A Global Bayesian Optimization Algorithm and Its Application to Integrated System Design

Increasing levels of system integration pose difficulties in meeting design specifications for high-performance systems. Oftentimes increased complexity, nonlinearity, and multiple tradeoffs need to be handled simultaneously during the design cycle. Since components in such systems are highly correl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems Vol. 26; no. 4; pp. 792 - 802
Main Authors: Torun, Hakki Mert, Swaminathan, Madhavan, Kavungal Davis, Anto, Bellaredj, Mohamed Lamine Faycal
Format: Journal Article
Language:English
Published: IEEE 01.04.2018
Subjects:
ISSN:1063-8210, 1557-9999
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Increasing levels of system integration pose difficulties in meeting design specifications for high-performance systems. Oftentimes increased complexity, nonlinearity, and multiple tradeoffs need to be handled simultaneously during the design cycle. Since components in such systems are highly correlated with each other, codesign and co-optimization of the complete system are required. Machine learning (ML) provides opportunities for analyzing such systems with multiple control parameters, where techniques based on Bayesian optimization (BO) can be used to meet or exceed design specifications. In this paper, we propose a new BO-based global optimization algorithm titled Two-Stage BO (TSBO). TSBO can be applied to black box optimization problems where the computational time can be reduced through a reduction in the number of simulations required. Empirical analysis on a set of popular challenge functions with several local extrema and dimensions shows TSBO to have a faster convergence rate as compared with other optimization methods. In this paper, TSBO has been applied for clock skew minimization in 3-D integrated circuits and multiobjective co-optimization for maximizing efficiency in integrated voltage regulators. The results show that TSBO is between <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">4\times </tex-math></inline-formula> faster as compared with previously published BO algorithms and other non-ML-based techniques.
AbstractList Increasing levels of system integration pose difficulties in meeting design specifications for high-performance systems. Oftentimes increased complexity, nonlinearity, and multiple tradeoffs need to be handled simultaneously during the design cycle. Since components in such systems are highly correlated with each other, codesign and co-optimization of the complete system are required. Machine learning (ML) provides opportunities for analyzing such systems with multiple control parameters, where techniques based on Bayesian optimization (BO) can be used to meet or exceed design specifications. In this paper, we propose a new BO-based global optimization algorithm titled Two-Stage BO (TSBO). TSBO can be applied to black box optimization problems where the computational time can be reduced through a reduction in the number of simulations required. Empirical analysis on a set of popular challenge functions with several local extrema and dimensions shows TSBO to have a faster convergence rate as compared with other optimization methods. In this paper, TSBO has been applied for clock skew minimization in 3-D integrated circuits and multiobjective co-optimization for maximizing efficiency in integrated voltage regulators. The results show that TSBO is between <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">4\times </tex-math></inline-formula> faster as compared with previously published BO algorithms and other non-ML-based techniques.
Author Kavungal Davis, Anto
Torun, Hakki Mert
Swaminathan, Madhavan
Bellaredj, Mohamed Lamine Faycal
Author_xml – sequence: 1
  givenname: Hakki Mert
  orcidid: 0000-0002-9611-1658
  surname: Torun
  fullname: Torun, Hakki Mert
  email: htorun3@gatech.edu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 2
  givenname: Madhavan
  surname: Swaminathan
  fullname: Swaminathan, Madhavan
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 3
  givenname: Anto
  orcidid: 0000-0002-4483-2031
  surname: Kavungal Davis
  fullname: Kavungal Davis, Anto
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 4
  givenname: Mohamed Lamine Faycal
  orcidid: 0000-0003-1406-1173
  surname: Bellaredj
  fullname: Bellaredj, Mohamed Lamine Faycal
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
BookMark eNp9kMtOwzAQRS1UJErhB2DjH0jxI4ntZShQIlXqogWxi-xkUowSJ4q9KV9P-hALFsxiZqTRuRqdazRxnQOE7iiZU0rUw_Z9tcnnjFAxZ0LGQvILNKVJIiI11mTcScojySi5QtfefxFC41iRKfrI8LLpjG7wo96Dt9rhdR9sa791sJ3DWbPrBhs-W6xdhfPgcdb3jS1P19Dh3AXYDTpAhTd7H6DFT2PMzt2gy1o3Hm7Pc4beXp63i9dotV7mi2wVlSwVYexQ01gLbkCwmjOpNVRlpUkqAGpmgEvCaiVompAqqWJijDJUE6l4CgZiPkPylFsOnfcD1EVpw_G7MGjbFJQUB0PF0VBxMFScDY0o-4P2g231sP8fuj9BFgB-AckSLpniP5j1dgI
CODEN IEVSE9
CitedBy_id crossref_primary_10_1002_ima_22570
crossref_primary_10_1016_j_compeleceng_2020_106640
crossref_primary_10_1002_stc_2693
crossref_primary_10_1109_TITS_2023_3345630
crossref_primary_10_1109_TCPMT_2021_3098666
crossref_primary_10_1109_TEMC_2020_2973946
crossref_primary_10_1109_TCPMT_2020_3002226
crossref_primary_10_3390_s22249936
crossref_primary_10_1109_TAP_2020_3044393
crossref_primary_10_1109_TCAD_2022_3213610
crossref_primary_10_1016_j_simpat_2021_102403
crossref_primary_10_1109_ACCESS_2025_3567752
crossref_primary_10_1109_TCAD_2021_3112138
crossref_primary_10_1109_TMTT_2020_3011449
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122263
crossref_primary_10_1109_TCPMT_2024_3352069
crossref_primary_10_1016_j_microrel_2025_115902
crossref_primary_10_1109_TSIPI_2023_3248539
crossref_primary_10_1109_TCPMT_2020_3011910
crossref_primary_10_1016_j_knosys_2025_113879
crossref_primary_10_1016_j_optlaseng_2022_107081
crossref_primary_10_3390_met13010169
crossref_primary_10_1007_s12008_025_02261_2
crossref_primary_10_1016_j_bspc_2021_102682
crossref_primary_10_1016_j_ifacol_2023_01_126
crossref_primary_10_1109_ACCESS_2024_3351843
crossref_primary_10_1109_TIM_2025_3551844
crossref_primary_10_3390_machines9100219
crossref_primary_10_1109_TMTT_2022_3206455
crossref_primary_10_1109_TSIPI_2022_3202150
crossref_primary_10_2514_1_J063812
crossref_primary_10_1109_MEMC_2021_9401002
crossref_primary_10_1109_TCPMT_2022_3187716
crossref_primary_10_1109_ACCESS_2020_3036548
crossref_primary_10_52586_4983
crossref_primary_10_3390_electronics10080963
crossref_primary_10_1016_j_jobe_2022_105683
crossref_primary_10_1109_TCPMT_2018_2881273
crossref_primary_10_3390_en13153903
crossref_primary_10_3390_mi14020344
crossref_primary_10_1007_s12293_021_00346_5
crossref_primary_10_1016_j_infsof_2025_107807
crossref_primary_10_1109_TVLSI_2020_3015494
crossref_primary_10_1109_TCSI_2024_3524280
crossref_primary_10_3390_biomimetics10040230
crossref_primary_10_1016_j_ijepes_2023_109423
crossref_primary_10_1109_TEMC_2019_2962899
crossref_primary_10_1016_j_dte_2025_100044
crossref_primary_10_1109_TEMC_2020_3012960
crossref_primary_10_1109_ACCESS_2024_3522876
crossref_primary_10_1016_j_cej_2023_144502
crossref_primary_10_1109_TMTT_2019_2915298
crossref_primary_10_1016_j_seppur_2025_133557
crossref_primary_10_1109_ACCESS_2018_2888903
crossref_primary_10_1109_TASE_2021_3114157
crossref_primary_10_1007_s40192_020_00183_3
crossref_primary_10_1016_j_swevo_2023_101462
Cites_doi 10.1109/TVLSI.2017.2656843
10.1109/ECTC.2016.325
10.1023/A:1012771025575
10.1109/JSSC.2012.2196316
10.1109/MDT.2005.136
10.1109/ECTC.2017.187
10.1109/TMTT.2015.2495360
10.1109/JSSC.2012.2221237
10.1109/TCPMT.2010.2101770
10.1109/TMAG.2009.2030590
10.1109/JPROC.2015.2494218
10.1109/MM.2007.59
10.1007/978-1-4612-0745-0
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TVLSI.2017.2784783
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9999
EndPage 802
ExternalDocumentID 10_1109_TVLSI_2017_2784783
8253829
Genre orig-research
GrantInformation_xml – fundername: Power Delivery for Electronic Systems Consortium, Georgia Tech, USA
– fundername: NSF I/UCRC Center for Advanced Electronics through Machine Learning (CAEML)
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c267t-c2ef14a73be72f328aaedcda067eef2be3802f971650d5d40bb9b1a08936ebe43
IEDL.DBID RIE
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428615000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-8210
IngestDate Sat Nov 29 03:36:13 EST 2025
Tue Nov 18 22:37:44 EST 2025
Wed Aug 27 02:51:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-c2ef14a73be72f328aaedcda067eef2be3802f971650d5d40bb9b1a08936ebe43
ORCID 0000-0003-1406-1173
0000-0002-9611-1658
0000-0002-4483-2031
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TVLSI_2017_2784783
ieee_primary_8253829
crossref_primary_10_1109_TVLSI_2017_2784783
PublicationCentury 2000
PublicationDate 2018-April
2018-4-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-April
PublicationDecade 2010
PublicationTitle IEEE transactions on very large scale integration (VLSI) systems
PublicationTitleAbbrev TVLSI
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref11
hoffman (ref19) 2011
ref2
ref1
munos (ref18) 2011
srinivas (ref6) 2009
gardner (ref14) 2014
(ref26) 2018
swaminathan (ref29) 2017
wang (ref17) 2014
brochu (ref15) 2010
ref24
ref23
lizotte (ref21) 2008
ref22
surjanovic (ref20) 2018
(ref25) 2018
sriperumbudur (ref12) 2010
ref28
torun (ref10) 2017
ref27
ref8
ref7
ref4
ref3
ref5
rasmussen (ref13) 2006; 1
kawaguchi (ref16) 2015
torun (ref9) 2017
References_xml – ident: ref8
  doi: 10.1109/TVLSI.2017.2656843
– start-page: 327
  year: 2011
  ident: ref19
  article-title: Portfolio allocation for bayesian optimization
  publication-title: Proc UAI
– start-page: 2809
  year: 2015
  ident: ref16
  article-title: Bayesian optimization with exponential convergence
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref24
  doi: 10.1109/ECTC.2016.325
– year: 2010
  ident: ref15
  publication-title: A Tutorial on Bayesian Optimization of Expensive Cost Functions with Application to Active User Modeling and Hierarchical Reinforcement Learning
– year: 2018
  ident: ref25
  publication-title: Ansys HFSS ver 2015 2
– ident: ref22
  doi: 10.1023/A:1012771025575
– ident: ref4
  doi: 10.1109/JSSC.2012.2196316
– year: 2017
  ident: ref10
  article-title: Black box optimization of 3D integrated systems using machine learning
  publication-title: Proc IEEE 26th Conf Elect Perform Electron Packag Syst (EPEPS)
– ident: ref1
  doi: 10.1109/MDT.2005.136
– ident: ref28
  doi: 10.1109/ECTC.2017.187
– volume: 1
  year: 2006
  ident: ref13
  publication-title: Gaussian Processes for Machine Learning
– ident: ref7
  doi: 10.1109/TMTT.2015.2495360
– year: 2017
  ident: ref29
  publication-title: Power delivery for electronic system consortium (PDES)
– start-page: 1005
  year: 2014
  ident: ref17
  article-title: Bayesian multi-scale optimistic optimization
  publication-title: Proc Artif Intell Stat
– ident: ref3
  doi: 10.1109/JSSC.2012.2221237
– year: 2009
  ident: ref6
  publication-title: Gaussian Process Optimization in the Bandit Setting No Regret and Experimental Design
– year: 2008
  ident: ref21
  article-title: Practical Bayesian optimization
– start-page: 783
  year: 2011
  ident: ref18
  article-title: Optimistic optimization of a deterministic function without the knowledge of its smoothness
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref23
  doi: 10.1109/TCPMT.2010.2101770
– year: 2018
  ident: ref26
  publication-title: ANSYS Maxwell Ver 2015 2
– start-page: 773
  year: 2010
  ident: ref12
  article-title: On the relation between universality, characteristic kernels and RKHS embedding of measures
  publication-title: Proc 13th Int Conf Artif Intell Stat
– ident: ref27
  doi: 10.1109/TMAG.2009.2030590
– year: 2018
  ident: ref20
  publication-title: Virtual library of simulation experiments
– ident: ref5
  doi: 10.1109/JPROC.2015.2494218
– start-page: 937
  year: 2014
  ident: ref14
  article-title: Bayesian optimization with inequality constraints
  publication-title: Proc ICML
– ident: ref2
  doi: 10.1109/MM.2007.59
– year: 2017
  ident: ref9
  article-title: Black box optimization of 3D integrated systems
  publication-title: Proc Comput Modelling Multi Uncertainty Multi-Scale Problems
– ident: ref11
  doi: 10.1007/978-1-4612-0745-0
SSID ssj0014490
Score 2.5414653
Snippet Increasing levels of system integration pose difficulties in meeting design specifications for high-performance systems. Oftentimes increased complexity,...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 792
SubjectTerms 3-D integration
Algorithm design and analysis
Bayes methods
Bayesian optimization (BO)
black box systems
Integrated circuit modeling
integrated voltage regulator (IVR)
machine learning (ML)
magnetic core inductor
Minimization
Optimization
thermal management
Tuning
Title A Global Bayesian Optimization Algorithm and Its Application to Integrated System Design
URI https://ieeexplore.ieee.org/document/8253829
Volume 26
WOSCitedRecordID wos000428615000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9999
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014490
  issn: 1063-8210
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7b8EEfvE1x3siDb9qtTbKkeaw3HMgUnLK3kjanOtg62TrBf2_SdnWCCL6UUhII5ws9OTnn-w5CZ-CzhNKYO5pyaQIUjzmSAzicJl1tHBaJqMqbTYh-3x8O5WMNXVRcGADIi8-gbV_zXL6exgt7VdYx0Qz1iayjuhC84GpVGQPGZKE8wKnjmzhmSZBxZWfwcv_Us1Vcom3TbMKnP5zQSleV3Kncbv1vOdtoszw84qBAewfVIN1FGyuSgk00DHAh448v1SdYhiR-MH-FSUm3xMH4dTobZW8TrFKNe9kcB98pbJxNcW-pH6FxoWaOr_Mijz30fHszuLpzyu4JTky4yMwTEo8pQSMQJKHEVwp0rJVxTwAJiYD6LkmsglTX1QYXN4pk5CnXHGC4QZbRfdRIpykcIAyx5pGXdCUjwDS3DXsiRlRsc6yJUNBC3tKcYVxKi9sOF-MwDzFcGeYQhBaCsISghc6rOe-FsMafo5vW_tXI0vSHv38-Qutmsl8U2ByjRjZbwAlaiz-y0Xx2mu-bL1qawNw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XBuzivefBN69okS5vHemPFOQWn7K2kzakKbpPZCf57k7abCiL4UkpJSjlfyMnpd853AA4x4BljqXA0E9IEKB53pEB0BMsa2jgsmjBVNJvw2-2g25W3U3A8qYVBxCL5DE_sbcHl60E6sr_K6iaaYQGV0zDb4Jy6ZbXWhDPgXJbaA4I5gYlkxiUyrqx3Hlp3kc3j8k8s0eYH7Icb-tZXpXArl8v_-6AVWKqOjyQs8V6FKeyvweI3UcF16IakFPInp-oDbY0kuTH7Qq8quCThy-Ng-Jw_9YjqaxLlbyT8IrFJPiDRWEFCk1LPnJwXaR4bcH950TlrOlX_BCelws_NFTOPK58l6NOM0UAp1KlWxkEhZjRBFrg0sxpSDVcbZNwkkYmnXHOEEQZbzjZhpj_o4xYQTLVIvKwhOUWuhW3Zk3CqUsuyZr7CGnhjc8ZpJS5ue1y8xEWQ4cq4gCC2EMQVBDU4msx5LaU1_hy9bu0_GVmZfvv3xwcw3-xct-JW1L7agQXzoqBMt9mFmXw4wj2YS9_z57fhfrGGPgGNSMQj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Global+Bayesian+Optimization+Algorithm+and+Its+Application+to+Integrated+System+Design&rft.jtitle=IEEE+transactions+on+very+large+scale+integration+%28VLSI%29+systems&rft.au=Torun%2C+Hakki+Mert&rft.au=Swaminathan%2C+Madhavan&rft.au=Kavungal+Davis%2C+Anto&rft.au=Bellaredj%2C+Mohamed+Lamine+Faycal&rft.date=2018-04-01&rft.pub=IEEE&rft.issn=1063-8210&rft.volume=26&rft.issue=4&rft.spage=792&rft.epage=802&rft_id=info:doi/10.1109%2FTVLSI.2017.2784783&rft.externalDocID=8253829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8210&client=summon