Xu, H., Hao, W., Zhao, Y., & Tian, H. (2026). Multi-source deep transfer learning with stacked denoising autoencoder and Wasserstein distance for wind power prediction in new wind farm. Measurement : journal of the International Measurement Confederation, 258, 119225. https://doi.org/10.1016/j.measurement.2025.119225
Chicago-Zitierstil (17. Ausg.)Xu, Haiyan, Wenguang Hao, Yong Zhao, und Hongda Tian. "Multi-source Deep Transfer Learning with Stacked Denoising Autoencoder and Wasserstein Distance for Wind Power Prediction in New Wind Farm." Measurement : Journal of the International Measurement Confederation 258 (2026): 119225. https://doi.org/10.1016/j.measurement.2025.119225.
MLA-Zitierstil (9. Ausg.)Xu, Haiyan, et al. "Multi-source Deep Transfer Learning with Stacked Denoising Autoencoder and Wasserstein Distance for Wind Power Prediction in New Wind Farm." Measurement : Journal of the International Measurement Confederation, vol. 258, 2026, p. 119225, https://doi.org/10.1016/j.measurement.2025.119225.