A New Fuzzy Clustering Validity Index With a Median Factor for Centroid-Based Clustering

Determining the number of clusters, which is usually approved by domain experts or evaluated by clustering validity indexes, is an important issue in clustering analysis. This study discusses the effectiveness of clustering validity indexes for centroid-based partitional clustering algorithms. Most...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 23; číslo 3; s. 701 - 718
Hlavní autoři: Wu, Chih-Hung, Ouyang, Chen-Sen, Chen, Li-Wen, Lu, Li-Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2015
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Determining the number of clusters, which is usually approved by domain experts or evaluated by clustering validity indexes, is an important issue in clustering analysis. This study discusses the effectiveness of clustering validity indexes for centroid-based partitional clustering algorithms. Most general-purpose clustering validity indexes take the minimum/maximum distance between a pair of data objects, a pair of cluster centroids, or an object and a centroid as an important evaluation factor; however, they may present unstable results, especially when two centroids are allocated closely. To alleviate this problem, a new clustering validity index, which is termed the Wu-and-Li index (WLI), is proposed in this paper. Our proposed WLI partially allows, to some extent, the existence of closely allocated centroids in the clustering results by considering not only the minimum but the median distances between a pair of centroids as well; therefore possessing better stability. The performances of WLI and some existing clustering validity indexes are evaluated and compared by running the fuzzy c-means algorithm for clustering various types of datasets, including artificial datasets, UCI datasets, and images. Experimental results have shown that WLI has the more accurate and satisfactory performance than other indexes.
AbstractList Determining the number of clusters, which is usually approved by domain experts or evaluated by clustering validity indexes, is an important issue in clustering analysis. This study discusses the effectiveness of clustering validity indexes for centroid-based partitional clustering algorithms. Most general-purpose clustering validity indexes take the minimum/maximum distance between a pair of data objects, a pair of cluster centroids, or an object and a centroid as an important evaluation factor; however, they may present unstable results, especially when two centroids are allocated closely. To alleviate this problem, a new clustering validity index, which is termed the Wu-and-Li index (WLI), is proposed in this paper. Our proposed WLI partially allows, to some extent, the existence of closely allocated centroids in the clustering results by considering not only the minimum but the median distances between a pair of centroids as well; therefore possessing better stability. The performances of WLI and some existing clustering validity indexes are evaluated and compared by running the fuzzy c-means algorithm for clustering various types of datasets, including artificial datasets, UCI datasets, and images. Experimental results have shown that WLI has the more accurate and satisfactory performance than other indexes.
Author Li-Wen Chen
Chih-Hung Wu
Chen-Sen Ouyang
Li-Wei Lu
Author_xml – sequence: 1
  givenname: Chih-Hung
  surname: Wu
  fullname: Wu, Chih-Hung
– sequence: 2
  givenname: Chen-Sen
  surname: Ouyang
  fullname: Ouyang, Chen-Sen
– sequence: 3
  givenname: Li-Wen
  surname: Chen
  fullname: Chen, Li-Wen
– sequence: 4
  givenname: Li-Wei
  surname: Lu
  fullname: Lu, Li-Wei
BookMark eNp9kMFOwzAQRC1UJNrCD8DFP5DitZ04OZaIQqUClxZQL9E2tsEoJChxBe3X41KEEAcOq11p5o1WMyC9uqkNIafARgAsO59PFsvliDOQIy44l1l8QPqQSYgYE7IXbpaIKFEsOSKDrnthwRlD2iePY3pr3ulkvd1uaF6tO29aVz_Re6ycdn5Dp7U2H_TB-WeK9MZohzWdYOmbltowual92zgdXWBn9K-EY3JoserMyfceksXkcp5fR7O7q2k-nkUlT5SPUosSBNpVZlYmk1yj5QqtXkFSqqyUzKoEtYqDxsogBjvTVigVC2ZBohiSdJ9btk3XtcYWpfPoXRP-QlcVwIpdQ8VXQ8WuoeK7oYDyP-hb616x3fwPne0hZ4z5AZIUgAOITwnSdac
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_eswa_2017_12_013
crossref_primary_10_3233_JIFS_213481
crossref_primary_10_1109_TETCI_2022_3201620
crossref_primary_10_1080_0952813X_2018_1509379
crossref_primary_10_1016_j_ins_2017_03_024
crossref_primary_10_4018_IJDAI_2019010101
crossref_primary_10_1007_s40815_021_01170_2
crossref_primary_10_1016_j_patcog_2018_04_006
crossref_primary_10_1109_TCYB_2023_3263215
crossref_primary_10_1109_TFUZZ_2020_3016339
crossref_primary_10_1016_j_asoc_2020_106583
crossref_primary_10_1016_j_asoc_2020_106102
crossref_primary_10_3103_S0146411620030050
crossref_primary_10_1109_TFUZZ_2016_2540064
crossref_primary_10_1109_TPAMI_2025_3577171
crossref_primary_10_1109_ACCESS_2019_2946599
crossref_primary_10_1016_j_ins_2022_11_010
crossref_primary_10_3390_electronics9020229
crossref_primary_10_1109_ACCESS_2021_3063123
crossref_primary_10_1016_j_ijepes_2019_105651
crossref_primary_10_1016_j_asoc_2017_07_026
crossref_primary_10_3390_e21050443
crossref_primary_10_1109_TFUZZ_2018_2852289
crossref_primary_10_3390_rs8040295
crossref_primary_10_1016_j_asoc_2021_108011
crossref_primary_10_1016_j_neucom_2019_11_078
crossref_primary_10_1109_ACCESS_2021_3058264
crossref_primary_10_1108_IJICC_02_2016_0006
crossref_primary_10_1007_s00500_024_09871_0
crossref_primary_10_1007_s11063_021_10427_8
crossref_primary_10_3390_axioms14080578
crossref_primary_10_3390_a15100380
crossref_primary_10_1007_s40815_022_01394_w
crossref_primary_10_1016_j_segan_2025_101734
crossref_primary_10_1007_s40815_021_01243_2
crossref_primary_10_1016_j_isprsjprs_2019_02_018
crossref_primary_10_1080_00207721_2023_2300718
crossref_primary_10_1016_j_ins_2020_08_041
crossref_primary_10_1109_ACCESS_2020_3047819
crossref_primary_10_1007_s13042_017_0636_1
crossref_primary_10_1016_j_knosys_2020_106482
crossref_primary_10_1007_s11227_023_05234_y
crossref_primary_10_1109_TASE_2023_3293843
crossref_primary_10_1109_TFUZZ_2017_2692203
crossref_primary_10_1080_01605682_2024_2348621
crossref_primary_10_1007_s00500_017_2590_y
crossref_primary_10_1109_TFUZZ_2021_3118113
crossref_primary_10_1109_TCYB_2019_2907002
crossref_primary_10_1016_j_gloei_2020_05_006
crossref_primary_10_1007_s13198_015_0393_z
crossref_primary_10_1016_j_eswa_2023_122231
Cites_doi 10.1109/TSMCC.2009.2013335
10.1007/s10044-004-0218-1
10.1016/S0031-3203(98)00157-5
10.1049/ip-vis:20040259
10.1109/TFUZZ.2012.2230181
10.1109/TIP.2007.902329
10.1111/j.1477-9730.2005.00315.x
10.1109/TKDE.2010.122
10.1016/j.fss.2008.02.019
10.1109/TSMCC.2008.2007252
10.1016/j.patcog.2009.02.010
10.1016/j.patcog.2012.01.019
10.1016/j.ins.2011.04.025
10.1109/TSMCC.2010.2088390
10.1016/j.media.2010.03.005
10.1145/2408736.2408740
10.1109/TFUZZ.2011.2106216
10.1016/S0031-3203(96)00140-9
10.1109/TSMCB.2012.2205679
10.1016/j.patcog.2004.04.007
10.1109/91.413225
10.1109/TKDE.2009.21
10.1080/01969727308546046
10.1109/34.85677
10.1080/01969727308546047
10.1109/83.370679
10.1109/TCS.1987.1086059
10.1109/TNN.2005.845141
10.1016/j.patcog.2012.01.005
10.1016/j.patcog.2003.06.005
10.1109/TSMCB.2010.2104319
10.1109/TPAMI.1979.4766909
10.1016/j.fss.2005.04.009
10.1109/TSMCB.2012.2188509
10.2307/2284239
10.1016/j.patrec.2004.11.022
10.1016/j.ins.2010.10.008
10.1080/01431161.2010.534511
10.1007/BF01908075
10.1080/03610927408827101
10.1109/TFUZZ.2010.2048114
10.1109/TFUZZ.2010.2052258
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TFUZZ.2014.2322495
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 718
ExternalDocumentID 10_1109_TFUZZ_2014_2322495
6811211
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: NSC 100-2221-E-390-029; NSC 100-2221-E-214-065
  funderid: 10.13039/501100004663
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c267t-8fa413afb9ebe942daf27afdb16c79c40f76ad75e940cdaffa40df377530f14a3
IEDL.DBID RIE
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000355764700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Tue Nov 18 22:37:15 EST 2025
Sat Nov 29 03:12:34 EST 2025
Tue Aug 26 16:39:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords clustering validity index (CVI)
Clustering analysis
partitional clustering algorithm
fuzzy c-means (FCM) clustering algorithm
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-8fa413afb9ebe942daf27afdb16c79c40f76ad75e940cdaffa40df377530f14a3
PageCount 18
ParticipantIDs crossref_citationtrail_10_1109_TFUZZ_2014_2322495
ieee_primary_6811211
crossref_primary_10_1109_TFUZZ_2014_2322495
PublicationCentury 2000
PublicationDate 2015-June
2015-6-00
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-June
PublicationDecade 2010
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref14
gordon (ref15) 0
everitt (ref7) 1978
ref10
ref17
ref19
fukuyama (ref30) 0
asuncion (ref48) 2007
kaufman (ref51) 1990
liang (ref18) 0
ref50
ref46
ref45
ref47
ref42
xu (ref16) 2012; 42
ref41
ref44
ref43
jain (ref6) 1988
ref49
xu (ref22) 2012; 42
ref8
ref9
ref4
ref3
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
han (ref11) 2011
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
References_xml – ident: ref37
  doi: 10.1109/TSMCC.2009.2013335
– ident: ref32
  doi: 10.1007/s10044-004-0218-1
– ident: ref31
  doi: 10.1016/S0031-3203(98)00157-5
– ident: ref46
  doi: 10.1049/ip-vis:20040259
– ident: ref14
  doi: 10.1109/TFUZZ.2012.2230181
– ident: ref47
  doi: 10.1109/TIP.2007.902329
– ident: ref42
  doi: 10.1111/j.1477-9730.2005.00315.x
– ident: ref1
  doi: 10.1109/TKDE.2010.122
– ident: ref39
  doi: 10.1016/j.fss.2008.02.019
– ident: ref9
  doi: 10.1109/TSMCC.2008.2007252
– year: 2011
  ident: ref11
  publication-title: Data Mining Concepts and Techniques
– ident: ref10
  doi: 10.1016/j.patcog.2009.02.010
– ident: ref3
  doi: 10.1016/j.patcog.2012.01.019
– ident: ref4
  doi: 10.1016/j.ins.2011.04.025
– ident: ref21
  doi: 10.1109/TSMCC.2010.2088390
– ident: ref41
  doi: 10.1016/j.media.2010.03.005
– ident: ref40
  doi: 10.1145/2408736.2408740
– ident: ref35
  doi: 10.1109/TFUZZ.2011.2106216
– ident: ref20
  doi: 10.1016/S0031-3203(96)00140-9
– year: 1990
  ident: ref51
  publication-title: Finding Groups in Data An Introduction to Cluster Analysis
– ident: ref36
  doi: 10.1109/TSMCB.2012.2205679
– ident: ref49
  doi: 10.1016/j.patcog.2004.04.007
– year: 2007
  ident: ref48
– ident: ref24
  doi: 10.1109/91.413225
– ident: ref50
  doi: 10.1109/TKDE.2009.21
– ident: ref26
  doi: 10.1080/01969727308546046
– ident: ref29
  doi: 10.1109/34.85677
– start-page: 22
  year: 0
  ident: ref15
  article-title: Cluster validation
  publication-title: Data Science Classification and Related Methods
– ident: ref23
  doi: 10.1080/01969727308546047
– ident: ref45
  doi: 10.1109/83.370679
– year: 1978
  ident: ref7
  publication-title: Graphical Techniques for Multivariate Data
– ident: ref44
  doi: 10.1109/TCS.1987.1086059
– ident: ref8
  doi: 10.1109/TNN.2005.845141
– ident: ref2
  doi: 10.1016/j.patcog.2012.01.005
– ident: ref38
  doi: 10.1016/j.patcog.2003.06.005
– ident: ref17
  doi: 10.1109/TSMCB.2010.2104319
– ident: ref28
  doi: 10.1109/TPAMI.1979.4766909
– start-page: 247
  year: 0
  ident: ref30
  article-title: A new method of choosing the number of clusters for fuzzy c-means method
  publication-title: Proc 5th Fuzzy Syst Symp
– ident: ref34
  doi: 10.1016/j.fss.2005.04.009
– volume: 42
  start-page: 1243
  year: 2012
  ident: ref22
  article-title: A comparison study of validity indices on swarm-intelligence-based clustering
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2012.2188509
– ident: ref12
  doi: 10.2307/2284239
– ident: ref33
  doi: 10.1016/j.patrec.2004.11.022
– ident: ref25
  doi: 10.1016/j.ins.2010.10.008
– ident: ref43
  doi: 10.1080/01431161.2010.534511
– ident: ref13
  doi: 10.1007/BF01908075
– year: 1988
  ident: ref6
  publication-title: Algorithms for clustering data
– ident: ref27
  doi: 10.1080/03610927408827101
– start-page: v3-580
  year: 0
  ident: ref18
  article-title: Optimization of the number of clusters in fuzzy clustering
  publication-title: Proc Int Conf Comput Design Appl
– ident: ref19
  doi: 10.1109/TFUZZ.2010.2048114
– volume: 42
  start-page: 1243
  year: 2012
  ident: ref16
  article-title: A comparison study of validity indices on swarm-intelligence-based clustering
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2012.2188509
– ident: ref5
  doi: 10.1109/TFUZZ.2010.2052258
SSID ssj0014518
Score 2.447362
Snippet Determining the number of clusters, which is usually approved by domain experts or evaluated by clustering validity indexes, is an important issue in...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 701
SubjectTerms Algorithm design and analysis
Clustering algorithms
Indexes
Open systems
Partitioning algorithms
Principal component analysis
Signal processing algorithms
Title A New Fuzzy Clustering Validity Index With a Median Factor for Centroid-Based Clustering
URI https://ieeexplore.ieee.org/document/6811211
Volume 23
WOSCitedRecordID wos000355764700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5B4kEPoqARf6UHb1rt2NayIxIXvRAPoMTL0vVHJCFgEEzkr_e1GwQTY-JtWdtl2bft-9rX9z6AS6S80EgZUKRWQd2MgaLKD2hslZZMxXEuI282IXq99nCYPFXgep0LY4zxm8_MjTv0sXw9VQu3VHbL24GrSLYFW0KIIldrHTGI4qBIe-Mh5YLxVYIMS2776eD11e3iim5QPziz5R8ktOGq4kklrf3vdvZhrxSPpFOgfQAVM6lDbWXMQMrvtA67G1UGGzDsEPyVkXSxXH6R7njhSiNgA3lGCa5RhJNHVzGRvIzmb0QSF7mRE5J6Hx6Ckpb4BeDpSNM7ZDy9cYVDGKT3_e4DLQ0VqGpxMadtK5GzpM0ThC6JWlralpBW5wFXIlERs4JLLWJsYwiVxe5M21DglIbZIJLhEVQn04k5BsJDISMUd4mRPJLI-7qVWxXGYc4ZjlNNCFZPOFNltXFnejHO_KyDJZlHJXOoZCUqTbhaj3kvam382bvhIFn3LNE4-f30Kezg4LjY5HUG1flsYc5hW33ORx-zC_8qfQPbo8aa
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwGP1wA_XgLu7m4E2jaZsm06OKRVEHD6MOXkqaBQdkRnRG0F_vl7QzjCCCt9IslLy272X5vgdwgJSXWKUiitQqqZ8xUFT5EU2dNorpNC0VD2YTstlstNvZ3QQcjWJhrLXh8Jk99pdhL9_09MAvlZ2IRuQzkk3CdMp5HFXRWqM9A55GVeCbSKiQTAxDZFh20srvn578OS5-jArC2y3_oKExX5VAK_ni_x5oCRZq-UhOK7yXYcJ2V2BxaM1A6i91BebH8gyuQvuU4M-M5IOvr09y_jLwyRGwgDygCDcow8mVz5lIHjv9Z6KI37tRXZIHJx6CopaEJeBex9Az5Dwz1sMa3OcXrfNLWlsqUB0L2acNp5C1lCszBC_jsVEulsqZMhJaZpozJ4UyMsUyhmA5rM6MSyROapiLuErWYarb69oNICKRiqO8y6wSXCHzm7h0OkmTUjBspzchGo5woet849724qUI8w6WFQGVwqNS1KhswuGozWuVbePP2qseklHNGo2t32_vw-xl6_amuLlqXm_DHHaUVke-dmCq_zawuzCjP_qd97e98Fp9A1n3yeE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Fuzzy+Clustering+Validity+Index+With+a+Median+Factor+for+Centroid-Based+Clustering&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Chih-Hung+Wu&rft.au=Chen-Sen+Ouyang&rft.au=Li-Wen+Chen&rft.au=Li-Wei+Lu&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=23&rft.issue=3&rft.spage=701&rft.epage=718&rft_id=info:doi/10.1109%2FTFUZZ.2014.2322495&rft.externalDocID=6811211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon