NICEST: Noisy Label Correction and Training for Robust Scene Graph Generation

Nearly all existing scene graph generation (SGG) models have overlooked the ground-truth annotation qualities of mainstream SGG datasets, i.e., they assume: 1) all the manually annotated positive samples are equally correct; 2) all the un-annotated negative samples are absolutely background. In this...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 46; no. 10; pp. 6873 - 6888
Main Authors: Li, Lin, Xiao, Jun, Shi, Hanrong, Zhang, Hanwang, Yang, Yi, Liu, Wei, Chen, Long
Format: Journal Article
Language:English
Published: IEEE 01.10.2024
Subjects:
ISSN:0162-8828, 2160-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nearly all existing scene graph generation (SGG) models have overlooked the ground-truth annotation qualities of mainstream SGG datasets, i.e., they assume: 1) all the manually annotated positive samples are equally correct; 2) all the un-annotated negative samples are absolutely background. In this article, we argue that neither of the assumptions applies to SGG: there are numerous "noisy" ground-truth predicate labels that break these two assumptions and harm the training of unbiased SGG models. To this end, we propose a novel N o I sy label C orr E ction and S ample T raining strategy for SGG: NICEST , which rules out these noisy label issues by generating high-quality samples and designing an effective training strategy. Specifically, it consists of: 1) NICE : it detects noisy samples and then reassigns higher-quality soft predicate labels to them. To achieve this goal, NICE contains three main steps: negative Noisy Sample Detection (Neg-NSD), positive NSD (Pos-NSD), and Noisy Sample Correction (NSC). First, in Neg-NSD, it is treated as an out-of-distribution detection problem, and the pseudo labels are assigned to all detected noisy negative samples. Then, in Pos-NSD, we use a density-based clustering algorithm to detect noisy positive samples. Lastly, in NSC, we use weighted KNN to reassign more robust soft predicate labels rather than hard labels to all noisy positive samples. 2) NIST : it is a multi-teacher knowledge distillation based training strategy, which enables the model to learn unbiased fusion knowledge. A dynamic trade-off weighting strategy in NIST is designed to penalize the bias of different teachers. Due to the model-agnostic nature of both NICE and NIST, NICEST can be seamlessly incorporated into any SGG architecture to boost its performance on different predicate categories. In addition, to better assess the generalization ability of SGG models, we propose a new benchmark, VG-OOD , by reorganizing the prevalent VG dataset. This reorganization deliberately makes the predicate distributions between the training and test sets as different as possible for each subject-object category pair. This new benchmark helps disentangle the influence of subject-object category biases. Extensive ablations and results on different backbones and tasks have attested to the effectiveness and generalization ability of each component of NICEST.
AbstractList Nearly all existing scene graph generation (SGG) models have overlooked the ground-truth annotation qualities of mainstream SGG datasets, i.e., they assume: 1) all the manually annotated positive samples are equally correct; 2) all the un-annotated negative samples are absolutely background. In this article, we argue that neither of the assumptions applies to SGG: there are numerous "noisy" ground-truth predicate labels that break these two assumptions and harm the training of unbiased SGG models. To this end, we propose a novel N o I sy label C orr E ction and S ample T raining strategy for SGG: NICEST , which rules out these noisy label issues by generating high-quality samples and designing an effective training strategy. Specifically, it consists of: 1) NICE : it detects noisy samples and then reassigns higher-quality soft predicate labels to them. To achieve this goal, NICE contains three main steps: negative Noisy Sample Detection (Neg-NSD), positive NSD (Pos-NSD), and Noisy Sample Correction (NSC). First, in Neg-NSD, it is treated as an out-of-distribution detection problem, and the pseudo labels are assigned to all detected noisy negative samples. Then, in Pos-NSD, we use a density-based clustering algorithm to detect noisy positive samples. Lastly, in NSC, we use weighted KNN to reassign more robust soft predicate labels rather than hard labels to all noisy positive samples. 2) NIST : it is a multi-teacher knowledge distillation based training strategy, which enables the model to learn unbiased fusion knowledge. A dynamic trade-off weighting strategy in NIST is designed to penalize the bias of different teachers. Due to the model-agnostic nature of both NICE and NIST, NICEST can be seamlessly incorporated into any SGG architecture to boost its performance on different predicate categories. In addition, to better assess the generalization ability of SGG models, we propose a new benchmark, VG-OOD , by reorganizing the prevalent VG dataset. This reorganization deliberately makes the predicate distributions between the training and test sets as different as possible for each subject-object category pair. This new benchmark helps disentangle the influence of subject-object category biases. Extensive ablations and results on different backbones and tasks have attested to the effectiveness and generalization ability of each component of NICEST.
Author Shi, Hanrong
Zhang, Hanwang
Li, Lin
Xiao, Jun
Liu, Wei
Chen, Long
Yang, Yi
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0002-5678-4487
  surname: Li
  fullname: Li, Lin
  email: mukti@zju.edu.cn
  organization: College of Computer Science, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-6142-9914
  surname: Xiao
  fullname: Xiao, Jun
  email: junx@zju.edu.cn
  organization: College of Computer Science, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Hanrong
  orcidid: 0000-0001-6817-0063
  surname: Shi
  fullname: Shi, Hanrong
  email: hanrong@zju.edu.cn
  organization: College of Computer Science, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Hanwang
  orcidid: 0000-0001-7374-8739
  surname: Zhang
  fullname: Zhang, Hanwang
  email: hanwangzhang@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 5
  givenname: Yi
  orcidid: 0000-0002-0512-880X
  surname: Yang
  fullname: Yang, Yi
  email: yangyics@zju.edu.cn
  organization: College of Computer Science, Zhejiang University, Hangzhou, China
– sequence: 6
  givenname: Wei
  orcidid: 0000-0002-3865-8145
  surname: Liu
  fullname: Liu, Wei
  email: wl2223@columbia.edu
  organization: Data Platform, Tencent, Shenzhen, China
– sequence: 7
  givenname: Long
  orcidid: 0000-0001-6148-9709
  surname: Chen
  fullname: Chen, Long
  email: longchen@ust.hk
  organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
BookMark eNp9kMtOwzAQRS1UJNrCDyAW_oEUe5w6NrsqKqVSWxAN62iSjiGoOJUTFv170scCsWA1I809o6szYD1fe2LsVoqRlMLeZy-T5XwEAuKRUiZRsb1gfZBaRBYs9FhfSA2RMWCu2KBpPoWQ8VioPluu5ul0nT3wVV01e77AgrY8rUOgsq1qz9FveBaw8pV_564O_LUuvpuWr0vyxGcBdx981q0BD_Frdulw29DNeQ7Z2-M0S5-ixfNsnk4WUQnatBFoAocadUIbrcjEVkHicEwWrdOFBVcq7ZRFGcPG2KTQFmkcl4nAQhUo1JCZ098y1E0TyOVl1R4btF3XbS5FftCSH7XkBy35WUuHwh90F6ovDPv_obsTVBHRLyC2GrrzD2WQcFo
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s11227_025_07246_2
crossref_primary_10_1145_3700877
crossref_primary_10_1007_s00521_024_10822_x
crossref_primary_10_1007_s11263_024_02190_9
crossref_primary_10_1109_ACCESS_2024_3450908
crossref_primary_10_1016_j_imavis_2024_105283
crossref_primary_10_1109_ACCESS_2025_3555230
Cites_doi 10.1109/CVPR.2019.00686
10.1109/CVPR52688.2022.01889
10.1145/3565573
10.1007/978-3-031-20059-5_6
10.1016/j.neucom.2023.01.063
10.1109/CVPR.2019.00507
10.1109/TPAMI.2021.3055564
10.1214/aoms/1177729694
10.1109/CVPR42600.2020.00396
10.1109/ICCV.2019.00041
10.1109/CVPR.2018.00522
10.1109/TPAMI.2020.2992222
10.1109/TPAMI.2021.3119754
10.1109/ICCV48922.2021.00030
10.1145/3474085.3475485
10.1109/ICCV.2019.00471
10.1007/s11263-021-01453-z
10.1109/CVPR42600.2020.01081
10.1109/tcsvt.2023.3282349
10.1109/ICCV48922.2021.01512
10.24963/ijcai.2021/176
10.1109/ICME.2019.00009
10.1007/978-3-030-58558-7_15
10.1145/3097983.3098135
10.1109/CVPR.2019.00857
10.1109/CVPR.2018.00611
10.1109/GC46384.2019.00015
10.1109/TPAMI.2021.3137605
10.1109/TPAMI.2015.2456899
10.1109/ICCV51070.2023.01982
10.1126/science.1242072
10.1145/3336191.3371792
10.1109/ICCV48922.2021.01607
10.1109/CVPR42600.2020.00377
10.1109/CVPR46437.2021.01096
10.1109/TPAMI.2015.2469281
10.1109/CVPR52688.2022.01887
10.1109/CVPR52688.2022.01882
10.1109/CVPR.2018.00571
10.1145/3475723.3484247
10.1109/CVPR.2017.330
10.1109/TASLP.2022.3153264
10.1109/tpami.2023.3290012
10.1007/978-3-319-46448-0_51
10.1109/ICME55011.2023.00022
10.1109/CVPR42600.2020.00380
10.1145/3474085.3475297
10.1109/CVPR.2016.320
10.1109/WACV45572.2020.9093614
10.1109/CVPR.2015.7298990
10.1109/CVPR.2019.00678
10.1007/s11263-024-02179-4
10.1109/CVPR.2019.00264
10.1007/978-3-030-01246-5_41
10.1109/ICCV.2017.142
10.1007/978-3-031-20059-5_7
10.1109/CVPR46437.2021.00081
10.1145/3503161.3548164
10.1109/CVPR.2017.331
10.1109/CVPR52688.2022.01884
10.1016/j.neucom.2022.01.095
10.1109/CVPR.2017.766
10.1109/CVPR52688.2022.01830
10.1145/3394171.3413722
10.1016/j.neucom.2020.07.048
10.1109/CVPR.2017.106
10.1007/978-3-030-01249-6_9
10.1109/ICCV.2017.211
10.1109/ICCV.2017.324
10.1007/s11263-016-0981-7
10.1109/CVPR.2019.00632
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TPAMI.2024.3387349
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
EndPage 6888
ExternalDocumentID 10_1109_TPAMI_2024_3387349
10496249
Genre orig-research
GrantInformation_xml – fundername: HKUST Special Support for Young Faculty
  grantid: F0927
– fundername: HKUST Sports Science and Technology Research
  grantid: SSTRG24EG04
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 62337001
  funderid: 10.13039/501100001809
– fundername: National Key Research & Development Project of China
  grantid: 2021ZD0110700
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c268t-26e2fa6a67ed63e849327fa5e9a9f6b92fc36f39a142d897b69ae54c70ab3ba03
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001308236900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
IngestDate Tue Nov 18 21:42:10 EST 2025
Sat Nov 29 08:07:03 EST 2025
Wed Aug 27 02:04:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-26e2fa6a67ed63e849327fa5e9a9f6b92fc36f39a142d897b69ae54c70ab3ba03
ORCID 0000-0001-6148-9709
0000-0002-0512-880X
0000-0002-6142-9914
0000-0001-7374-8739
0000-0002-3865-8145
0000-0001-6817-0063
0000-0002-5678-4487
PageCount 16
ParticipantIDs ieee_primary_10496249
crossref_citationtrail_10_1109_TPAMI_2024_3387349
crossref_primary_10_1109_TPAMI_2024_3387349
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
Niu (ref74)
ref15
ref59
ref14
ref53
ref11
ref10
ref54
ref17
ref19
Ren (ref51)
Li (ref3) 2023
ref50
DeVries (ref80) 2018
ref91
ref90
ref46
Xu (ref58) 2019
ref45
Chen (ref63)
ref89
ref41
ref44
ref88
ref43
ref87
ref8
ref7
Gao (ref18) 2023
ref9
ref6
ref5
Müller (ref92)
Jiang (ref49) 2018
Ma (ref55)
Hechenbichler (ref82) 2004; 399
ref81
ref40
ref84
ref83
Wang (ref47)
ref35
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref33
ref77
Li (ref16) 2023
ref32
ref76
ref2
ref1
ref39
ref38
Simonyan (ref86) 2014
Ren (ref85)
ref71
ref70
ref73
ref72
Vahdat (ref52)
ref24
ref68
ref23
ref67
ref26
Knyazev (ref42) 2020
ref25
ref69
ref20
ref64
ref22
ref66
ref21
ref65
Zhang (ref56)
ref28
ref27
Hendrycks (ref79) 2016
ref29
Goldberger (ref48)
ref60
ref62
Li (ref4) 2023
ref61
References_xml – ident: ref20
  doi: 10.1109/CVPR.2019.00686
– ident: ref17
  doi: 10.1109/CVPR52688.2022.01889
– ident: ref77
  doi: 10.1145/3565573
– year: 2016
  ident: ref79
  article-title: A baseline for detecting misclassified and out-of-distribution examples in neural networks
– ident: ref69
  doi: 10.1007/978-3-031-20059-5_6
– ident: ref66
  doi: 10.1016/j.neucom.2023.01.063
– ident: ref62
  doi: 10.1109/CVPR.2019.00507
– year: 2023
  ident: ref16
  article-title: Decomposed prototype learning for few-shot scene graph generation
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref48
  article-title: Training deep neural-networks using a noise adaptation layer
– ident: ref59
  doi: 10.1109/TPAMI.2021.3055564
– ident: ref84
  doi: 10.1214/aoms/1177729694
– ident: ref60
  doi: 10.1109/CVPR42600.2020.00396
– ident: ref57
  doi: 10.1109/ICCV.2019.00041
– ident: ref78
  doi: 10.1109/CVPR.2018.00522
– start-page: 4334
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref51
  article-title: Learning to reweight examples for robust deep learning
– ident: ref21
  doi: 10.1109/TPAMI.2020.2992222
– ident: ref11
  doi: 10.1109/TPAMI.2021.3119754
– ident: ref67
  doi: 10.1109/ICCV48922.2021.00030
– ident: ref22
  doi: 10.1145/3474085.3475485
– year: 2020
  ident: ref42
  article-title: Graph density-aware losses for novel compositions in scene graph generation
– year: 2018
  ident: ref80
  article-title: Learning confidence for out-of-distribution detection in neural networks
– ident: ref25
  doi: 10.1109/ICCV.2019.00471
– ident: ref61
  doi: 10.1007/s11263-021-01453-z
– ident: ref10
  doi: 10.1109/CVPR42600.2020.01081
– ident: ref45
  doi: 10.1109/tcsvt.2023.3282349
– ident: ref43
  doi: 10.1109/ICCV48922.2021.01512
– start-page: 8792
  volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst.
  ident: ref56
  article-title: Generalized cross entropy loss for training deep neural networks with noisy labels
– year: 2023
  ident: ref3
  article-title: Zero-shot visual relation detection via composite visual cues from large language models
– volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst.
  ident: ref52
  article-title: Toward robustness against label noise in training deep discriminative neural networks
– ident: ref30
  doi: 10.24963/ijcai.2021/176
– volume: 399
  issue: 1
  year: 2004
  ident: ref82
  article-title: Weighted k-nearest-neighbor techniques and ordinal classification
  publication-title: discussion paper
– ident: ref64
  doi: 10.1109/ICME.2019.00009
– ident: ref65
  doi: 10.1007/978-3-030-58558-7_15
– ident: ref70
  doi: 10.1145/3097983.3098135
– year: 2014
  ident: ref86
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref9
  doi: 10.1109/CVPR.2019.00857
– ident: ref24
  doi: 10.1109/CVPR.2018.00611
– start-page: 16292
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref74
  article-title: Introspective distillation for robust question answering
– ident: ref8
  doi: 10.1109/GC46384.2019.00015
– ident: ref2
  doi: 10.1109/TPAMI.2021.3137605
– ident: ref54
  doi: 10.1109/TPAMI.2015.2456899
– ident: ref28
  doi: 10.1109/ICCV51070.2023.01982
– year: 2019
  ident: ref58
  article-title: L_DMI: An information-theoretic noise-robust loss function
– ident: ref81
  doi: 10.1126/science.1242072
– year: 2023
  ident: ref18
  article-title: Compositional prompt tuning with motion cues for open-vocabulary video relation detection
– ident: ref72
  doi: 10.1145/3336191.3371792
– ident: ref44
  doi: 10.1109/ICCV48922.2021.01607
– ident: ref29
  doi: 10.1109/CVPR42600.2020.00377
– start-page: 3355
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref55
  article-title: Dimensionality-driven learning with noisy labels
– year: 2023
  ident: ref4
  article-title: Compositional zero-shot learning via progressive language-based observations
– ident: ref39
  doi: 10.1109/CVPR46437.2021.01096
– ident: ref7
  doi: 10.1109/TPAMI.2015.2469281
– ident: ref15
  doi: 10.1109/CVPR52688.2022.01887
– ident: ref90
  doi: 10.1109/CVPR52688.2022.01882
– ident: ref50
  doi: 10.1109/CVPR.2018.00571
– start-page: 742
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref63
  article-title: Learning efficient object detection models with knowledge distillation
– ident: ref76
  doi: 10.1145/3475723.3484247
– ident: ref1
  doi: 10.1109/CVPR.2017.330
– ident: ref73
  doi: 10.1109/TASLP.2022.3153264
– ident: ref75
  doi: 10.1109/tpami.2023.3290012
– ident: ref32
  doi: 10.1007/978-3-319-46448-0_51
– ident: ref46
  doi: 10.1109/ICME55011.2023.00022
– ident: ref27
  doi: 10.1109/CVPR42600.2020.00380
– ident: ref31
  doi: 10.1145/3474085.3475297
– ident: ref38
  doi: 10.1109/CVPR.2016.320
– ident: ref6
  doi: 10.1109/WACV45572.2020.9093614
– ident: ref5
  doi: 10.1109/CVPR.2015.7298990
– ident: ref26
  doi: 10.1109/CVPR.2019.00678
– ident: ref12
  doi: 10.1007/s11263-024-02179-4
– volume-title: Proc. Brit. Mach. Vis. Conf.
  ident: ref47
  article-title: Tackling the unannotated: Scene graph generation with bias-reduced models
– ident: ref89
  doi: 10.1109/CVPR.2019.00264
– start-page: 2304
  volume-title: Int. Conf. Mach. Learn.
  year: 2018
  ident: ref49
  article-title: MentorNet: Learning data-driven curriculum for very deep neural networks on corrupted labels
– start-page: 4696
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref92
  article-title: When does label smoothing help?
– ident: ref36
  doi: 10.1007/978-3-030-01246-5_41
– start-page: 91
  volume-title: Proc. Conf. Workshop Neural Inf. Process. Syst.
  ident: ref85
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
– ident: ref88
  doi: 10.1109/ICCV.2017.142
– ident: ref13
  doi: 10.1007/978-3-031-20059-5_7
– ident: ref91
  doi: 10.1109/CVPR46437.2021.00081
– ident: ref68
  doi: 10.1145/3503161.3548164
– ident: ref34
  doi: 10.1109/CVPR.2017.331
– ident: ref14
  doi: 10.1109/CVPR52688.2022.01884
– ident: ref23
  doi: 10.1016/j.neucom.2022.01.095
– ident: ref35
  doi: 10.1109/CVPR.2017.766
– ident: ref33
  doi: 10.1109/CVPR52688.2022.01830
– ident: ref41
  doi: 10.1145/3394171.3413722
– ident: ref71
  doi: 10.1016/j.neucom.2020.07.048
– ident: ref87
  doi: 10.1109/CVPR.2017.106
– ident: ref83
  doi: 10.1007/978-3-030-01249-6_9
– ident: ref53
  doi: 10.1109/ICCV.2017.211
– ident: ref40
  doi: 10.1109/ICCV.2017.324
– ident: ref19
  doi: 10.1007/s11263-016-0981-7
– ident: ref37
  doi: 10.1109/CVPR.2019.00632
SSID ssj0014503
Score 2.562962
Snippet Nearly all existing scene graph generation (SGG) models have overlooked the ground-truth annotation qualities of mainstream SGG datasets, i.e., they assume: 1)...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 6873
SubjectTerms Annotations
Benchmark testing
Multi-Teacher knowledge distillation
NIST
Noise measurement
noisy label learning
out-of-distribution
scene graph generation
Task analysis
Training
Visualization
Title NICEST: Noisy Label Correction and Training for Robust Scene Graph Generation
URI https://ieeexplore.ieee.org/document/10496249
Volume 46
WOSCitedRecordID wos001308236900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1s8aAHq7Vi_WIP3iQ1H5vdrLdSWi3YUrRCb2E22UChNNKmgv_e2U1aelHwFsJMCJlMZl523zxC7iWWCMmj1DE8T4dBAI4CCB1PIWTB9h4rrrJiE2I8jmYzOanI6pYLo7W2m890xxzatfw0TzbmVxlmOJMc8UKN1ITgJVlrt2TAQiuDjC0MpjjiiC1DxpWP00l3NEQs6LMOIjIRmMGZe1VoT1bFVpVB45_3c0pOqvaRdst4n5EDvWySxlaagVaZ2iTHe3MGz8loPOz136dPdJzP19_0FZRe0J7R5bCsBgrLlE4rrQiKXSx9y9VmXeDl8EtIn81Ma1rOpzbmLfIx6E97L06lo-AkPo8Kx-faz4ADFzrlgY4Y9mwig1BLkBlX0s-SgGeBBI_5aSSF4hJ0yBLhggoUuMEFqS_zpb4kNES4IoSnNYSCZdJVAsBLs0Qo9EPk0ybe9rnGSTVk3GhdLGILNlwZ21jEJhZxFYs2edj5fJYjNv60bplA7FmWMbj65fw1OTLu5f67G1IvVht9Sw6Tr2K-Xt3ZV-gHbrbBbA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwLa7PHLxJtY80abzJsuribhGt4K1M2hQWZFfcXcF_7yTtyl4UvJUyCaVfpjNfk5kP4FxRiFAiKT1b5-lxjNDTiLEXaKIslN5TxNVObEKmafL6qh6bYnVXC2OMcYfPzKW9dHv55aiY2l9l5OFcCeILi7Accx76dbnWz6YBj50QMiUx5OTEJGY1Mr66yh5v-l1igyG_JE4mI9s6cy4OzQmruLhyu_nPJ9qCjSaBZDc14tuwYIY7sDkTZ2CNr-7A-lynwV3op9125zm7ZuloMP5iPdTmjbWtMoera2A4LFnWqEUwymPZ00hPxxOajr6F7M52tWZ1h2prvgcvt52sfe81SgpeEYpk4oXChBUKFNKUIjIJp6xNVhgbhaoSWoVVEYkqUhjwsEyU1EKhiXkhfdSRRj_ah6XhaGgOgMVEWKQMjMFY8kr5WiIGZVVITeOI-7QgmL3XvGjajFu1i7fc0Q1f5Q6L3GKRN1i04OJnzHvdZONP6z0LxJxljcHhL_fPYPU-6_fyXjd9OII1O1V9Gu8YliYfU3MCK8XnZDD-OHXL6RusF8Sz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NICEST%3A+Noisy+Label+Correction+and+Training+for+Robust+Scene+Graph+Generation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Li%2C+Lin&rft.au=Xiao%2C+Jun&rft.au=Shi%2C+Hanrong&rft.au=Zhang%2C+Hanwang&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=46&rft.issue=10&rft.spage=6873&rft.epage=6888&rft_id=info:doi/10.1109%2FTPAMI.2024.3387349&rft.externalDocID=10496249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon