Efficient Algorithms for Minimizing the Kirchhoff Index via Adding Edges
The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance, where lower values signify enhanced performance. In this paper, we study the problem of minimizing the Kirchhoff index by adding edges. We first...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on knowledge and data engineering Jg. 37; H. 6; S. 3342 - 3355 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2025
|
| Schlagworte: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance, where lower values signify enhanced performance. In this paper, we study the problem of minimizing the Kirchhoff index by adding edges. We first provide a greedy algorithm for solving this problem and give an analysis of its quality based on the bounds of the submodularity ratio and the curvature. Then, we introduce a gradient-based greedy algorithm as a new paradigm to solve this problem. To accelerate the computation cost, we leverage geometric properties, convex hull approximation, and approximation of the projected coordinate of each point. To further improve this algorithm, we use pre-pruning and fast update techniques, making it particularly suitable for large networks. Our proposed algorithms have nearly-linear time complexity. We provide extensive experiments on ten real networks to evaluate the quality of our algorithms. The results demonstrate that our proposed algorithms outperform the state-of-the-art methods in terms of efficiency and effectiveness. Moreover, our algorithms are scalable to large graphs with over 5 million nodes and 12 million edges. |
|---|---|
| AbstractList | The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance, where lower values signify enhanced performance. In this paper, we study the problem of minimizing the Kirchhoff index by adding edges. We first provide a greedy algorithm for solving this problem and give an analysis of its quality based on the bounds of the submodularity ratio and the curvature. Then, we introduce a gradient-based greedy algorithm as a new paradigm to solve this problem. To accelerate the computation cost, we leverage geometric properties, convex hull approximation, and approximation of the projected coordinate of each point. To further improve this algorithm, we use pre-pruning and fast update techniques, making it particularly suitable for large networks. Our proposed algorithms have nearly-linear time complexity. We provide extensive experiments on ten real networks to evaluate the quality of our algorithms. The results demonstrate that our proposed algorithms outperform the state-of-the-art methods in terms of efficiency and effectiveness. Moreover, our algorithms are scalable to large graphs with over 5 million nodes and 12 million edges. |
| Author | Zhou, Xiaotian Zhang, Zhongzhi Zehmakan, Ahad N. |
| Author_xml | – sequence: 1 givenname: Xiaotian orcidid: 0000-0002-2150-6284 surname: Zhou fullname: Zhou, Xiaotian email: 22110240080@m.fudan.edu.cn organization: Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China – sequence: 2 givenname: Ahad N. orcidid: 0000-0002-8569-6347 surname: Zehmakan fullname: Zehmakan, Ahad N. email: ahadn.zehmakan@anu.edu.au organization: School of Computing, Australian National University, Canberra, ACT, Australia – sequence: 3 givenname: Zhongzhi orcidid: 0000-0003-1260-2079 surname: Zhang fullname: Zhang, Zhongzhi email: zhangzz@fudan.edu.cn organization: Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, China |
| BookMark | eNp9kM1Kw0AURgepYFt9AMHFvEDi_GdmWWq0pRU3dR2mkzvNSDuRSRD16W1oF-LC1b2Xy_k-OBM0im0EhG4pySkl5n6zeihzRpjMuZRMCXGBxlRKnTFq6Oi4E0EzwUVxhSZd90YI0YWmY7QovQ8uQOzxbL9rU-ibQ4d9m_BziOEQvkPc4b4BvArJNU3rPV7GGj7xR7B4VtfDu6x30F2jS2_3Hdyc5xS9Ppab-SJbvzwt57N15pjSfSaUd5RRS32ttSAatJEF87AVQgqmgIEBBdZYwa22w0G0d0aBVPW2AOBTRE-5LrVdl8BX7ykcbPqqKKkGFdWgohpUVGcVR6b4w7jQ2z60sU827P8l705kAIBfTYaTwnD-A0Obbkw |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1007_s11227_025_07578_z crossref_primary_10_1016_j_chaos_2025_116897 |
| Cites_doi | 10.1007/BF01164627 10.1109/ECC.2015.7330605 10.1145/1805964.1805971 10.1109/TKDE.2023.3309987 10.1080/03610926.2012.741742 10.1137/1.9781611975031.153 10.1145/2591796.2591833 10.1109/TIT.2019.2940263 10.1145/3366423.3380093 10.1016/j.laa.2011.02.024 10.1515/9781400873173 10.1137/050645452 10.1609/aaai.v29i1.9277 10.1007/s10479-014-1707-2 10.1145/3459637.3482274 10.1090/conm/026/737400 10.1109/JPROC.2018.2821924 10.1109/TCYB.2018.2868124 10.1109/TCNS.2017.2655731 10.1145/3637528.3671859 10.1109/ASONAM55673.2022.10068613 10.1109/JSAC.2010.100105 10.1145/2898361 10.1145/3447548.3467361 10.1145/3448016.3457329 10.1145/3588696 10.1109/TKDE.2018.2807452 10.24963/ijcai.2018/491 10.24963/ijcai.2018/503 10.1145/1374376.1374456 10.1109/TNET.2015.2475616 10.1145/2953882 10.1109/TCYB.2017.2781714 10.1016/j.orl.2023.10.002 10.1016/j.dam.2006.09.008 10.1109/TPAMI.2007.1103 10.1145/3588922 10.1109/CVPR.2008.4587840 10.1145/375551.375608 10.1109/TAC.2018.2863203 10.1109/TKDE.2018.2849727 10.1109/ICDM54844.2022.00095 10.1145/1993636.1993674 10.23919/DATE56975.2023.10137201 10.1609/aaai.v33i01.3301501 10.1145/2588555.2610497 10.1109/TCNS.2014.2357552 10.1109/TAC.2015.2426317 10.1103/PhysRevE.96.032311 10.1145/3308558.3313490 10.1137/0716029 10.1109/TKDE.2007.46 10.1016/j.neucom.2020.12.075 10.1109/TITS.2018.2868955 10.1109/TKDE.2022.3163672 10.1137/0124033 10.1137/08074489X 10.1007/s00453-014-9886-4 10.1145/2736277.2741125 10.1007/978-3-031-21131-7_33 10.1109/CDC.2006.377282 10.1145/3654937 10.1007/BF02573985 10.1140/epjb/e2014-50276-0 10.1016/j.amc.2018.09.002 10.1137/090771430 10.1109/TIT.2019.2925610 10.1080/00029890.2002.11919905 10.1137/1.9781611973730.134 10.1007/s10479-020-03557-0 10.1145/3514221.3517874 10.1145/237814.237880 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TKDE.2025.3552644 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 3355 |
| ExternalDocumentID | 10_1109_TKDE_2025_3552644 10930793 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62372112; 61872093 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TAF TN5 UHB VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c268t-46fc121a1fd88408e89572feb445426e2e9e6ea9a43a8ae9e608fc96e56db7ee3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001480467000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Tue Nov 18 21:43:03 EST 2025 Sat Nov 29 07:58:35 EST 2025 Wed Aug 27 01:53:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c268t-46fc121a1fd88408e89572feb445426e2e9e6ea9a43a8ae9e608fc96e56db7ee3 |
| ORCID | 0000-0002-2150-6284 0000-0002-8569-6347 0000-0003-1260-2079 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2025_3552644 ieee_primary_10930793 crossref_primary_10_1109_TKDE_2025_3552644 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 Gutman (ref67) 2012; 1 ref18 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 Black (ref23) ref3 ref6 ref5 ref81 ref40 Summers (ref39) 2017 ref80 ref35 ref79 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref77 ref32 ref76 Angriman (ref60) ref2 ref1 ref38 Alev (ref4) ref71 ref70 ref73 ref72 Awasthi (ref50) ref24 ref68 ref26 Das (ref33) ref25 ref69 ref20 ref63 ref22 ref66 ref21 ref65 Bian (ref34) ref28 ref27 ref29 Hayashi (ref64) ref62 ref61 |
| References_xml | – ident: ref14 doi: 10.1007/BF01164627 – ident: ref29 doi: 10.1109/ECC.2015.7330605 – ident: ref41 doi: 10.1145/1805964.1805971 – ident: ref22 doi: 10.1109/TKDE.2023.3309987 – ident: ref68 doi: 10.1080/03610926.2012.741742 – ident: ref24 doi: 10.1137/1.9781611975031.153 – ident: ref56 doi: 10.1145/2591796.2591833 – ident: ref77 doi: 10.1109/TIT.2019.2940263 – ident: ref72 doi: 10.1145/3366423.3380093 – ident: ref35 doi: 10.1016/j.laa.2011.02.024 – ident: ref48 doi: 10.1515/9781400873173 – ident: ref15 doi: 10.1137/050645452 – ident: ref61 doi: 10.1609/aaai.v29i1.9277 – ident: ref52 doi: 10.1007/s10479-014-1707-2 – ident: ref47 doi: 10.1145/3459637.3482274 – ident: ref53 doi: 10.1090/conm/026/737400 – ident: ref13 doi: 10.1109/JPROC.2018.2821924 – ident: ref21 doi: 10.1109/TCYB.2018.2868124 – ident: ref46 doi: 10.1109/TCNS.2017.2655731 – ident: ref74 doi: 10.1145/3637528.3671859 – ident: ref30 doi: 10.1109/ASONAM55673.2022.10068613 – start-page: 1 volume-title: Proc. 28th Annu. Eur. Symp. Algorithms ident: ref60 article-title: Approximation of the diagonal of a Laplacian’s pseudoinverse for complex network analysis – volume: 1 start-page: 27 issue: 2 year: 2012 ident: ref67 article-title: Degree resistance distance of unicyclic graphs publication-title: Trans. Comb. – ident: ref17 doi: 10.1109/JSAC.2010.100105 – ident: ref62 doi: 10.1145/2898361 – ident: ref42 doi: 10.1145/3447548.3467361 – ident: ref11 doi: 10.1145/3448016.3457329 – ident: ref44 doi: 10.1145/3588696 – ident: ref7 doi: 10.1109/TKDE.2018.2807452 – ident: ref9 doi: 10.24963/ijcai.2018/491 – ident: ref25 doi: 10.24963/ijcai.2018/503 – ident: ref1 doi: 10.1145/1374376.1374456 – ident: ref18 doi: 10.1109/TNET.2015.2475616 – ident: ref75 doi: 10.1145/2953882 – ident: ref20 doi: 10.1109/TCYB.2017.2781714 – ident: ref36 doi: 10.1016/j.orl.2023.10.002 – start-page: 1057 volume-title: Proc. 28th Int. Conf. Mach. Learn. ident: ref33 article-title: Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection – ident: ref66 doi: 10.1016/j.dam.2006.09.008 – start-page: 41:1 volume-title: Proc. 9th Innovations Theor. Comput. Sci. Conf. ident: ref4 article-title: Graph clustering using effective resistance – ident: ref5 doi: 10.1109/TPAMI.2007.1103 – ident: ref45 doi: 10.1145/3588922 – ident: ref8 doi: 10.1109/CVPR.2008.4587840 – ident: ref54 doi: 10.1145/375551.375608 – ident: ref71 doi: 10.1109/TAC.2018.2863203 – ident: ref27 doi: 10.1109/TKDE.2018.2849727 – start-page: 2528 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref23 article-title: Understanding oversquashing in GNNs through the lens of effective resistance – ident: ref79 doi: 10.1109/ICDM54844.2022.00095 – ident: ref2 doi: 10.1145/1993636.1993674 – ident: ref43 doi: 10.23919/DATE56975.2023.10137201 – ident: ref76 doi: 10.1609/aaai.v33i01.3301501 – ident: ref12 doi: 10.1145/2588555.2610497 – ident: ref19 doi: 10.1109/TCNS.2014.2357552 – ident: ref70 doi: 10.1109/TAC.2015.2426317 – ident: ref58 doi: 10.1103/PhysRevE.96.032311 – ident: ref10 doi: 10.1145/3308558.3313490 – ident: ref80 doi: 10.1137/0716029 – ident: ref6 doi: 10.1109/TKDE.2007.46 – ident: ref26 doi: 10.1016/j.neucom.2020.12.075 – ident: ref31 doi: 10.1109/TITS.2018.2868955 – ident: ref28 doi: 10.1109/TKDE.2022.3163672 – ident: ref38 doi: 10.1137/0124033 – ident: ref81 doi: 10.1137/08074489X – start-page: 498 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref34 article-title: Guarantees for greedy maximization of non-submodular functions with applications – ident: ref78 doi: 10.1007/s00453-014-9886-4 – ident: ref63 doi: 10.1145/2736277.2741125 – ident: ref37 doi: 10.1007/978-3-031-21131-7_33 – ident: ref40 doi: 10.1109/CDC.2006.377282 – ident: ref73 doi: 10.1145/3654937 – ident: ref49 doi: 10.1007/BF02573985 – ident: ref59 doi: 10.1140/epjb/e2014-50276-0 – ident: ref32 doi: 10.1016/j.amc.2018.09.002 – ident: ref55 doi: 10.1137/090771430 – year: 2017 ident: ref39 article-title: Correction to “topology design for optimal network coherence” – start-page: 1387 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref50 article-title: Robust vertex enumeration for convex hulls in high dimensions – ident: ref16 doi: 10.1109/TIT.2019.2925610 – ident: ref69 doi: 10.1080/00029890.2002.11919905 – ident: ref3 doi: 10.1137/1.9781611973730.134 – ident: ref51 doi: 10.1007/s10479-020-03557-0 – ident: ref57 doi: 10.1145/3514221.3517874 – start-page: 3733 volume-title: Proc. Int. Joint Conf. Artif. Intell. ident: ref64 article-title: Efficient algorithms for spanning tree centrality – ident: ref65 doi: 10.1145/237814.237880 |
| SSID | ssj0008781 |
| Score | 2.4855196 |
| Snippet | The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance,... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 3342 |
| SubjectTerms | Approximation algorithms Data mining Error analysis graph algorithm Greedy algorithms Indexes Kirchhoff index Laplace equations Optimization Resistance Resistance distance Time complexity Vectors |
| Title | Efficient Algorithms for Minimizing the Kirchhoff Index via Adding Edges |
| URI | https://ieeexplore.ieee.org/document/10930793 |
| Volume | 37 |
| WOSCitedRecordID | wos001480467000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADhVLEWx6YkPpIGjv2WEERqKJiKFK3yEnONFKboj4Y-PXcOaEqA0hsiXWOIn927i72fR9jN1RtqQAnr-jGlhIUXFLCqqbREltNYoS2TmwiHA7VeKxfymJ1VwsDAO7wGbTo0u3lp_NkTb_K2kR9RIRuFVYJQ1kUa20-uyp0iqSYXmBS1A3CcgsT-7RHg_s-poK-aKF3pQjghxPaUlVxTuWh9s_XOWQHZfTIewXcR2wH8jqrfSsz8HKh1tn-Fs3gMXvsO54IfBjvTd_mi2w1mS05Rqv8OcuzWfaJVhwDQT7IcNZP5tbyJyJR5B-Z4b2UvBvvExlEg70-9Ed3j81SQaGZ-FKtmoG0ied7xrOpwkwOQdEi9C3EQSDQNYMPGiQYbYKuUYZuOsomCJOQRLsM3RNWzec5nDIuQXoJKKlUDIFOSa8jDZWIfaFi7QXxGet8D2mUlPTipHIxjVya0dERoRARClGJwhm73XR5L7g1_jJuEAJbhsXgn__SfsH2qHtxquuSVVeLNVyx3eRjlS0X127qfAHs5r-n |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xScCBHbHjAyekQrM4sY8VtCrqIg5F4hY5yZhGoi1qCwe-nhk3VOUAErfEsq3Iz87M2J73AK4421IhTV4ZpJYDFFpS0qqK0RGVmsxIbZ3YRNztqudn_Vgmq7tcGER0l8_whh_dWX4-yt55q-yWqY-Y0G0ZVlk6q0zXmv94Vew0SSnAoLAoCOPyEJNa3fZa93UKBn15Q_aVfYAfZmhBV8WZlcb2Pz9oB7ZK_1HUZoDvwhIO92D7W5tBlEt1DzYXiAb3oVl3TBHUmai9vozGxbQ_mAjyV0WnGBaD4pNqCXIFRauged8fWSsemEZRfBRG1HK2b6LOdBAH8NSo9-6alVJDoZL5kZpWwshmnu8Zz-aKYjmCRcvYt5iGoSTjjD5qjNBoEwZGGX6pKpsRUDJi4mUMDmFlOBriEYgIIy9DFSmVYqhzVuzIYyVTX6pUe2F6DNXvIU2ykmCcdS5eExdoVHXCKCSMQlKicAzX8yZvM3aNvyofMAILFWeDf_JL-SWsN3uddtJ-6LZOYYO7mt3xOoOV6fgdz2Et-5gWk_GFm0ZfF2vC8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Algorithms+for+Minimizing+the+Kirchhoff+Index+via+Adding+Edges&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Zhou%2C+Xiaotian&rft.au=Zehmakan%2C+Ahad+N.&rft.au=Zhang%2C+Zhongzhi&rft.date=2025-06-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=37&rft.issue=6&rft.spage=3342&rft.epage=3355&rft_id=info:doi/10.1109%2FTKDE.2025.3552644&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2025_3552644 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |