume 37
WOSCitedRecordID wos001480467000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADhVLEWx6YkPpIGjv2WEERqKJiKFK3yEnONFKboj4Y-PXcOaEqA0hsiXWOIn927i72fR9jN1RtqQAnr-jGlhIUXFLCqqbREltNYoS2TmwiHA7VeKxfymJ1VwsDAO7wGbTo0u3lp_NkTb_K2kR9RIRuFVYJQ1kUa20-uyp0iqSYXmBS1A3CcgsT-7RHg_s-poK-aKF3pQjghxPaUlVxTuWh9s_XOWQHZfTIewXcR2wH8jqrfSsz8HKh1tn-Fs3gMXvsO54IfBjvTd_mi2w1mS05Rqv8OcuzWfaJVhwDQT7IcNZP5tbyJyJR5B-Z4b2UvBvvExlEg70-9Ed3j81SQaGZ-FKtmoG0ied7xrOpwkwOQdEi9C3EQSDQNYMPGiQYbYKuUYZuOsomCJOQRLsM3RNWzec5nDIuQXoJKKlUDIFOSa8jDZWIfaFi7QXxGet8D2mUlPTipHIxjVya0dERoRARClGJwhm73XR5L7g1_jJuEAJbhsXgn__SfsH2qHtxquuSVVeLNVyx3eRjlS0X127qfAHs5r-n
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xScCBHbHjAyekQrM4sY8VtCrqIg5F4hY5yZhGoi1qCwe-nhk3VOUAErfEsq3Iz87M2J73AK4421IhTV4ZpJYDFFpS0qqK0RGVmsxIbZ3YRNztqudn_Vgmq7tcGER0l8_whh_dWX4-yt55q-yWqY-Y0G0ZVlk6q0zXmv94Vew0SSnAoLAoCOPyEJNa3fZa93UKBn15Q_aVfYAfZmhBV8WZlcb2Pz9oB7ZK_1HUZoDvwhIO92D7W5tBlEt1DzYXiAb3oVl3TBHUmai9vozGxbQ_mAjyV0WnGBaD4pNqCXIFRauged8fWSsemEZRfBRG1HK2b6LOdBAH8NSo9-6alVJDoZL5kZpWwshmnu8Zz-aKYjmCRcvYt5iGoSTjjD5qjNBoEwZGGX6pKpsRUDJi4mUMDmFlOBriEYgIIy9DFSmVYqhzVuzIYyVTX6pUe2F6DNXvIU2ykmCcdS5eExdoVHXCKCSMQlKicAzX8yZvM3aNvyofMAILFWeDf_JL-SWsN3uddtJ-6LZOYYO7mt3xOoOV6fgdz2Et-5gWk_GFm0ZfF2vC8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Algorithms+for+Minimizing+the+Kirchhoff+Index+via+Adding+Edges&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Zhou%2C+Xiaotian&rft.au=Zehmakan%2C+Ahad+N.&rft.au=Zhang%2C+Zhongzhi&rft.date=2025-06-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=37&rft.issue=6&rft.spage=3342&rft.epage=3355&rft_id=info:doi/10.1109%2FTKDE.2025.3552644&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2025_3552644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon