An innovative multi-parameter fusion compensation algorithm for ZRO drift of MEMS gyroscope under full-temperature conditions

The performance of micro-electromechanical system (MEMS) gyroscopes is profoundly influenced by temperature. In this study, a novel approach is proposed to enhance the thermal performance of MEMS gyroscopes by compensating for the zero-rate output (ZRO) temperature drift error through internal multi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Measurement : journal of the International Measurement Confederation Ročník 257; s. 118892
Hlavní autoři: Wang, Jianpeng, Yang, Gongliu, Liu, Fumin, Cai, Qingzhong, Song, Ningfang, Zhou, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.01.2026
Témata:
ISSN:0263-2241
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The performance of micro-electromechanical system (MEMS) gyroscopes is profoundly influenced by temperature. In this study, a novel approach is proposed to enhance the thermal performance of MEMS gyroscopes by compensating for the zero-rate output (ZRO) temperature drift error through internal multi-parameter fusion calibration, without the need for additional temperature sensors. This method is applicable to all MEMS gyroscopes currently under investigation. The relationships between the ZRO temperature drift error and key gyroscope parameters — including drive mode resonant frequency, drive excitation voltage, quadrature suppression voltage, and reference source voltage — were analyzed, based on these relationships, a mathematical model for the full-temperature-range ZRO temperature drift error was established. By performing multi-parameters linear fusion compensation of ZRO using these four parameters, the temperature performance of ZRO was markedly improved. Experimental results demonstrate that, within the temperature range of -40 °C to 60 °C, the peak-to-peak value of ZRO was reduced from 0.7965°/s to 0.1168°/s, representing an 85% decrease. In comparison to single-parameter compensation using drive mode resonant frequency, drive excitation voltage, quadrature suppression voltage, and reference source voltage, wherein peak-to-peak values were reduced from 0.3916°/s, 0.3881°/s, 0.2028°/s, and 0.4174°/s to 0.1168°/s, multi-parameter fusion compensation achieved reductions of 70%, 70%, 42%, and 72%, respectively. Furthermore, full-temperature-range bias stability improved by an order of magnitude, decreasing from 0.301°/s to 0.022°/s after compensation. •Proposes an innovative multi-parameter fusion method for compensating gyroscope zero rate output (ZRO).•Analyzes parameters causing gyroscope ZRO errors, and identifies error sources and compensation approaches.•Experimentally verifies the effectiveness and superiority of the proposed ZRO compensation method.
AbstractList The performance of micro-electromechanical system (MEMS) gyroscopes is profoundly influenced by temperature. In this study, a novel approach is proposed to enhance the thermal performance of MEMS gyroscopes by compensating for the zero-rate output (ZRO) temperature drift error through internal multi-parameter fusion calibration, without the need for additional temperature sensors. This method is applicable to all MEMS gyroscopes currently under investigation. The relationships between the ZRO temperature drift error and key gyroscope parameters — including drive mode resonant frequency, drive excitation voltage, quadrature suppression voltage, and reference source voltage — were analyzed, based on these relationships, a mathematical model for the full-temperature-range ZRO temperature drift error was established. By performing multi-parameters linear fusion compensation of ZRO using these four parameters, the temperature performance of ZRO was markedly improved. Experimental results demonstrate that, within the temperature range of -40 °C to 60 °C, the peak-to-peak value of ZRO was reduced from 0.7965°/s to 0.1168°/s, representing an 85% decrease. In comparison to single-parameter compensation using drive mode resonant frequency, drive excitation voltage, quadrature suppression voltage, and reference source voltage, wherein peak-to-peak values were reduced from 0.3916°/s, 0.3881°/s, 0.2028°/s, and 0.4174°/s to 0.1168°/s, multi-parameter fusion compensation achieved reductions of 70%, 70%, 42%, and 72%, respectively. Furthermore, full-temperature-range bias stability improved by an order of magnitude, decreasing from 0.301°/s to 0.022°/s after compensation. •Proposes an innovative multi-parameter fusion method for compensating gyroscope zero rate output (ZRO).•Analyzes parameters causing gyroscope ZRO errors, and identifies error sources and compensation approaches.•Experimentally verifies the effectiveness and superiority of the proposed ZRO compensation method.
ArticleNumber 118892
Author Liu, Fumin
Wang, Jianpeng
Song, Ningfang
Zhou, Yi
Yang, Gongliu
Cai, Qingzhong
Author_xml – sequence: 1
  givenname: Jianpeng
  orcidid: 0009-0008-3896-7387
  surname: Wang
  fullname: Wang, Jianpeng
  organization: School of Instrument Science and OptoElectronics Engineering, Beihang University, Beijing, 100191, China
– sequence: 2
  givenname: Gongliu
  surname: Yang
  fullname: Yang, Gongliu
  organization: School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China
– sequence: 3
  givenname: Fumin
  surname: Liu
  fullname: Liu, Fumin
  organization: Beijing Institute of Aerospace Control Device, Beijing, 100854, China
– sequence: 4
  givenname: Qingzhong
  surname: Cai
  fullname: Cai, Qingzhong
  email: qingzhong_cai@buaa.edu.cn
  organization: School of Instrument Science and OptoElectronics Engineering, Beihang University, Beijing, 100191, China
– sequence: 5
  givenname: Ningfang
  surname: Song
  fullname: Song, Ningfang
  organization: School of Instrument Science and OptoElectronics Engineering, Beihang University, Beijing, 100191, China
– sequence: 6
  givenname: Yi
  surname: Zhou
  fullname: Zhou, Yi
  email: yizhou_mems@njust.edu.cn
  organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
BookMark eNqNkMtqAjEUhrOwULV9h_QBZppk7ksRewFF6GXTTcgkZ2xkJhmSKLjouzfWLrrs6vDD-T9-vhmaGGsAoTtKUkpoeb9PBxD-4GAAE1JGWJFSWtcNm6ApYWWWMJbTazTzfk8IKbOmnKKvhcHaGHsUQR8BD4c-6GQUTgwQwOHu4LU1WNphBOPjTwyi31mnw-eAO-vwx8sWK6e7gG2HN6vNK96dnPXSjoAPRv0w-j4JEAlOhLgu0ozSZ5S_QVed6D3c_t45en9YvS2fkvX28Xm5WCeSlVVIFGtKChUpWiZZm1U5I7WqOhBF1uaEZkCrvFJ13XZ5o1RTNWXeVi0rJBENK0WWzVFz4co4zTvo-Oj0INyJU8LP7vie_3HHz-74xV3sLi9diAOPGhz3UoORoLQDGbiy-h-Ubx4chTU
Cites_doi 10.1109/JMEMS.2024.3424810
10.1016/j.sna.2012.12.024
10.1109/JSEN.2024.3394902
10.1109/IBCAST.2016.7429889
10.1109/ITNEC52019.2021.9587304
10.1088/1361-6501/ade552
10.1109/ACCESS.2021.3094120
10.1016/j.measurement.2019.106947
10.1109/INERTIAL53425.2022.9787718
10.1109/INERTIAL63280.2025.11037137
10.1109/NEMS60219.2024.10639552
10.1109/TMECH.2019.2898098
10.1109/JSEN.2019.2902912
10.1109/TIM.2013.2283153
10.1109/JMEMS.2008.924253
10.1109/AIHCIR61661.2023.00034
10.1109/JSEN.2024.3360032
10.1016/j.measurement.2023.114051
10.3390/mi15070825
10.1109/ICSENST.2008.4757112
10.1016/j.measurement.2023.113331
10.1016/j.aei.2025.103300
10.1109/JSEN.2020.3012484
10.31438/trf.hh2012.77
10.1109/TIM.2020.3044339
10.1109/JSEN.2020.3044148
10.1109/JSEN.2024.3442207
10.1109/TIM.2019.2914295
10.1109/TED.2024.3392184
10.1016/j.ymssp.2015.11.004
10.1109/JSEN.2021.3126321
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2025.118892
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_measurement_2025_118892
S0263224125022511
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFRF
ABJNI
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
~HD
29M
9DU
AAYXX
ABFNM
ABXDB
ACNNM
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
WUQ
XPP
ID FETCH-LOGICAL-c267t-d2961e705b2c2b374208d7fea53b4013e1747d88bf49dd97964b7b25c0a926a33
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001576932700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Sat Nov 29 06:58:03 EST 2025
Sat Nov 29 17:15:29 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords MEMS gyroscopes
Temperature performance
Multi-parameter fusion
Bias stability
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-d2961e705b2c2b374208d7fea53b4013e1747d88bf49dd97964b7b25c0a926a33
ORCID 0009-0008-3896-7387
ParticipantIDs crossref_primary_10_1016_j_measurement_2025_118892
elsevier_sciencedirect_doi_10_1016_j_measurement_2025_118892
PublicationCentury 2000
PublicationDate 2026-01-15
PublicationDateYYYYMMDD 2026-01-15
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhou, Yu, Ke, Ge, Huang, Wang, Zhou, Su (b11) 2024; 33
M. Ali, Compensation of temperature and acceleration effects on MEMS gyroscope, in: 2016 13th International Bhurban Conference on Applied Sciences and Technology, IBCAST, 2016, pp. 274–279.
Y. Zhang, L. Piao, Y. Wang, Compensation of Temperature Drift of Micro Gyroscope by Polynomial Fitting Algorithm, in: 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference, ITNEC, Vol. 5, 2021, pp. 307–310.
I. Prikhodko, A. Trusov, A. Shkel, Achieving long-term bias stability in high-q inertialmems by temperature self-sensing with 0.5millicelcius precision, in: Solid State Sensors, Actuators, and Microsystems Workshop, 2012.
Mustafa, Cheng, Oelmann (b10) 2014; 63
J. Ren, T. Zhou, Y. Zhou, Y. Li, Y. Su, A Quality Factor Matching Method for MEMS Disk Resonator Gyroscope in Rate Mode, in: 2024 IEEE 19th International Conference on Nano/Micro Engineered and Molecular Systems, NEMS, 2024, pp. 1–4.
Li, Cui, Cai, Wei, Shen, Tang, Shi, Cao, Liu (b35) 2024; 24
Schiwietz, Weig, Degenfeld-Schonburg (b42) 2023
Gu, Liu, Zhao, Zhou (b33) 2019; 19
Kim, Hopcroft, Candler, Jha, Agarwal, Melamud, Chandorkar, Yama, Kenny (b43) 2008; 17
D.D. Lynch, Vibratory Gyro Analysis by the Method of Averaging, in: Proc. 2nd St. Petersburg Conf. on Gyroscopic Technology and Navigation, St. Petersburg, Russia, 1995, pp. 26–34.
Cao, Zhang, Han, Shao, Gao, Huang, Shi, Tang, Shen, Liu (b20) 2019; 24
Erkan, Tatar (b24) 2024
Wang, Yang, Zhou, Zhang, Liu, Cai (b14) 2024; 15
Z. Hou, G. Liu, M. Zeng, X. Chen, D. Xiao, X. Wu, Analysis and Compensation of Phase Error for the Butterfly Gyroscope, in: 2025 IEEE International Symposium on Inertial Sensors and Systems, INERTIAL, 2025, pp. 1–4.
Cui, Yan, Zhao (b37) 2019; 148
Capriglione, Carratù, Catelani, Ciani, Patrizi, Pietrosanto, Sommella (b9) 2021; 70
Ding (b1) 2023; 22
Chong, Rui, Jie, Xiaoming, Jun, Yunbo, Jun, Huiliang (b25) 2016; 72–73
Li, Wen, Wisher, Norouzpour-Shirazi, Lei, Chen, Ayazi (b5) 2020; 69
Ding (b2) 2023; 22
Liu, Ding, Ding, Shang, Yu, Li (b19) 2025; 74
Ge, Jiang, Zhou, Huang, Su, Zhou (b16) 2025; 74
Ren, Zhou, Zhou, Li, Su (b7) 2023; 72
D. Liu, X. Chi, J. Cui, L. Lin, Q. Zhao, Z. Yang, G. Yan, Research on temperature dependent characteristics and compensation methods for digital gyroscope, in: 2008 3rd International Conference on Sensing Technology, 2008, pp. 273–277.
Prikhodko, Trusov, Shkel (b36) 2013; 201
Cao, Wei, Liu, Ma, Zhang, Zhang, Shen, Duan (b18) 2021; 9
T. Dong, B. Chai, T. Wang, A MEMS Gyroscope Arrays Error Calibration Method Based on LSTM, in: 2023 2nd International Conference on Artificial Intelligence, Human-Computer Interaction and Robotics, AIHCIR, 2023, pp. 161–165.
J. Fei, S. Wang, M. Hua, Adaptive fuzzy control of MEMS gyroscope using T-S fuzzy model, in: Proceedings of the 32nd Chinese Control Conference, 2013, pp. 3104–3109.
Zhang, Jiang, Yang, Li (b30) 2025; 36
Zhang, Chen, Yin, Fu (b17) 2023; 220
Zhou, Ren, Liu, Zhou, Su (b13) 2021; 21
Huang, Wang, Xing, Gao (b32) 2022; 71
Zhou, Ke, Ge, Huang, Zhou, Su (b3) 2024; 24
Jia, Ding, Qin, Ruan, Li (b15) 2021; 21
Wang, Cao, Li, Dean (b21) 2021; 21
Chen, Ding, Qin, Li (b8) 2024; 73
W. Guan, D. Wang, M.H. Asadian, Y. Wang, A.M. Shkel, Effect of Geometry on Energy Losses In Fused Silica Dual-Shell Gyroscopes, in: 2022 IEEE International Symposium on Inertial Sensors and Systems, INERTIAL, 2022, pp. 1–4.
Yi, Yang, Cai, Cheng, Tu, Wang, Song (b4) 2024; 24
Zhang, Xu, Yang, Wang, Zheng, Li (b29) 2024; 225
Acar, Shkel (b41) 2008
Liu, Li, Chen, Khan (b28) 2025; 65
Wang, Zhou, Jiang, Zhang, Zhou, Su (b23) 2024; 71
10.1016/j.measurement.2025.118892_b40
10.1016/j.measurement.2025.118892_b22
Capriglione (10.1016/j.measurement.2025.118892_b9) 2021; 70
Liu (10.1016/j.measurement.2025.118892_b19) 2025; 74
10.1016/j.measurement.2025.118892_b26
Ding (10.1016/j.measurement.2025.118892_b2) 2023; 22
Ren (10.1016/j.measurement.2025.118892_b7) 2023; 72
Gu (10.1016/j.measurement.2025.118892_b33) 2019; 19
Yi (10.1016/j.measurement.2025.118892_b4) 2024; 24
10.1016/j.measurement.2025.118892_b6
Wang (10.1016/j.measurement.2025.118892_b14) 2024; 15
10.1016/j.measurement.2025.118892_b27
Huang (10.1016/j.measurement.2025.118892_b32) 2022; 71
Li (10.1016/j.measurement.2025.118892_b5) 2020; 69
Cui (10.1016/j.measurement.2025.118892_b37) 2019; 148
Mustafa (10.1016/j.measurement.2025.118892_b10) 2014; 63
Zhang (10.1016/j.measurement.2025.118892_b17) 2023; 220
Kim (10.1016/j.measurement.2025.118892_b43) 2008; 17
Zhou (10.1016/j.measurement.2025.118892_b11) 2024; 33
Wang (10.1016/j.measurement.2025.118892_b21) 2021; 21
Zhang (10.1016/j.measurement.2025.118892_b29) 2024; 225
Schiwietz (10.1016/j.measurement.2025.118892_b42) 2023
Ge (10.1016/j.measurement.2025.118892_b16) 2025; 74
Chen (10.1016/j.measurement.2025.118892_b8) 2024; 73
10.1016/j.measurement.2025.118892_b31
Acar (10.1016/j.measurement.2025.118892_b41) 2008
Ding (10.1016/j.measurement.2025.118892_b1) 2023; 22
Jia (10.1016/j.measurement.2025.118892_b15) 2021; 21
Zhou (10.1016/j.measurement.2025.118892_b13) 2021; 21
10.1016/j.measurement.2025.118892_b12
10.1016/j.measurement.2025.118892_b34
Zhang (10.1016/j.measurement.2025.118892_b30) 2025; 36
Li (10.1016/j.measurement.2025.118892_b35) 2024; 24
10.1016/j.measurement.2025.118892_b39
Wang (10.1016/j.measurement.2025.118892_b23) 2024; 71
10.1016/j.measurement.2025.118892_b38
Liu (10.1016/j.measurement.2025.118892_b28) 2025; 65
Erkan (10.1016/j.measurement.2025.118892_b24) 2024
Prikhodko (10.1016/j.measurement.2025.118892_b36) 2013; 201
Cao (10.1016/j.measurement.2025.118892_b18) 2021; 9
Cao (10.1016/j.measurement.2025.118892_b20) 2019; 24
Zhou (10.1016/j.measurement.2025.118892_b3) 2024; 24
Chong (10.1016/j.measurement.2025.118892_b25) 2016; 72–73
References_xml – reference: J. Fei, S. Wang, M. Hua, Adaptive fuzzy control of MEMS gyroscope using T-S fuzzy model, in: Proceedings of the 32nd Chinese Control Conference, 2013, pp. 3104–3109.
– volume: 71
  year: 2022
  ident: b32
  article-title: A MEMS IMU gyroscope calibration method based on deep learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 24
  start-page: 7614
  year: 2024
  end-page: 7624
  ident: b35
  article-title: A fusion algorithm for real-time temperature compensation and noise suppression with a double U-beam vibration ring gyroscope
  publication-title: IEEE Sens. J.
– volume: 33
  start-page: 646
  year: 2024
  end-page: 655
  ident: b11
  article-title: A rapid circuit phase error identification and compensation method for MEMS QMG achieving 99.7% reduction in ZRO drift
  publication-title: J. Microelectromech. Syst.
– volume: 65
  year: 2025
  ident: b28
  article-title: Neuromorphic computing-enabled generalized machine fault diagnosis with dynamic vision
  publication-title: Adv. Eng. Inform.
– reference: J. Ren, T. Zhou, Y. Zhou, Y. Li, Y. Su, A Quality Factor Matching Method for MEMS Disk Resonator Gyroscope in Rate Mode, in: 2024 IEEE 19th International Conference on Nano/Micro Engineered and Molecular Systems, NEMS, 2024, pp. 1–4.
– reference: D.D. Lynch, Vibratory Gyro Analysis by the Method of Averaging, in: Proc. 2nd St. Petersburg Conf. on Gyroscopic Technology and Navigation, St. Petersburg, Russia, 1995, pp. 26–34.
– volume: 63
  start-page: 2591
  year: 2014
  end-page: 2598
  ident: b10
  article-title: Stator-free low angular speed sensor based on a MEMS gyroscope
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 36
  year: 2025
  ident: b30
  article-title: Federated transfer learning for remaining useful life prediction in prognostics with data privacy
  publication-title: Meas. Sci. Technol.
– reference: T. Dong, B. Chai, T. Wang, A MEMS Gyroscope Arrays Error Calibration Method Based on LSTM, in: 2023 2nd International Conference on Artificial Intelligence, Human-Computer Interaction and Robotics, AIHCIR, 2023, pp. 161–165.
– volume: 72–73
  start-page: 897
  year: 2016
  end-page: 905
  ident: b25
  article-title: Temperature drift modeling of MEMS gyroscope based on genetic-Elman neural network
  publication-title: Mech. Syst. Signal Process.
– volume: 74
  start-page: 1
  year: 2025
  end-page: 12
  ident: b19
  article-title: Bandwidth expansion for mode-matched MEMS gyroscopes without any compensator
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 10
  ident: b9
  article-title: Experimental analysis of filtering algorithms for IMU-based applications under vibrations
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 220
  year: 2023
  ident: b17
  article-title: Design of MEMS gyroscope interface ASIC with on-chip temperature compensation
  publication-title: Measurement
– volume: 19
  start-page: 5070
  year: 2019
  end-page: 5077
  ident: b33
  article-title: The in-operation drift compensation of MEMS gyroscope based on bagging-ELM and improved CEEMDAN
  publication-title: IEEE Sens. J.
– volume: 148
  year: 2019
  ident: b37
  article-title: Enhanced temperature stability of scale factor in MEMS gyroscope based on multi parameters fusion compensation method
  publication-title: Measurement
– volume: 24
  start-page: 31827
  year: 2024
  end-page: 31836
  ident: b4
  article-title: A novel self-modulation method for whole-angle resonator gyroscope based on high harmonic compensation
  publication-title: IEEE Sens. J.
– volume: 71
  start-page: 3888
  year: 2024
  end-page: 3894
  ident: b23
  article-title: A compact temperature controller for MEMS vibratory gyroscopes using thermoelectric cooler
  publication-title: IEEE Trans. Electron Devices
– volume: 201
  start-page: 517
  year: 2013
  end-page: 524
  ident: b36
  article-title: Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing
  publication-title: Sens. Actuators A: Phys.
– reference: D. Liu, X. Chi, J. Cui, L. Lin, Q. Zhao, Z. Yang, G. Yan, Research on temperature dependent characteristics and compensation methods for digital gyroscope, in: 2008 3rd International Conference on Sensing Technology, 2008, pp. 273–277.
– volume: 15
  year: 2024
  ident: b14
  article-title: An in-run automatic demodulation phase error compensation method for MEMS gyroscope in full temperature range
  publication-title: Micromachines
– volume: 21
  start-page: 92
  year: 2021
  end-page: 119
  ident: b21
  article-title: Concepts, roadmaps and challenges of ovenized MEMS gyroscopes: A review
  publication-title: IEEE Sens. J.
– reference: Z. Hou, G. Liu, M. Zeng, X. Chen, D. Xiao, X. Wu, Analysis and Compensation of Phase Error for the Butterfly Gyroscope, in: 2025 IEEE International Symposium on Inertial Sensors and Systems, INERTIAL, 2025, pp. 1–4.
– reference: I. Prikhodko, A. Trusov, A. Shkel, Achieving long-term bias stability in high-q inertialmems by temperature self-sensing with 0.5millicelcius precision, in: Solid State Sensors, Actuators, and Microsystems Workshop, 2012.
– year: 2008
  ident: b41
  article-title: MEMS vibratory gyroscopes: Structural approaches to improve robustness (MEMS reference shelf)
– volume: 21
  start-page: 7316
  year: 2021
  end-page: 7325
  ident: b15
  article-title: In-run scale factor compensation for MEMS gyroscope without calibration and fitting
  publication-title: IEEE Sens. J.
– start-page: 1
  year: 2024
  end-page: 4
  ident: b24
  article-title: Improving the temperature stability of MEMS gyroscope bias with on-chip stress sensors
  publication-title: 2024 IEEE International Symposium on Inertial Sensors and Systems
– volume: 73
  start-page: 1
  year: 2024
  end-page: 14
  ident: b8
  article-title: Modeling, characterization, and compensation of detection and actuation coupling errors for whole-angle micro hemispherical resonant gyroscope
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 22
  start-page: 1
  year: 2023
  end-page: 4
  ident: b2
  article-title: Using entropy theory to guide the development of gyroscopes
  publication-title: Navig. Control.
– volume: 69
  start-page: 1783
  year: 2020
  end-page: 1793
  ident: b5
  article-title: An FPGA-based interface system for high-frequency bulk-acoustic-wave microgyroscopes with in-run automatic mode-matching
  publication-title: IEEE Trans. Instrum. Meas.
– reference: Y. Zhang, L. Piao, Y. Wang, Compensation of Temperature Drift of Micro Gyroscope by Polynomial Fitting Algorithm, in: 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference, ITNEC, Vol. 5, 2021, pp. 307–310.
– reference: M. Ali, Compensation of temperature and acceleration effects on MEMS gyroscope, in: 2016 13th International Bhurban Conference on Applied Sciences and Technology, IBCAST, 2016, pp. 274–279.
– volume: 21
  start-page: 27601
  year: 2021
  end-page: 27611
  ident: b13
  article-title: An in-run automatic mode-matching method for N=3 MEMS disk resonator gyroscope
  publication-title: IEEE Sens. J.
– volume: 74
  start-page: 1
  year: 2025
  end-page: 11
  ident: b16
  article-title: A novel MEMS quadruple mass gyroscope with superior overall performance via dual-umbrella-like driving architecture
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 877
  year: 2023
  end-page: 880
  ident: b42
  article-title: Temperature dependence of quality factors at high frequencies in MEMS gyroscopes
  publication-title: 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems
– reference: W. Guan, D. Wang, M.H. Asadian, Y. Wang, A.M. Shkel, Effect of Geometry on Energy Losses In Fused Silica Dual-Shell Gyroscopes, in: 2022 IEEE International Symposium on Inertial Sensors and Systems, INERTIAL, 2022, pp. 1–4.
– volume: 225
  year: 2024
  ident: b29
  article-title: Data-driven deep learning approach for thrust prediction of solid rocket motors
  publication-title: Measurement
– volume: 22
  start-page: 1
  year: 2023
  end-page: 4
  ident: b1
  article-title: Three decades of evolving MEMS inertial sensors
  publication-title: Navig. Control.
– volume: 9
  start-page: 95180
  year: 2021
  end-page: 95193
  ident: b18
  article-title: A temperature compensation approach for dual-mass MEMS gyroscope based on PE-LCD and ANFIS
  publication-title: IEEE Access
– volume: 72
  start-page: 1
  year: 2023
  end-page: 11
  ident: b7
  article-title: An in-run automatic mode-matching method with amplitude correction and phase compensation for MEMS disk resonator gyroscope
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 17
  start-page: 755
  year: 2008
  end-page: 766
  ident: b43
  article-title: Temperature dependence of quality factor in MEMS resonators
  publication-title: J. Microelectromech. Syst.
– volume: 24
  start-page: 677
  year: 2019
  end-page: 688
  ident: b20
  article-title: Pole-zero temperature compensation circuit design and experiment for dual-mass MEMS gyroscope bandwidth expansion
  publication-title: IEEE/ASME Trans. Mechatronics
– volume: 24
  start-page: 19262
  year: 2024
  end-page: 19273
  ident: b3
  article-title: An automatic phase error compensation method for MEMS quad mass gyroscope
  publication-title: IEEE Sens. J.
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.measurement.2025.118892_b7
  article-title: An in-run automatic mode-matching method with amplitude correction and phase compensation for MEMS disk resonator gyroscope
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 74
  start-page: 1
  year: 2025
  ident: 10.1016/j.measurement.2025.118892_b16
  article-title: A novel MEMS quadruple mass gyroscope with superior overall performance via dual-umbrella-like driving architecture
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 33
  start-page: 646
  issue: 5
  year: 2024
  ident: 10.1016/j.measurement.2025.118892_b11
  article-title: A rapid circuit phase error identification and compensation method for MEMS QMG achieving 99.7% reduction in ZRO drift
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2024.3424810
– volume: 201
  start-page: 517
  year: 2013
  ident: 10.1016/j.measurement.2025.118892_b36
  article-title: Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2012.12.024
– volume: 24
  start-page: 19262
  issue: 12
  year: 2024
  ident: 10.1016/j.measurement.2025.118892_b3
  article-title: An automatic phase error compensation method for MEMS quad mass gyroscope
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3394902
– ident: 10.1016/j.measurement.2025.118892_b27
  doi: 10.1109/IBCAST.2016.7429889
– volume: 74
  start-page: 1
  year: 2025
  ident: 10.1016/j.measurement.2025.118892_b19
  article-title: Bandwidth expansion for mode-matched MEMS gyroscopes without any compensator
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 10.1016/j.measurement.2025.118892_b26
  doi: 10.1109/ITNEC52019.2021.9587304
– year: 2008
  ident: 10.1016/j.measurement.2025.118892_b41
– volume: 36
  issue: 7
  year: 2025
  ident: 10.1016/j.measurement.2025.118892_b30
  article-title: Federated transfer learning for remaining useful life prediction in prognostics with data privacy
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ade552
– volume: 9
  start-page: 95180
  year: 2021
  ident: 10.1016/j.measurement.2025.118892_b18
  article-title: A temperature compensation approach for dual-mass MEMS gyroscope based on PE-LCD and ANFIS
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3094120
– volume: 148
  year: 2019
  ident: 10.1016/j.measurement.2025.118892_b37
  article-title: Enhanced temperature stability of scale factor in MEMS gyroscope based on multi parameters fusion compensation method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.106947
– ident: 10.1016/j.measurement.2025.118892_b6
  doi: 10.1109/INERTIAL53425.2022.9787718
– start-page: 1
  year: 2024
  ident: 10.1016/j.measurement.2025.118892_b24
  article-title: Improving the temperature stability of MEMS gyroscope bias with on-chip stress sensors
– volume: 71
  year: 2022
  ident: 10.1016/j.measurement.2025.118892_b32
  article-title: A MEMS IMU gyroscope calibration method based on deep learning
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 10.1016/j.measurement.2025.118892_b22
  doi: 10.1109/INERTIAL63280.2025.11037137
– ident: 10.1016/j.measurement.2025.118892_b12
  doi: 10.1109/NEMS60219.2024.10639552
– volume: 24
  start-page: 677
  issue: 2
  year: 2019
  ident: 10.1016/j.measurement.2025.118892_b20
  article-title: Pole-zero temperature compensation circuit design and experiment for dual-mass MEMS gyroscope bandwidth expansion
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2019.2898098
– volume: 19
  start-page: 5070
  issue: 13
  year: 2019
  ident: 10.1016/j.measurement.2025.118892_b33
  article-title: The in-operation drift compensation of MEMS gyroscope based on bagging-ELM and improved CEEMDAN
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2902912
– volume: 63
  start-page: 2591
  issue: 11
  year: 2014
  ident: 10.1016/j.measurement.2025.118892_b10
  article-title: Stator-free low angular speed sensor based on a MEMS gyroscope
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2013.2283153
– volume: 17
  start-page: 755
  issue: 3
  year: 2008
  ident: 10.1016/j.measurement.2025.118892_b43
  article-title: Temperature dependence of quality factor in MEMS resonators
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2008.924253
– ident: 10.1016/j.measurement.2025.118892_b31
  doi: 10.1109/AIHCIR61661.2023.00034
– ident: 10.1016/j.measurement.2025.118892_b34
– volume: 22
  start-page: 1
  issue: 3
  year: 2023
  ident: 10.1016/j.measurement.2025.118892_b2
  article-title: Using entropy theory to guide the development of gyroscopes
  publication-title: Navig. Control.
– volume: 24
  start-page: 7614
  issue: 6
  year: 2024
  ident: 10.1016/j.measurement.2025.118892_b35
  article-title: A fusion algorithm for real-time temperature compensation and noise suppression with a double U-beam vibration ring gyroscope
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3360032
– volume: 225
  year: 2024
  ident: 10.1016/j.measurement.2025.118892_b29
  article-title: Data-driven deep learning approach for thrust prediction of solid rocket motors
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.114051
– volume: 15
  issue: 7
  year: 2024
  ident: 10.1016/j.measurement.2025.118892_b14
  article-title: An in-run automatic demodulation phase error compensation method for MEMS gyroscope in full temperature range
  publication-title: Micromachines
  doi: 10.3390/mi15070825
– volume: 22
  start-page: 1
  issue: 4
  year: 2023
  ident: 10.1016/j.measurement.2025.118892_b1
  article-title: Three decades of evolving MEMS inertial sensors
  publication-title: Navig. Control.
– ident: 10.1016/j.measurement.2025.118892_b38
  doi: 10.1109/ICSENST.2008.4757112
– ident: 10.1016/j.measurement.2025.118892_b40
– volume: 220
  year: 2023
  ident: 10.1016/j.measurement.2025.118892_b17
  article-title: Design of MEMS gyroscope interface ASIC with on-chip temperature compensation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113331
– volume: 65
  year: 2025
  ident: 10.1016/j.measurement.2025.118892_b28
  article-title: Neuromorphic computing-enabled generalized machine fault diagnosis with dynamic vision
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2025.103300
– volume: 21
  start-page: 92
  issue: 1
  year: 2021
  ident: 10.1016/j.measurement.2025.118892_b21
  article-title: Concepts, roadmaps and challenges of ovenized MEMS gyroscopes: A review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3012484
– ident: 10.1016/j.measurement.2025.118892_b39
  doi: 10.31438/trf.hh2012.77
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2025.118892_b9
  article-title: Experimental analysis of filtering algorithms for IMU-based applications under vibrations
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3044339
– volume: 21
  start-page: 7316
  issue: 6
  year: 2021
  ident: 10.1016/j.measurement.2025.118892_b15
  article-title: In-run scale factor compensation for MEMS gyroscope without calibration and fitting
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3044148
– start-page: 877
  year: 2023
  ident: 10.1016/j.measurement.2025.118892_b42
  article-title: Temperature dependence of quality factors at high frequencies in MEMS gyroscopes
– volume: 24
  start-page: 31827
  issue: 20
  year: 2024
  ident: 10.1016/j.measurement.2025.118892_b4
  article-title: A novel self-modulation method for whole-angle resonator gyroscope based on high harmonic compensation
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3442207
– volume: 69
  start-page: 1783
  issue: 4
  year: 2020
  ident: 10.1016/j.measurement.2025.118892_b5
  article-title: An FPGA-based interface system for high-frequency bulk-acoustic-wave microgyroscopes with in-run automatic mode-matching
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2914295
– volume: 71
  start-page: 3888
  issue: 6
  year: 2024
  ident: 10.1016/j.measurement.2025.118892_b23
  article-title: A compact temperature controller for MEMS vibratory gyroscopes using thermoelectric cooler
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2024.3392184
– volume: 72–73
  start-page: 897
  year: 2016
  ident: 10.1016/j.measurement.2025.118892_b25
  article-title: Temperature drift modeling of MEMS gyroscope based on genetic-Elman neural network
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.11.004
– volume: 21
  start-page: 27601
  issue: 24
  year: 2021
  ident: 10.1016/j.measurement.2025.118892_b13
  article-title: An in-run automatic mode-matching method for N=3 MEMS disk resonator gyroscope
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3126321
– volume: 73
  start-page: 1
  year: 2024
  ident: 10.1016/j.measurement.2025.118892_b8
  article-title: Modeling, characterization, and compensation of detection and actuation coupling errors for whole-angle micro hemispherical resonant gyroscope
  publication-title: IEEE Trans. Instrum. Meas.
SSID ssj0006396
Score 2.4193423
Snippet The performance of micro-electromechanical system (MEMS) gyroscopes is profoundly influenced by temperature. In this study, a novel approach is proposed to...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 118892
SubjectTerms Bias stability
MEMS gyroscopes
Multi-parameter fusion
Temperature performance
Title An innovative multi-parameter fusion compensation algorithm for ZRO drift of MEMS gyroscope under full-temperature conditions
URI https://dx.doi.org/10.1016/j.measurement.2025.118892
Volume 257
WOSCitedRecordID wos001576932700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006396
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7WVkUfRGvFemME30pKM7lMAr4sZasWrbeqiy9hJjPZpuwmy96ogj_Kf9hzZnJjVVTEl7CEzUk252PmnLPf-Q4hT1JY8xQXytFCCMeXoe-INBaOckMdhVkgffOP6ceX_Pg4Gg7jN73e97oXZjXmRRGdn8fT_-pqOAfOxtbZv3B3YxROwGdwOhzB7XD8I8f3kbtoR52utCUMOijwPUHiy262xPKYYZJDAmu9L8ajcpYvTieGc_j53etdNcszQxF4NYBEf_QFJS_LqTZDc9HGeOygplUlyIzUdZW3lb96QFRbfjSFh45IRUvZrGuR3S-bLkRUBO2SBD5Vhe0jwDM8-qhZrqrzz0psSF42BKN8aeLy5SRvTBzY0dtvYbf-elpWJqqKBzMVD9vzactwdStOy3uaGwVZz8F4pLu0Myt-_cM2YSsWZ3uT9rftwZ0C2ECiyM7mW1Phfo_20TyEjAzTsktkk_EghoV0s_9iMDxqtn8I-UJb2LPPc5U8bkmFv7jhz4OiTqBzcpPcqDIU2rfIukV6utgi1zu6lVvkiuENp_Pb5Fu_oC3a6BraqEUb7aKNNmijgDYKaKMGbbTMKKKNNmijBm10HW20Rds2-XA4ODl47lQTPZyUhXzhKBaHrub7gWQpkx5HbofimRaBJzHR15AfcxVFMvNjpWJsk5ZcsiDdFzELhefdIRtFWei7hLoSthshIP_mri-8QKSRq4NApTJD0Um1Q1j9SpOpFW5JakbjWdLxQ4J-SKwfdsjT-uUnVQRqI8sEkPP7y-_92-X3ybUW7g_IxmK21A_J5XS1yOezRxXOLgA6hbt3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+innovative+multi-parameter+fusion+compensation+algorithm+for+ZRO+drift+of+MEMS+gyroscope+under+full-temperature+conditions&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Wang%2C+Jianpeng&rft.au=Yang%2C+Gongliu&rft.au=Liu%2C+Fumin&rft.au=Cai%2C+Qingzhong&rft.date=2026-01-15&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.volume=257&rft_id=info:doi/10.1016%2Fj.measurement.2025.118892&rft.externalDocID=S0263224125022511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon