An Approximate Algorithm for Simulating Stationary Discrete Random Processes with Bivariate Distributions of Their Consecutive Components in the Form of Mixtures of Gaussian Distributions

The paper presents an approximate algorithm for modeling a stationary discrete random process with marginal and bivariate distributions of its consecutive components in the form of a mixture of two Gaussian distributions. The algorithm is based on a combination of the conditional distribution method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical analysis and applications Jg. 17; H. 2; S. 169 - 173
Hauptverfasser: Ogorodnikov, V. A., Akenteva, M. S., Kargapolova, N. A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.06.2024
Springer Nature B.V
Schlagworte:
ISSN:1995-4239, 1995-4247
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents an approximate algorithm for modeling a stationary discrete random process with marginal and bivariate distributions of its consecutive components in the form of a mixture of two Gaussian distributions. The algorithm is based on a combination of the conditional distribution method and the rejection method. An example of application of the proposed algorithm for simulating time series of daily maximum air temperatures is given.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1995-4239
1995-4247
DOI:10.1134/S199542392402006X