A novel dual‐decomposition method for non‐convex two‐stage stochastic mixed‐integer quadratically constrained quadratic problems

We propose the novel p ‐branch‐and‐bound method for solving two‐stage stochastic programming problems whose deterministic equivalents are represented by non‐convex mixed‐integer quadratically constrained quadratic programming (MIQCQP) models. The precision of the solution generated by the p ‐branch‐...

Full description

Saved in:
Bibliographic Details
Published in:International transactions in operational research
Main Authors: Belyak, Nikita, Oliveira, Fabricio
Format: Journal Article
Language:English
Published: 12.02.2025
ISSN:0969-6016, 1475-3995
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose the novel p ‐branch‐and‐bound method for solving two‐stage stochastic programming problems whose deterministic equivalents are represented by non‐convex mixed‐integer quadratically constrained quadratic programming (MIQCQP) models. The precision of the solution generated by the p ‐branch‐and‐bound method can be arbitrarily adjusted by altering the value of the precision factor p . The proposed method combines two key techniques. The first one, named p ‐Lagrangian decomposition, generates a mixed‐integer relaxation of a dual problem with a separable structure for a primal non‐convex MIQCQP problem. The second one is a version of the classical dual decomposition approach that is applied to solve the Lagrangian dual problem and ensures that integrality and non‐anticipativity conditions are met once the optimal solution is obtained. This paper also presents a comparative analysis of the p ‐branch‐and‐bound method efficiency considering two alternative solution methods for the dual problems as a subroutine. These are the proximal bundle method and Frank–Wolfe progressive hedging. The latter algorithm relies on the interpolation of linearisation steps similar to those taken in the Frank–Wolfe method as an inner loop in the classic progressive hedging. The p ‐branch‐and‐bound method's efficiency was tested on randomly generated instances and demonstrated superior performance over commercial solver Gurobi.
AbstractList We propose the novel p ‐branch‐and‐bound method for solving two‐stage stochastic programming problems whose deterministic equivalents are represented by non‐convex mixed‐integer quadratically constrained quadratic programming (MIQCQP) models. The precision of the solution generated by the p ‐branch‐and‐bound method can be arbitrarily adjusted by altering the value of the precision factor p . The proposed method combines two key techniques. The first one, named p ‐Lagrangian decomposition, generates a mixed‐integer relaxation of a dual problem with a separable structure for a primal non‐convex MIQCQP problem. The second one is a version of the classical dual decomposition approach that is applied to solve the Lagrangian dual problem and ensures that integrality and non‐anticipativity conditions are met once the optimal solution is obtained. This paper also presents a comparative analysis of the p ‐branch‐and‐bound method efficiency considering two alternative solution methods for the dual problems as a subroutine. These are the proximal bundle method and Frank–Wolfe progressive hedging. The latter algorithm relies on the interpolation of linearisation steps similar to those taken in the Frank–Wolfe method as an inner loop in the classic progressive hedging. The p ‐branch‐and‐bound method's efficiency was tested on randomly generated instances and demonstrated superior performance over commercial solver Gurobi.
Author Oliveira, Fabricio
Belyak, Nikita
Author_xml – sequence: 1
  givenname: Nikita
  surname: Belyak
  fullname: Belyak, Nikita
  organization: Department of Mathematics and Systems Analysis Aalto University Espoo Finland
– sequence: 2
  givenname: Fabricio
  orcidid: 0000-0003-0300-9337
  surname: Oliveira
  fullname: Oliveira, Fabricio
  organization: Department of Mathematics and Systems Analysis Aalto University Espoo Finland
BookMark eNptkL9OwzAQxi1UJNrCwhN4RkqxncSJx6rin1SJBebIcS6tUWIX2y3txsjIM_IkOICEhLjlzvp938n3TdDIWAMInVMyo7EudbBuVhBC6BEa06zIk1SIfITGRHCRcEL5CZp4_zQoclqM0dscG7uDDjdb2X28vjegbL-xXgdtDe4hrG2DW-uiykSsrNnBHocXGx8-yBVgH6xaSx-0wr3eQxOBNgFW4PDzVjZORiK77oCj1wcntYHml-CNs3UHvT9Fx63sPJz99Cl6vL56WNwmy_ubu8V8mSjGi5BIlgnCyralDRS05rWANE6qrYmiijCW5aksW0JEkXHOGGdFmUoJkMksrUueThH53quc9d5BWykd5HDt8LeuoqQakqyGJKuvJKPl4o9l43Qv3eE_8Scv9H_F
CitedBy_id crossref_primary_10_1080_00207543_2025_2537344
Cites_doi 10.1137/16M1076290
10.1007/s10898-022-01138-y
10.1287/mnsc.20.5.736
10.1007/BF01397543
10.1007/s10107-012-0555-6
10.1007/s10898-011-9793-z
10.1016/j.eneco.2020.104716
10.1590/0101-7438.2014.034.03.0647
10.1016/j.compchemeng.2005.04.003
10.1109/ACCESS.2019.2927346
10.1287/moor.16.1.119
10.1007/s10287-010-0125-4
10.1007/978-1-4614-1927-3_15
10.1016/B978-0-444-63428-3.50092-8
10.1016/S0305-0548(03)00186-2
10.1007/s11081-011-9141-7
10.1007/s12532-021-00212-y
10.1007/s10898-018-0728-9
10.1137/141000671
10.1016/j.disopt.2016.01.005
10.1016/j.compchemeng.2005.07.012
10.1007/s10898-015-0342-z
10.1016/j.cor.2013.10.016
10.1021/ie00069a026
10.1016/j.orl.2004.04.002
10.1287/ijoc.1090.0329
10.1007/s41660-017-0013-2
10.1007/BF01585731
10.1016/j.trb.2021.04.016
10.1057/palgrave.jors.2600436
10.1007/978-3-030-73237-0_1
10.1007/BF01580665
10.1007/s10107-018-1253-9
10.1109/TPWRS.2014.2375322
10.1023/A:1014839227049
10.1287/ijoc.11.2.173
10.1016/S0167-6377(98)00050-9
10.1016/j.apenergy.2019.04.176
10.1007/s10107-009-0333-2
10.1007/s10898-012-9842-2
10.1021/ie901632w
10.1137/S1052623498332336
10.1016/j.omega.2021.102480
10.1002/net.10068
10.1093/imanum/5.1.111
10.1016/0022-247X(85)90061-7
10.1007/BF01584074
10.1016/j.disopt.2010.07.001
10.1109/SFCS.2002.1181954
10.1016/S0167-8655(03)00020-5
10.1016/j.compchemeng.2019.04.028
10.1214/aoms/1177728914
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1111/itor.70001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1475-3995
ExternalDocumentID 10_1111_itor_70001
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
1XV
29J
33P
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5GY
5HH
5LA
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A04
AABNI
AAESR
AAHQN
AAMMB
AAMNL
AAONW
AAOUF
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABJNI
ABPVW
ABSOO
ACAHQ
ACBKW
ACCZN
ACGFS
ACHQT
ACIWK
ACPOU
ACXQS
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFKFF
AFWVQ
AGHNM
AGXDD
AHBTC
AIDQK
AIDYY
AIURR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASTYK
AZBYB
AZVAB
BAFTC
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CITATION
CS3
D-C
D-D
DCZOG
DPXWK
DR2
DRFUL
DRSSH
DU5
EBR
EBS
EBU
EJD
F00
F01
F5P
FDB
G-S
G.N
G50
GODZA
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
O66
O8X
O9-
OIG
P2P
P2W
P2Y
P4C
PQQKQ
Q.N
Q11
QB0
QWB
R.K
ROL
RX1
SEW
SUPJJ
UB1
W8V
W99
WBKPD
WEBCB
WIH
WII
WOHZO
WQZ
WSUWO
WXSBR
XG1
ZL0
ZZTAW
~IA
~WP
ID FETCH-LOGICAL-c267t-a249028ff1de71b6b9e3de7cfb0c1c022453a8f00974662262783aaee4a43b863
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001418983300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0969-6016
IngestDate Sat Nov 29 07:50:41 EST 2025
Tue Nov 18 22:07:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-a249028ff1de71b6b9e3de7cfb0c1c022453a8f00974662262783aaee4a43b863
ORCID 0000-0003-0300-9337
OpenAccessLink https://doi.org/10.1111/itor.70001
ParticipantIDs crossref_citationtrail_10_1111_itor_70001
crossref_primary_10_1111_itor_70001
PublicationCentury 2000
PublicationDate 2025-02-12
PublicationDateYYYYMMDD 2025-02-12
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-12
  day: 12
PublicationDecade 2020
PublicationTitle International transactions in operational research
PublicationYear 2025
References e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Bezanson J. (e_1_2_7_17_1) 2017; 59
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Lee J. (e_1_2_7_47_1) 2011
Lemaréchal C. (e_1_2_7_48_1) 1974
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
Küçükyavuz S. (e_1_2_7_46_1) 2017
Fischetti M. (e_1_2_7_33_1) 2011
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – ident: e_1_2_7_18_1
  doi: 10.1137/16M1076290
– ident: e_1_2_7_9_1
  doi: 10.1007/s10898-022-01138-y
– ident: e_1_2_7_35_1
  doi: 10.1287/mnsc.20.5.736
– ident: e_1_2_7_43_1
  doi: 10.1007/BF01397543
– ident: e_1_2_7_54_1
  doi: 10.1007/s10107-012-0555-6
– ident: e_1_2_7_60_1
  doi: 10.1007/s10898-011-9793-z
– ident: e_1_2_7_62_1
  doi: 10.1016/j.eneco.2020.104716
– ident: e_1_2_7_30_1
  doi: 10.1590/0101-7438.2014.034.03.0647
– ident: e_1_2_7_15_1
  doi: 10.1016/j.compchemeng.2005.04.003
– ident: e_1_2_7_58_1
  doi: 10.1109/ACCESS.2019.2927346
– ident: e_1_2_7_59_1
  doi: 10.1287/moor.16.1.119
– ident: e_1_2_7_3_1
– volume-title: Mixed Integer Nonlinear Programming
  year: 2011
  ident: e_1_2_7_47_1
– ident: e_1_2_7_56_1
– ident: e_1_2_7_64_1
  doi: 10.1007/s10287-010-0125-4
– ident: e_1_2_7_16_1
  doi: 10.1007/978-1-4614-1927-3_15
– ident: e_1_2_7_26_1
  doi: 10.1016/B978-0-444-63428-3.50092-8
– ident: e_1_2_7_22_1
  doi: 10.1016/S0305-0548(03)00186-2
– ident: e_1_2_7_20_1
  doi: 10.1007/s11081-011-9141-7
– ident: e_1_2_7_40_1
  doi: 10.1007/s12532-021-00212-y
– start-page: 1
  volume-title: Leading Developments from INFORMS Communities
  year: 2017
  ident: e_1_2_7_46_1
– ident: e_1_2_7_8_1
  doi: 10.1007/s10898-018-0728-9
– volume: 59
  start-page: 1095
  issue: 1
  year: 2017
  ident: e_1_2_7_17_1
  article-title: Julia: a fresh approach to numerical computing
  publication-title: SIAM Review
  doi: 10.1137/141000671
– ident: e_1_2_7_5_1
– ident: e_1_2_7_2_1
– ident: e_1_2_7_13_1
– ident: e_1_2_7_55_1
  doi: 10.1016/j.disopt.2016.01.005
– ident: e_1_2_7_24_1
  doi: 10.1016/j.compchemeng.2005.07.012
– ident: e_1_2_7_25_1
  doi: 10.1007/s10898-015-0342-z
– ident: e_1_2_7_61_1
  doi: 10.1016/j.cor.2013.10.016
– ident: e_1_2_7_45_1
  doi: 10.1021/ie00069a026
– ident: e_1_2_7_49_1
– ident: e_1_2_7_4_1
  doi: 10.1016/j.orl.2004.04.002
– ident: e_1_2_7_34_1
  doi: 10.1287/ijoc.1090.0329
– ident: e_1_2_7_7_1
  doi: 10.1007/s41660-017-0013-2
– start-page: 183
  volume-title: Integer Programming and Combinatorial Optimization
  year: 2011
  ident: e_1_2_7_33_1
– ident: e_1_2_7_44_1
  doi: 10.1007/BF01585731
– ident: e_1_2_7_63_1
  doi: 10.1016/j.trb.2021.04.016
– ident: e_1_2_7_6_1
  doi: 10.1057/palgrave.jors.2600436
– ident: e_1_2_7_39_1
  doi: 10.1007/978-3-030-73237-0_1
– ident: e_1_2_7_53_1
  doi: 10.1007/BF01580665
– ident: e_1_2_7_19_1
  doi: 10.1007/s10107-018-1253-9
– ident: e_1_2_7_31_1
  doi: 10.1109/TPWRS.2014.2375322
– start-page: 552
  volume-title: Information Processing, Proceedings of the 6th IFIP Congress
  year: 1974
  ident: e_1_2_7_48_1
– ident: e_1_2_7_65_1
  doi: 10.1023/A:1014839227049
– ident: e_1_2_7_52_1
  doi: 10.1287/ijoc.11.2.173
– ident: e_1_2_7_23_1
  doi: 10.1016/S0167-6377(98)00050-9
– ident: e_1_2_7_51_1
  doi: 10.1016/j.apenergy.2019.04.176
– ident: e_1_2_7_28_1
  doi: 10.1007/s10107-009-0333-2
– ident: e_1_2_7_29_1
  doi: 10.1007/s10898-012-9842-2
– ident: e_1_2_7_38_1
  doi: 10.1021/ie901632w
– ident: e_1_2_7_32_1
  doi: 10.1137/S1052623498332336
– ident: e_1_2_7_11_1
  doi: 10.1016/j.omega.2021.102480
– ident: e_1_2_7_57_1
  doi: 10.1002/net.10068
– ident: e_1_2_7_42_1
  doi: 10.1093/imanum/5.1.111
– ident: e_1_2_7_41_1
  doi: 10.1016/0022-247X(85)90061-7
– ident: e_1_2_7_14_1
  doi: 10.1007/BF01584074
– ident: e_1_2_7_36_1
  doi: 10.1016/j.disopt.2010.07.001
– ident: e_1_2_7_10_1
  doi: 10.1109/SFCS.2002.1181954
– ident: e_1_2_7_27_1
  doi: 10.1016/S0167-8655(03)00020-5
– ident: e_1_2_7_37_1
  doi: 10.1016/j.compchemeng.2019.04.028
– ident: e_1_2_7_50_1
– ident: e_1_2_7_21_1
  doi: 10.1214/aoms/1177728914
– ident: e_1_2_7_12_1
SSID ssj0001517
Score 2.3257372
Snippet We propose the novel p ‐branch‐and‐bound method for solving two‐stage stochastic programming problems whose deterministic equivalents are represented by...
SourceID crossref
SourceType Enrichment Source
Index Database
Title A novel dual‐decomposition method for non‐convex two‐stage stochastic mixed‐integer quadratically constrained quadratic problems
WOSCitedRecordID wos001418983300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1475-3995
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001517
  issn: 0969-6016
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLkLLgUcB7fKSJbigKGjTPBwfy6PisFoQ2pX2VjmOAxEhrdJQujeOHBE_kV_CjGM7KSC0HLhEqcdJrc6nmbE78w0hj-NDFYs8inwRMe5HEyV8Dm7el8jlK6JUso4y_4gdH6dnZ_zNaPTd1sKsK1bX6WbDl_9V1TAGysbS2X9Qt3spDMA9KB2uoHa4XkjxU69erFXlYZGVS2XIFeaOmwQt0zZaZxjC7t9N0hnoG6_9vHBDEDu-Qw7ahXwvkNHZ-1huVO7EmmxCNViamSOUQOHVOWayr3TrCQhmncQzrWtWw3B4-zyy7XuX6yzdxVI1VmZIidzh9TNVnYuuf1D5oWydc3ldgfkudfMkbyYysPJdopk92ZjoSvFgeNjJE-4jXUznqzoDHbHYx3Lcv5h_MIXNU4bRa-_k7B_7v_g-l5Fo90L47Fw_e4nsTljMwVLuvng7Oz1y_h1iJF2Eb1dnSG8xP6z_5kGYM4hXTm6Qa2ajQacdQG6SkarH5IqtcxiT67afBzXmfUyuDsgpb5GvU6qBRBFIP75824IQ7SBEAUIwqwZxBx4K4IEPGja0hw3VsAGBAQzdAgwdAKaXUAuY2-R09vLk-Svf9O3w5SRhrS9gSw9ha1EEuWJBlmRchXAni-xQBhKDxjgUaYElRFGSQPyP3V6EUCoSUZilSXiH7MDS1T6hUsZZALZEhHmKZHWcccmUAnNS8Jjn_IA8sT_zXBpSe1xvNf9doQfkkZu77Khc_jDr7oVm3SN7PWLvk522-aQekMty3Zar5qFBzE93kJ-L
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+dual%E2%80%90decomposition+method+for+non%E2%80%90convex+two%E2%80%90stage+stochastic+mixed%E2%80%90integer+quadratically+constrained+quadratic+problems&rft.jtitle=International+transactions+in+operational+research&rft.au=Belyak%2C+Nikita&rft.au=Oliveira%2C+Fabricio&rft.date=2025-02-12&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111%2Fitor.70001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_itor_70001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-6016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-6016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-6016&client=summon