Characterizations of Some Probability Distributions with Completely Monotonic Density Functions

For a non-negative continuous random variable , Chaudhry and Zubair (2002, p. 19) introduced a probability distribution with a completely monotonic probability density function based on the generalized gamma function, and called it the Macdonald probability function. In this paper, we establish vari...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pakistan journal of statistics and operation research Ročník 17; číslo 1; s. 51 - 64
Hlavní autoři: Shakil, Mohammad, Dr. Mohammad Ahsanullah, Kibria, Dr. B. M. G. Kibria
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lahore University of the Punjab, College of Statistical & Actuarial Science 02.03.2021
Témata:
ISSN:1816-2711, 2220-5810
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For a non-negative continuous random variable , Chaudhry and Zubair (2002, p. 19) introduced a probability distribution with a completely monotonic probability density function based on the generalized gamma function, and called it the Macdonald probability function. In this paper, we establish various basic distributional properties of Chaudhry and Zubair’s Macdonald probability distribution. Since the percentage points of a given distribution are important for any statistical applications, we have also computed the percentage points for different values of the parameter involved. Based on these properties, we establish some new characterization results of Chaudhry and Zubair’s Macdonald probability distribution by the left and right truncated moments, order statistics and record values. Characterizations of certain other continuous probability distributions with completely monotonic probability density functions such as Mckay, Pareto and exponential distributions are also discussed by the proposed characterization techniques.   
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1816-2711
2220-5810
DOI:10.18187/pjsor.v17i1.3491