The complexity of Boolean functions in the Reed–Muller polynomials class

This paper considers the problem of transforametion of Boolean functions into canonical polarized polynomials (Reed–Muller polynomials). Two Shannon functions are introduced to estimate the complexity of Boolean functions in the polynomials class under consideration. We propose three Boolean functio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automatic control and computer sciences Ročník 51; číslo 5; s. 285 - 293
Hlavný autor: Suprun, V. P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.09.2017
Springer Nature B.V
Predmet:
ISSN:0146-4116, 1558-108X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper considers the problem of transforametion of Boolean functions into canonical polarized polynomials (Reed–Muller polynomials). Two Shannon functions are introduced to estimate the complexity of Boolean functions in the polynomials class under consideration. We propose three Boolean functions of n variables whose complexity (in terms of the number of terms) coincides with value. We investigate the properties of functions and propose their schematic realization on elements AND, XOR, and NAND.
AbstractList This paper considers the problem of transforametion of Boolean functions into canonical polarized polynomials (Reed–Muller polynomials). Two Shannon functions are introduced to estimate the complexity of Boolean functions in the polynomials class under consideration. We propose three Boolean functions of n variables whose complexity (in terms of the number of terms) coincides with value. We investigate the properties of functions and propose their schematic realization on elements AND, XOR, and NAND.
This paper considers the problem of transforametion of Boolean functions into canonical polarized polynomials (Reed–Muller polynomials). Two Shannon functions are introduced to estimate the complexity of Boolean functions in the polynomials class under consideration. We propose three Boolean functions of n variables whose complexity (in terms of the number of terms) coincides with value. We investigate the properties of functions and propose their schematic realization on elements AND, XOR, and NAND.
Author Suprun, V. P.
Author_xml – sequence: 1
  givenname: V. P.
  surname: Suprun
  fullname: Suprun, V. P.
  email: suprun@bsu.by
  organization: Department of Mechanics and Mathematics, Belarusian State University
BookMark eNp1kE1OwzAQhS1UJNrCAdhZYh2YyY-bLKHiV0VI0AW7KHXGkMq1g51IdMcduCEnwVFZICFWo5n3vTfSm7CRsYYYO0Y4TRCSsyfAVKSIAmeQAczyPTbGLMsjhPx5xMaDHA36AZt4vwYIWi7G7G75SlzaTavpvem23Cp-Ya2mynDVG9k11njeGN4F7JGo_vr4vO-1Jsdbq7fGbppKey515f0h21dhoaOfOWXLq8vl_CZaPFzfzs8XkYxF3kVJgsWqorhO4wKhUkgqobROUpVCITPAcMAV1iKrC5Q4yyTFQlEhQFWiEMmUnexiW2ffevJduba9M-FjiYXI4lwADhTuKOms945U2bpmU7ltiVAOjZV_GgueeOfxgTUv5H4l_2v6BgNzb2k
ContentType Journal Article
Copyright Allerton Press, Inc. 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Allerton Press, Inc. 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
JQ2
DOI 10.3103/S0146411617050078
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-108X
EndPage 293
ExternalDocumentID 10_3103_S0146411617050078
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9O
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK8
XU3
YLTOR
Z7R
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c268t-3319bae2d42910af1ef3e4d34f409c5011ef1b1d65d91c175ce26fe960fa6963
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000416743000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0146-4116
IngestDate Wed Sep 17 23:56:39 EDT 2025
Sat Nov 29 05:52:07 EST 2025
Fri Feb 21 02:36:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords polynomial complexity
Reed–Muller polynomial
Zhegalkin polynomial
symmetric Boolean function
triangle method
logical scheme
Boolean function
Shannon functions
Boolean derivative
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-3319bae2d42910af1ef3e4d34f409c5011ef1b1d65d91c175ce26fe960fa6963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1965286016
PQPubID 2043879
PageCount 9
ParticipantIDs proquest_journals_1965286016
crossref_primary_10_3103_S0146411617050078
springer_journals_10_3103_S0146411617050078
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Automatic control and computer sciences
PublicationTitleAbbrev Aut. Control Comp. Sci
PublicationYear 2017
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References SuprunV.P.KorobkoF.S.Synthesis of logical devices for calculating self-dual symmetric Boolean functionsAvtom. Vychisl. Tekh.201412635
SuprunV.P.Complexity of Boolean functions in the class of canonical polarized polynomialsDiskretn. Mat.19935211111512509610829.94013
PospelovD.A.Logicheskie metody analiza i sinteza skhem1974MoscowEnergiya
SuprunV.P.GorodetskiiD.A.The matrix method for polynomial expansion of symmetric boolean functionsAvtom. Vychisl. Tekh.20131512
PeryazevN.A.Complexity of Boolean functions in the class of polynomial polarized formsAlgebra Logika1995332332613644700863.94034
SuprunV.P.Table method of polynomial expansion of Boolean functionsKibernetika198711161178926640671.94021
SuprunV.P.Estimations of Shennon’s function for polarity Reed–Muller expressionsProc. of the IFIP WG 10.5 Workshop on Applications of the Reed–Muller Expansion in Circuit Design1993107114
Avgul’L.B.SuprunV.P.Synthesis of high-speed logic circuits by the cascade methodIzv. Vuzov. Priborostr.199333136
V.P. Suprun (6598_CR5) 1993
L.B. Avgul (6598_CR8) 1993; 3
V.P. Suprun (6598_CR2) 2013; 1
V.P. Suprun (6598_CR3) 1993; 5
N.A. Peryazev (6598_CR4) 1995; 3
V.P. Suprun (6598_CR7) 2014; 1
V.P. Suprun (6598_CR6) 1987; 1
D.A. Pospelov (6598_CR1) 1974
References_xml – reference: SuprunV.P.Complexity of Boolean functions in the class of canonical polarized polynomialsDiskretn. Mat.19935211111512509610829.94013
– reference: PeryazevN.A.Complexity of Boolean functions in the class of polynomial polarized formsAlgebra Logika1995332332613644700863.94034
– reference: PospelovD.A.Logicheskie metody analiza i sinteza skhem1974MoscowEnergiya
– reference: SuprunV.P.Estimations of Shennon’s function for polarity Reed–Muller expressionsProc. of the IFIP WG 10.5 Workshop on Applications of the Reed–Muller Expansion in Circuit Design1993107114
– reference: SuprunV.P.KorobkoF.S.Synthesis of logical devices for calculating self-dual symmetric Boolean functionsAvtom. Vychisl. Tekh.201412635
– reference: SuprunV.P.GorodetskiiD.A.The matrix method for polynomial expansion of symmetric boolean functionsAvtom. Vychisl. Tekh.20131512
– reference: Avgul’L.B.SuprunV.P.Synthesis of high-speed logic circuits by the cascade methodIzv. Vuzov. Priborostr.199333136
– reference: SuprunV.P.Table method of polynomial expansion of Boolean functionsKibernetika198711161178926640671.94021
– volume: 3
  start-page: 323
  year: 1995
  ident: 6598_CR4
  publication-title: Algebra Logika
– volume: 5
  start-page: 111
  issue: 2
  year: 1993
  ident: 6598_CR3
  publication-title: Diskretn. Mat.
– volume: 3
  start-page: 31
  year: 1993
  ident: 6598_CR8
  publication-title: Izv. Vuzov. Priborostr.
– volume: 1
  start-page: 116
  year: 1987
  ident: 6598_CR6
  publication-title: Kibernetika
– start-page: 107
  volume-title: Proc. of the IFIP WG 10.5 Workshop on Applications of the Reed–Muller Expansion in Circuit Design
  year: 1993
  ident: 6598_CR5
– volume: 1
  start-page: 5
  year: 2013
  ident: 6598_CR2
  publication-title: Avtom. Vychisl. Tekh.
– volume-title: Logicheskie metody analiza i sinteza skhem
  year: 1974
  ident: 6598_CR1
– volume: 1
  start-page: 26
  year: 2014
  ident: 6598_CR7
  publication-title: Avtom. Vychisl. Tekh.
SSID ssj0055886
Score 2.0277278
Snippet This paper considers the problem of transforametion of Boolean functions into canonical polarized polynomials (Reed–Muller polynomials). Two Shannon functions...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 285
SubjectTerms Boolean algebra
Boolean functions
Codes
Complexity
Computer Science
Control Structures and Microprogramming
Functions (mathematics)
Mathematical analysis
Polynomials
Title The complexity of Boolean functions in the Reed–Muller polynomials class
URI https://link.springer.com/article/10.3103/S0146411617050078
https://www.proquest.com/docview/1965286016
Volume 51
WOSCitedRecordID wos000416743000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: RSV
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB20etCD1apYrbIHT0qw2U22yVHFIqJFapHeQrLZhUJJSltFb_4H_6G_xJltgvXroOcsS5id2feGmX0DcJga7UpJpcFQNB1kxNJJYhE6SRq6ysiUC2VFXK9bnU7Q74e3xTvuSdntXpYk7U1t88qmOKE2JOm5xMebPiHbIiwh2gU0r6F7d19ev74f2PGOtNqh5bNS5s9bfAajD4b5pShqsaZd_ddfrsNaQS3Z6cwXNmBBZzWolmMbWBHFNVid0yDchCt0FGYby_UTMnKWG3aW50MdZ4wwz7olG2QMiSLrItS9vbzekGT3mI3y4TM9akYHZopI-Bb02he980unGLDgKC6DqSMw_pJY8xRByW3GxtVGaC8VnsGsT_kY-tq4iZtKn04OiYbSXBqNSY-JJUbuNlSyPNM7wBTmKYkyGsEt9mIekoi-EanxvZaWieF1OCoNHY1mMhoRph9ksuibyerQKI8iKiJqEpHyIQ9IPKYOx6Xp5z7_ttnun1bvwQon3LZNZA2oTMcPeh-W1eN0MBkfWEd7B8EFy8E
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBR1WsVt2DJyWY5zY5qliqtkVqkd5CstmFQklKW0Vv_gf_ob_EmW2C9XXQc5YlzM7s9w0z-w3AUaKkxTmVBgPHNJARcyOOnMCIk8ASiie2I7SIa7PWbvu9XnCbv-MeF93uRUlS39Q6rzSdU2pD4q5FfNz0CNnmYcFFwCLB_M7dfXH9ep6vxzvSaoOWT0uZP2_xGYw-GOaXoqjGmvrav_5yHVZzasnOpr6wAXMyLcNaMbaB5VFchpUZDcJNuEZHYbqxXD4hI2eZYudZNpBRygjztFuyfsqQKLIOQt3by2uLJLtHbJgNnulRMzowE0TCt6Bbv-xeNIx8wIIhbO5PDAfjL46knSAoWWakLKkc6SaOqzDrEx6GvlRWbCXco5NDoiGkzZXEpEdFHCN3G0pplsodYALzlFgoieAWuZEdkIi-chLluTXJY2VX4LgwdDicymiEmH6QycJvJqtAtTiKMI-ocUjKh7ZP4jEVOClMP_P5t812_7T6EJYa3VYzbF61b_Zg2SYM1w1lVShNRg9yHxbF46Q_Hh1op3sHV7bOpQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBR1WsVt2DJyU02STb5Oir-KilaJHeQrLZhUJJShtFb_4H_6G_xJ1NgvV1EM8ZlrA7s983zOw3AAexFBZjWBr0bdNQjJgZUWj7RhT7FpcspjbXIq7tZqfj9ft-t5hzOim73cuSZP6mAVWakqwximVD55im3cCWJOZYyM1NF1FuFuYc7KPHdP3uvryKXdfTox7R2kDzvKz58xKfgemDbX4pkGrcaa38-49XYbmgnOQ495E1mBFJFVbKcQ6kiO4qLE1pE67DlXIgohvOxZNi6iSV5CRNhyJMCGKhdlcySIgikORWQeDby-sNSnmPySgdPuNjZ-XYhCM534Be67x3emEUgxcMTpmXGbaKyygUNFZgZZmhtIS0hRPbjlTZIHfVlSCkFVkxc_FEFQHhgjIpVDIkQ6YiehMqSZqILSBc5S8Rl0KBXuiE1EdxfWnH0nWagkWS1uCw3PRglMtrBCotwS0Lvm1ZDerlsQRFpE0CVESkHorK1OCoPIapz78ttv0n631Y6J61gvZl53oHFilCu-4zq0MlGz-IXZjnj9lgMt7T_vcO-9bXiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+complexity+of+Boolean+functions+in+the+Reed%E2%80%93Muller+polynomials+class&rft.jtitle=Automatic+control+and+computer+sciences&rft.au=Suprun%2C+V+P&rft.date=2017-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0146-4116&rft.eissn=1558-108X&rft.volume=51&rft.issue=5&rft.spage=285&rft.epage=293&rft_id=info:doi/10.3103%2FS0146411617050078&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-4116&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-4116&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-4116&client=summon