Detection of Homophilic Communities and Coordination of Interacting Meta-Agents: A Game-Theoretic Viewpoint

This paper studies two important signal processing aspects of homophilic behavior namely, detection of homophilic communities and the distributed coordination of meta-agents, which interact with the detected homophilic communities. First, the theory of revealed preferences from microeconomics is use...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal and information processing over networks Vol. 2; no. 1; pp. 84 - 101
Main Authors: Gharehshiran, Omid Namvar, Hoiles, William, Krishnamurthy, Vikram
Format: Journal Article
Language:English
Published: IEEE 01.03.2016
Subjects:
ISSN:2373-776X, 2373-7778
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper studies two important signal processing aspects of homophilic behavior namely, detection of homophilic communities and the distributed coordination of meta-agents, which interact with the detected homophilic communities. First, the theory of revealed preferences from microeconomics is used to construct a nonparametric decision test for homophilic behavior using only the time series of external influences and associated agents' responses. These tests rely on rationalizing the dataset of agents' actions as the play from the Nash equilibrium of a concave potential game. A stochastic gradient algorithm is given to optimize the external influence signal in real time to minimize the Type-II error probabilities of the detection test subject to specified Type-I error probability. Using the decision test, methods are provided to detect for homophilic communities. Subsequently, a nonparametric algorithm is presented that uses the constructed potential function for the potential game to predict the preferences of the detected homophilic communities. Second, we present a non-cooperative game model for interaction of meta-agents that interact with the communities and propose an algorithm that prescribes meta-agents how to take actions based on the preference of the communities and past interaction information with other meta-agents. The proposed algorithm has two timescales: the slow timescale is the nonparametric preference learning presented in the first part, and the fast timescale is a regret-matching stochastic approximation algorithm. It is shown that, if all meta-agents follow the proposed algorithm, their collective behavior is attracted to the correlated equilibria set of the game. This means that meta-agents can co-ordinate their strategies in a distributed fashion as if there exists a centralized coordinating device that they all trust to follow. We provide a real-world example using the energy market, and a numerical example to detect malicious agents in an online social network.
AbstractList This paper studies two important signal processing aspects of homophilic behavior namely, detection of homophilic communities and the distributed coordination of meta-agents, which interact with the detected homophilic communities. First, the theory of revealed preferences from microeconomics is used to construct a nonparametric decision test for homophilic behavior using only the time series of external influences and associated agents' responses. These tests rely on rationalizing the dataset of agents' actions as the play from the Nash equilibrium of a concave potential game. A stochastic gradient algorithm is given to optimize the external influence signal in real time to minimize the Type-II error probabilities of the detection test subject to specified Type-I error probability. Using the decision test, methods are provided to detect for homophilic communities. Subsequently, a nonparametric algorithm is presented that uses the constructed potential function for the potential game to predict the preferences of the detected homophilic communities. Second, we present a non-cooperative game model for interaction of meta-agents that interact with the communities and propose an algorithm that prescribes meta-agents how to take actions based on the preference of the communities and past interaction information with other meta-agents. The proposed algorithm has two timescales: the slow timescale is the nonparametric preference learning presented in the first part, and the fast timescale is a regret-matching stochastic approximation algorithm. It is shown that, if all meta-agents follow the proposed algorithm, their collective behavior is attracted to the correlated equilibria set of the game. This means that meta-agents can co-ordinate their strategies in a distributed fashion as if there exists a centralized coordinating device that they all trust to follow. We provide a real-world example using the energy market, and a numerical example to detect malicious agents in an online social network.
Author Gharehshiran, Omid Namvar
Hoiles, William
Krishnamurthy, Vikram
Author_xml – sequence: 1
  givenname: Omid Namvar
  surname: Gharehshiran
  fullname: Gharehshiran, Omid Namvar
  email: omidn@utstat.toronto.edu
  organization: Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
– sequence: 2
  givenname: William
  surname: Hoiles
  fullname: Hoiles, William
  email: whoiles@ece.ubc.ca
  organization: Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
– sequence: 3
  givenname: Vikram
  surname: Krishnamurthy
  fullname: Krishnamurthy, Vikram
  email: vikramk@ece.ubc.ca
  organization: Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
BookMark eNp9kMlOwzAQhi0EEqX0BeCSF0jxVi_cqgJtpbJIFMQtcpJJa2jsyjFCvD3pQg8cOM2i-X6NvjN07LwDhC4I7hOC9dX8efr00KeYiD4dEC2FOEIdyiRLpZTq-NCLt1PUa5p3jDEZSC617qCPG4hQROtd4qtk4mu_XtqVLZKRr-tPZ6OFJjGubGcfSuvM7-nURQimJd0iuYdo0uECXGyuk2EyNjWk8yX4ALFNerXwtfbWxXN0UplVA7197aKXu9v5aJLOHsfT0XCWFlTImFa05IJirkWhFGOcG6PLihKcE17lptQ5HuRMVSSnqjTSaMmx4KzdlwPFSsO6SO1yi-CbJkCVFTZuH4_B2FVGcLbxlm29ZRtv2d5bi9I_6DrY2oTv_6HLHWQB4ABIpoTEhP0A66l89A
CODEN ITSIBW
CitedBy_id crossref_primary_10_1109_JSAC_2017_2672238
crossref_primary_10_1109_TNNLS_2019_2927233
Cites_doi 10.1007/978-3-642-13739-6_25
10.1162/jeea.2005.3.2-3.211
10.1177/0049124111404820
10.1016/j.comnet.2012.06.006
10.1006/jeth.2000.2746
10.1038/nn.3740
10.1007/BF01737559
10.1002/9781118575574
10.1142/WSSET
10.1016/j.tics.2007.04.003
10.1007/978-1-4614-1927-3_1
10.1017/CBO9781139507103
10.1109/TIT.2012.2201372
10.1109/LSP.2012.2221711
10.1006/game.1996.0044
10.2307/2525382
10.1109/TSG.2014.2376291
10.1086/649563
10.1109/SMARTGRID.2010.5622091
10.1007/978-3-642-69512-4
10.1109/SPW.2012.24
10.1007/3-540-45598-1_9
10.1007/978-3-642-03007-9_20
10.1016/j.jet.2009.01.010
10.2307/1911154
10.1111/j.1468-0297.2012.02504.x
10.1111/1468-0262.00153
10.1109/ASONAM.2014.6921650
10.1006/jeth.1996.0108
10.1146/annurev.economics.050708.142930
10.1109/JSAC.2013.130613
10.1109/TAC.2013.2256684
10.1016/j.ipl.2009.12.009
10.1109/SURV.2013.091213.00134
10.1145/1315245.1315288
10.1007/978-3-662-04623-4_12
10.1080/01621459.1991.10475021
10.1016/j.comnet.2012.07.021
10.1007/s10288-011-0181-9
10.3982/ECTA6069
10.1002/0471722138
10.1109/TCSS.2014.2307452
10.1257/0895330053147958
10.1017/S0962492900002518
10.1111/1468-0262.00155
10.1017/S1365100505040241
10.1111/jpet.12078
10.1109/JSAC.2012.121205
10.1017/CBO9780511800481.009
10.2307/2296461
10.1017/CBO9780511804441
10.1561/2000000048
10.2307/2296957
10.1257/mic.20130150
10.1146/annurev.soc.27.1.415
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSIPN.2016.2519766
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-7778
EndPage 101
ExternalDocumentID 10_1109_TSIPN_2016_2519766
7386701
Genre orig-research
GrantInformation_xml – fundername: Canada Research Chairs program
– fundername: SSHRC
  funderid: 10.13039/501100000155
– fundername: NSERC
  funderid: 10.13039/501100000038
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c267t-f2d4620496c883344aa9df210b14fbad9b05b38f1b28da7a9740643d9bd583da3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384247000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2373-776X
IngestDate Sat Nov 29 02:52:13 EST 2025
Tue Nov 18 20:58:10 EST 2025
Wed Aug 27 02:22:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords revealed preferences
nonco-operative games
stochastic approximation algorithm
Multiagent signal processing
Afriat’s theorem
correlated equilibrium
homophily
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-f2d4620496c883344aa9df210b14fbad9b05b38f1b28da7a9740643d9bd583da3
PageCount 18
ParticipantIDs crossref_citationtrail_10_1109_TSIPN_2016_2519766
crossref_primary_10_1109_TSIPN_2016_2519766
ieee_primary_7386701
PublicationCentury 2000
PublicationDate 2016-March
2016-3-00
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-March
PublicationDecade 2010
PublicationTitle IEEE transactions on signal and information processing over networks
PublicationTitleAbbrev TSIPN
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref56
ref12
ref15
ferrara (ref51) 2014
ester (ref36) 0; 96
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
deb (ref19) 6818
ref17
ref16
ref18
ref50
ref46
ref45
ref48
ref42
scott (ref57) 2015
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
lee (ref37) 2011; 154
billingsley (ref59) 1968
ref35
ref34
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
blundell (ref40) 2008; 76
ref23
ref26
ref25
ref20
ref22
kushner (ref47) 2003
ref21
ref28
ref27
ref29
ref60
ref62
ref61
mui (ref43) 2002
References_xml – ident: ref55
  doi: 10.1007/978-3-642-13739-6_25
– ident: ref5
  doi: 10.1162/jeea.2005.3.2-3.211
– ident: ref1
  doi: 10.1177/0049124111404820
– ident: ref54
  doi: 10.1016/j.comnet.2012.06.006
– ident: ref10
  doi: 10.1006/jeth.2000.2746
– ident: ref15
  doi: 10.1038/nn.3740
– ident: ref34
  doi: 10.1007/BF01737559
– year: 2015
  ident: ref57
  publication-title: Multivariate Density Estimation Theory Practice and Visualization
  doi: 10.1002/9781118575574
– ident: ref11
  doi: 10.1142/WSSET
– year: 2014
  ident: ref51
  article-title: The rise of social bots
– ident: ref14
  doi: 10.1016/j.tics.2007.04.003
– ident: ref39
  doi: 10.1007/978-1-4614-1927-3_1
– ident: ref26
  doi: 10.1017/CBO9781139507103
– ident: ref61
  doi: 10.1109/TIT.2012.2201372
– ident: ref18
  doi: 10.1109/LSP.2012.2221711
– ident: ref30
  doi: 10.1006/game.1996.0044
– ident: ref16
  doi: 10.2307/2525382
– ident: ref29
  doi: 10.1109/TSG.2014.2376291
– ident: ref13
  doi: 10.1086/649563
– ident: ref49
  doi: 10.1109/SMARTGRID.2010.5622091
– volume: 154
  year: 2011
  ident: ref37
  publication-title: Mixed Integer Nonlinear Programming
– ident: ref58
  doi: 10.1007/978-3-642-69512-4
– ident: ref22
  doi: 10.1109/SPW.2012.24
– ident: ref46
  doi: 10.1007/3-540-45598-1_9
– ident: ref42
  doi: 10.1007/978-3-642-03007-9_20
– year: 2003
  ident: ref47
  publication-title: Stochastic Approximation and Recursive Algorithms and Applications
– ident: ref28
  doi: 10.1016/j.jet.2009.01.010
– ident: ref7
  doi: 10.2307/1911154
– ident: ref6
  doi: 10.1111/j.1468-0297.2012.02504.x
– ident: ref9
  doi: 10.1111/1468-0262.00153
– year: 6818
  ident: ref19
  article-title: Interdependent preferences, potential games and household consumption
– ident: ref56
  doi: 10.1109/ASONAM.2014.6921650
– ident: ref20
  doi: 10.1006/jeth.1996.0108
– ident: ref3
  doi: 10.1146/annurev.economics.050708.142930
– ident: ref45
  doi: 10.1109/JSAC.2013.130613
– year: 1968
  ident: ref59
  publication-title: Convergence of Probability Measures
– ident: ref8
  doi: 10.1109/TAC.2013.2256684
– ident: ref27
  doi: 10.1016/j.ipl.2009.12.009
– ident: ref52
  doi: 10.1109/SURV.2013.091213.00134
– ident: ref50
  doi: 10.1145/1315245.1315288
– ident: ref23
  doi: 10.1007/978-3-662-04623-4_12
– ident: ref32
  doi: 10.1080/01621459.1991.10475021
– ident: ref53
  doi: 10.1016/j.comnet.2012.07.021
– ident: ref38
  doi: 10.1007/s10288-011-0181-9
– volume: 76
  start-page: 1227
  year: 2008
  ident: ref40
  article-title: Best nonparametric bounds on demand responses
  publication-title: Econometrica
  doi: 10.3982/ECTA6069
– ident: ref35
  doi: 10.1002/0471722138
– volume: 96
  start-page: 226
  year: 0
  ident: ref36
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc ACM/SIGKDD Conf Knowl Discovery Data Min
– ident: ref62
  doi: 10.1109/TCSS.2014.2307452
– ident: ref48
  doi: 10.1257/0895330053147958
– ident: ref41
  doi: 10.1017/S0962492900002518
– ident: ref44
  doi: 10.1111/1468-0262.00155
– ident: ref33
  doi: 10.1017/S1365100505040241
– ident: ref24
  doi: 10.1111/jpet.12078
– ident: ref25
  doi: 10.1109/JSAC.2012.121205
– ident: ref21
  doi: 10.1017/CBO9780511800481.009
– ident: ref4
  doi: 10.2307/2296461
– ident: ref31
  doi: 10.1017/CBO9780511804441
– ident: ref60
  doi: 10.1561/2000000048
– ident: ref17
  doi: 10.2307/2296957
– ident: ref12
  doi: 10.1257/mic.20130150
– year: 2002
  ident: ref43
  article-title: Computational models of trust and reputation: Agents, evolutionary games, and social networks
– ident: ref2
  doi: 10.1146/annurev.soc.27.1.415
SSID ssj0001574799
Score 1.9805441
Snippet This paper studies two important signal processing aspects of homophilic behavior namely, detection of homophilic communities and the distributed coordination...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 84
SubjectTerms Approximation algorithms
correlated equilibrium
Games
Information processing
Multi-agent signal processing
non-cooperative games
Signal processing algorithms
Social network services
Stochastic processes
Time series analysis
Title Detection of Homophilic Communities and Coordination of Interacting Meta-Agents: A Game-Theoretic Viewpoint
URI https://ieeexplore.ieee.org/document/7386701
Volume 2
WOSCitedRecordID wos000384247000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2373-7778
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001574799
  issn: 2373-776X
  databaseCode: RIE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVKxQEObAVRNvnADdxmqx1zq9jKgaoSBfUW2bGDImhStSn8Ph4nXQ4IiZwSayxFeVFmybx5CF0Gkgnz6VfEUb5PAlcyIlwvIYkKjbf3Y5dSZcUmWL8fjkZ8UEPXSy6M1to2n-kWnNp_-SqP51Aqa4NAJQOy1gZjtORqreopHRMYc77gxTi8PXx5GvSheYu2LD3TDkJc-Z41MRXrSx52_3cXe2inihlxtwR5H9V0doC21yYJNtDHnS5sU1WG8wT38nE-gUpJjCsCCIxNxSJT5tpkm2lZAgRTWxEEckP2jp91IUgXuFazG9zFj2KsyXBBdMRvqf6e5GlWHKLXh_vhbY9UOgok9igrSOKpAMbOcxqDtHAQCMFVYnI96QaJFIpLpyP9MHGlFyrBhEkxIFAx66oT-kr4R6ie5Zk-RthEZ14Yi445HOPWNHcU1a4OpaAB9SVtInfxhKO4GjIOWhefkU02HB5ZVCJAJapQaaKr5Z5JOWLjT-sGQLK0rNA4-X35FG3B5rJp7AzVi-lcn6PN-KtIZ9ML-wb9AO4lxQQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWqggQc2BFl9YEbuM3iODG3iq0IqJAoqLfIjh1UQZMKUvh9PE66HBASOSXWJIryosySefMQOqEyFObTr4ijfJ9QV4ZEuF5KUhUZb-8nLmPKik2E3W7U7_PHGjqbcmG01rb5TDdh1_7LV3kyhlJZCwQqQyBrLQSUek7J1ppVVAITGnM-YcY4vNV7un3sQvsWa1qCph2FOPM-c3Iq1ptcr_3vPtbRahU14nYJ8waq6WwTrczNEtxCb5e6sG1VGc5T3MmH-QhqJQmuKCAwOBWLTJljk28OyiIgmNqaINAbslf8oAtB2sC2-jzHbXwjhpr0JlRH_DLQ36N8kBXb6Pn6qnfRIZWSAkk8FhYk9RSFwfOcJSAuTKkQXKUm25MuTaVQXDqB9KPUlV6kRChMkgGhillXQeQr4e-gepZnehdhE595USICsznGsWnuKKZdHUnBKPMlayB38oTjpBozDmoX77FNNxweW1RiQCWuUGmg0-k5o3LIxp_WWwDJ1LJCY-_35WO01Ok93Mf3t927fbQMFypbyA5QvfgY60O0mHwVg8-PI_s2_QBWqshL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Homophilic+Communities+and+Coordination+of+Interacting+Meta-Agents%3A+A+Game-Theoretic+Viewpoint&rft.jtitle=IEEE+transactions+on+signal+and+information+processing+over+networks&rft.au=Gharehshiran%2C+Omid+Namvar&rft.au=Hoiles%2C+William&rft.au=Krishnamurthy%2C+Vikram&rft.date=2016-03-01&rft.pub=IEEE&rft.eissn=2373-7778&rft.volume=2&rft.issue=1&rft.spage=84&rft.epage=101&rft_id=info:doi/10.1109%2FTSIPN.2016.2519766&rft.externalDocID=7386701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-776X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-776X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-776X&client=summon