Modified stable Euler-number algorithm implementation for real-time image binarization

The stable Euler-number-based image binarization has been shown to give excellent visual results for images containing high amount of image noise. Being computationally expensive, its applications are limited mostly to general-purpose processors and in application specific integrated circuits. In th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of real-time image processing Vol. 9; no. 1; pp. 31 - 45
Main Authors: Abbasi, Naeem, Athow, Jacques, Amer, Aishy
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2014
Springer Nature B.V
Subjects:
ISSN:1861-8200, 1861-8219
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The stable Euler-number-based image binarization has been shown to give excellent visual results for images containing high amount of image noise. Being computationally expensive, its applications are limited mostly to general-purpose processors and in application specific integrated circuits. In this paper a modified stable Euler-number-based algorithm for image binarization is proposed and its real-time hardware implementation in a Field Programmable Gate Array with a pipelined architecture is presented. The proposed modifications to the algorithm facilitate hardware implementation. The end result is a design that out-performs known software implementations. The amount of noisy pixels introduced during the binarization process is also minimized. Despite the stable Euler-number-based image binarization being computationally expensive, our simulations show that the proposed architecture gives accurate results and this in real time and without consuming all chip resources.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1861-8200
1861-8219
DOI:10.1007/s11554-012-0296-z