Review on CO2 capture by blended amine solutions
•The role of blended solvents, their advantages, and disadvantages in the CO2 capture•Investigation of the chemical adsorption process of CO2 in different types of the mixture, and technical-energy analysis•The current limitations and challenges of amine mixtures in CO2 capture The procedure of CO2...
Uloženo v:
| Vydáno v: | International journal of greenhouse gas control Ročník 119; s. 103715 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.09.2022
Elsevier |
| Témata: | |
| ISSN: | 1750-5836, 1878-0148 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •The role of blended solvents, their advantages, and disadvantages in the CO2 capture•Investigation of the chemical adsorption process of CO2 in different types of the mixture, and technical-energy analysis•The current limitations and challenges of amine mixtures in CO2 capture
The procedure of CO2 removal through the absorption/desorption system based on chemical amine solvents offers an interesting commercial technology to absorb CO2. However, it has a major drawback regarding the high energy required in the regeneration of the solvent, which has turned into the most important challenge of chemical absorption procedures. Through precise analysis and integration of the rise in CO2 absorption with energy consumption in the desorption process, this review article has investigated two approaches. The first approach evaluates the development of solvents and the use of amine blends in four forms, i.e., aqueous solutions, non-aqueous solutions, two-phase blends, and ionic blends, with high capacity and absorption. The second approach discusses the changes in operational conditions, process modifications, and integration of thermal power plants to improve efficiency and reduce the high energy demand for PCC technologies. Moreover, an effort has been made to help further the development of absorption technology by presenting future perspectives considering the current condition of absorption, the barriers of amine scrubbing in steam boilers, and reduced thermal efficiency.
[Display omitted] |
|---|---|
| AbstractList | •The role of blended solvents, their advantages, and disadvantages in the CO2 capture•Investigation of the chemical adsorption process of CO2 in different types of the mixture, and technical-energy analysis•The current limitations and challenges of amine mixtures in CO2 capture
The procedure of CO2 removal through the absorption/desorption system based on chemical amine solvents offers an interesting commercial technology to absorb CO2. However, it has a major drawback regarding the high energy required in the regeneration of the solvent, which has turned into the most important challenge of chemical absorption procedures. Through precise analysis and integration of the rise in CO2 absorption with energy consumption in the desorption process, this review article has investigated two approaches. The first approach evaluates the development of solvents and the use of amine blends in four forms, i.e., aqueous solutions, non-aqueous solutions, two-phase blends, and ionic blends, with high capacity and absorption. The second approach discusses the changes in operational conditions, process modifications, and integration of thermal power plants to improve efficiency and reduce the high energy demand for PCC technologies. Moreover, an effort has been made to help further the development of absorption technology by presenting future perspectives considering the current condition of absorption, the barriers of amine scrubbing in steam boilers, and reduced thermal efficiency.
[Display omitted] The procedure of CO2 removal through the absorption/desorption system based on chemical amine solvents offers an interesting commercial technology to absorb CO2. However, it has a major drawback regarding the high energy required in the regeneration of the solvent, which has turned into the most important challenge of chemical absorption procedures. Through precise analysis and integration of the rise in CO2 absorption with energy consumption in the desorption process, this review article has investigated two approaches. The first approach evaluates the development of solvents and the use of amine blends in four forms, i.e., aqueous solutions, non-aqueous solutions, two-phase blends, and ionic blends, with high capacity and absorption. The second approach discusses the changes in operational conditions, process modifications, and integration of thermal power plants to improve efficiency and reduce the high energy demand for PCC technologies. Moreover, an effort has been made to help further the development of absorption technology by presenting future perspectives considering the current condition of absorption, the barriers of amine scrubbing in steam boilers, and reduced thermal efficiency. |
| ArticleNumber | 103715 |
| Author | Aghel, Babak Janati, Sara Wongwises, Somchai Shadloo, Mostafa Safdari |
| Author_xml | – sequence: 1 givenname: Babak surname: Aghel fullname: Aghel, Babak email: b.aghel@kut.ac.ir organization: Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran – sequence: 2 givenname: Sara surname: Janati fullname: Janati, Sara organization: Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran – sequence: 3 givenname: Somchai surname: Wongwises fullname: Wongwises, Somchai organization: Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand – sequence: 4 givenname: Mostafa Safdari surname: Shadloo fullname: Shadloo, Mostafa Safdari organization: CORIA-CNRS (UMR 6614), Normandie University, INSA of Rouen, Rouen 76000, France |
| BackLink | https://hal.science/hal-03824986$$DView record in HAL |
| BookMark | eNp9kMFOwzAMQCM0JMbgC7j0yqHDSdo0PXCYJmBIkyYhOEdp4o5UXTsl3dD-npbChcNOtmw_23rXZNK0DRJyR2FOgYqHau6q7dbMGTDWV3hG0wsypTKTMdBETvo8SyFOJRdX5DqECkDQvjEl8IZHh19R20TLDYuM3ncHj1FxiooaG4s20jvXYBTa-tC5tgk35LLUdcDb3zgjH89P78tVvN68vC4X69gwkXWxNBTTgpfSYibLXDOTppqlBjgynhuWoMjAgC1AM1tCngEXWlhaJJAXJRN8Ru7HvZ-6VnvvdtqfVKudWi3WaqgBlyzJpTjSfjYfZ41vQ_BYKuM6Pbzbee1qRUENmlSlfjSpQZMaNfUs_8f-HTtPPY4U9gp6gV4F47AxaJ1H0ynburP8N51Igj8 |
| CitedBy_id | crossref_primary_10_1016_j_seppur_2023_125715 crossref_primary_10_1016_j_marpolbul_2024_116878 crossref_primary_10_1038_s41929_025_01307_8 crossref_primary_10_1016_j_cej_2024_151702 crossref_primary_10_1016_j_cherd_2025_01_036 crossref_primary_10_1016_j_energy_2025_136039 crossref_primary_10_1016_j_mtsust_2023_100483 crossref_primary_10_1016_j_seppur_2025_132010 crossref_primary_10_2139_ssrn_5059434 crossref_primary_10_1016_j_jes_2023_06_009 crossref_primary_10_1007_s13762_024_05908_x crossref_primary_10_1016_j_molliq_2023_123196 crossref_primary_10_2139_ssrn_5065397 crossref_primary_10_3390_atmos15020229 crossref_primary_10_1007_s42452_024_05674_y crossref_primary_10_1016_j_cep_2025_110201 crossref_primary_10_1016_j_fuel_2023_128554 crossref_primary_10_1016_j_rser_2023_113357 crossref_primary_10_1021_jacs_5c02240 crossref_primary_10_1007_s11356_024_32013_w crossref_primary_10_1016_j_biortech_2025_133121 crossref_primary_10_1016_j_joei_2024_101911 crossref_primary_10_1016_j_seppur_2023_125310 crossref_primary_10_1016_j_energy_2023_128005 crossref_primary_10_1016_j_cej_2024_153217 crossref_primary_10_1016_j_jcou_2025_103219 crossref_primary_10_1016_j_oceaneng_2023_114929 crossref_primary_10_3390_cleantechnol4040073 crossref_primary_10_1016_j_seppur_2023_123810 crossref_primary_10_1016_j_commatsci_2025_113878 crossref_primary_10_3390_su151310334 crossref_primary_10_1002_ceat_70093 crossref_primary_10_1016_j_seppur_2025_132243 crossref_primary_10_1016_j_rser_2025_115782 crossref_primary_10_1016_j_molliq_2025_128359 crossref_primary_10_1162_crcj_a_00013 crossref_primary_10_1016_j_cej_2025_163669 crossref_primary_10_1016_j_cej_2024_156834 crossref_primary_10_3390_coatings14070842 crossref_primary_10_1002_ghg_2177 crossref_primary_10_1016_j_jclepro_2023_139435 crossref_primary_10_1016_j_jece_2024_115103 crossref_primary_10_1038_s41598_023_38249_9 crossref_primary_10_1016_j_jece_2024_112870 crossref_primary_10_1016_j_ccst_2025_100447 crossref_primary_10_1016_j_cej_2024_150954 crossref_primary_10_1016_j_ijggc_2024_104196 crossref_primary_10_1016_j_cej_2025_168647 crossref_primary_10_1016_j_fuel_2023_129667 crossref_primary_10_1016_j_dche_2025_100235 crossref_primary_10_3390_membranes13020230 crossref_primary_10_1016_j_jiec_2024_12_011 crossref_primary_10_1016_j_polymer_2024_127351 crossref_primary_10_1002_ceat_70100 crossref_primary_10_1016_j_catcom_2023_106620 crossref_primary_10_1016_j_seppur_2023_125299 crossref_primary_10_1016_j_cej_2024_155338 crossref_primary_10_1016_j_fuel_2024_130898 crossref_primary_10_1007_s00226_024_01591_w crossref_primary_10_1016_j_jcou_2024_102823 crossref_primary_10_1016_j_jece_2025_116272 crossref_primary_10_3390_su15043370 crossref_primary_10_1016_j_fuel_2025_136311 crossref_primary_10_1016_j_cep_2022_109142 crossref_primary_10_1007_s13399_023_04832_3 crossref_primary_10_1016_j_biortech_2022_128174 crossref_primary_10_1002_ghg_2306 crossref_primary_10_1016_j_ijggc_2024_104242 crossref_primary_10_1002_cplu_202400405 crossref_primary_10_1016_j_energy_2024_133013 crossref_primary_10_1016_j_jece_2024_114363 crossref_primary_10_1016_j_ccst_2023_100136 crossref_primary_10_1016_j_seppur_2025_135211 crossref_primary_10_1002_asia_202401611 crossref_primary_10_1016_j_memlet_2023_100038 crossref_primary_10_1016_j_ctta_2025_100201 crossref_primary_10_3390_cleantechnol6040066 crossref_primary_10_1021_acssuschemeng_5c02616 crossref_primary_10_1007_s10337_025_04399_3 crossref_primary_10_1016_j_ces_2023_119191 crossref_primary_10_1016_j_fuel_2022_125276 crossref_primary_10_3390_separations10030192 crossref_primary_10_1016_j_jgsce_2023_205152 crossref_primary_10_1016_j_seppur_2024_128996 crossref_primary_10_3390_molecules28041772 crossref_primary_10_1016_j_ces_2024_119773 crossref_primary_10_1016_j_jechem_2025_03_017 crossref_primary_10_3389_fenrg_2024_1325212 crossref_primary_10_3390_membranes13050526 crossref_primary_10_1007_s11356_024_34606_x crossref_primary_10_1016_j_jcou_2024_102955 crossref_primary_10_1016_j_energy_2025_136395 crossref_primary_10_1016_j_joule_2024_08_002 crossref_primary_10_1016_j_seppur_2023_124536 crossref_primary_10_1038_s41598_024_73070_y crossref_primary_10_1016_j_fuel_2023_130393 crossref_primary_10_3390_molecules29194618 crossref_primary_10_1016_j_rser_2024_114362 crossref_primary_10_1016_j_jece_2024_114274 crossref_primary_10_3390_en17071673 crossref_primary_10_1016_j_cej_2023_142878 crossref_primary_10_1016_j_ctta_2025_100179 crossref_primary_10_1016_j_ccst_2025_100384 crossref_primary_10_1016_j_seppur_2025_133148 crossref_primary_10_3390_en15218309 crossref_primary_10_1016_j_seppur_2025_134755 crossref_primary_10_1016_j_ccst_2025_100380 crossref_primary_10_1016_j_clay_2024_107625 crossref_primary_10_1016_j_seppur_2024_127252 crossref_primary_10_3390_pr12091801 crossref_primary_10_1016_j_jcou_2024_103013 crossref_primary_10_1016_j_molliq_2025_127084 crossref_primary_10_1016_j_seppur_2024_126722 crossref_primary_10_3390_pr13010186 crossref_primary_10_1016_j_cej_2025_167010 crossref_primary_10_1038_s41598_025_86144_2 crossref_primary_10_1016_j_jcou_2024_103016 crossref_primary_10_1016_j_jaap_2024_106812 crossref_primary_10_1016_j_jct_2023_107068 crossref_primary_10_1016_j_cej_2023_143279 crossref_primary_10_1002_EXP_20240006 crossref_primary_10_1016_j_jclepro_2025_145940 crossref_primary_10_1016_j_cep_2025_110410 crossref_primary_10_1016_j_ces_2025_121778 crossref_primary_10_1016_j_applthermaleng_2025_127956 crossref_primary_10_1016_j_ces_2024_119996 crossref_primary_10_3390_en17092139 crossref_primary_10_1016_j_ces_2024_120737 crossref_primary_10_1021_acs_energyfuels_4c06247 crossref_primary_10_3390_molecules29153579 crossref_primary_10_1016_j_jgsce_2024_205237 crossref_primary_10_3390_su151813620 crossref_primary_10_1016_j_jclepro_2023_137976 crossref_primary_10_1016_j_applthermaleng_2023_121054 crossref_primary_10_1016_j_jiec_2024_01_013 crossref_primary_10_1016_j_fuel_2025_134740 crossref_primary_10_1016_j_decarb_2024_100063 crossref_primary_10_1016_j_seppur_2023_125922 crossref_primary_10_1007_s11157_023_09662_3 crossref_primary_10_1002_ghg_2355 crossref_primary_10_1016_j_cej_2025_167911 crossref_primary_10_3390_separations10090505 crossref_primary_10_1139_cjc_2024_0150 crossref_primary_10_1016_j_cej_2024_149648 crossref_primary_10_1016_j_ccst_2025_100366 crossref_primary_10_1016_j_enconman_2024_119443 crossref_primary_10_20935_AcadEnvSci7739 crossref_primary_10_1016_j_jtice_2024_105352 crossref_primary_10_1016_j_cej_2025_166709 crossref_primary_10_1080_01430750_2024_2360999 crossref_primary_10_1016_j_jclepro_2025_145474 crossref_primary_10_1016_j_ijggc_2023_104038 crossref_primary_10_1016_j_jece_2025_115702 crossref_primary_10_1016_j_jobe_2024_110711 crossref_primary_10_1007_s11356_025_36546_6 crossref_primary_10_1016_j_seppur_2024_129378 crossref_primary_10_3390_molecules28145461 crossref_primary_10_1007_s11356_023_28054_2 crossref_primary_10_1039_D4EE05328A crossref_primary_10_1016_j_seppur_2022_122309 crossref_primary_10_3390_molecules29020352 crossref_primary_10_1016_j_chroma_2025_466223 crossref_primary_10_1002_bbb_2805 crossref_primary_10_3390_separations9070174 crossref_primary_10_1016_j_jgsce_2025_205560 crossref_primary_10_1016_j_energy_2024_131670 crossref_primary_10_1002_asia_202401812 crossref_primary_10_1016_j_cej_2025_167888 crossref_primary_10_1016_j_energy_2025_134841 crossref_primary_10_1016_j_ijggc_2024_104161 crossref_primary_10_1016_j_ccst_2025_100493 crossref_primary_10_1016_j_cherd_2025_03_011 crossref_primary_10_1016_j_apenergy_2025_126012 crossref_primary_10_1016_j_envres_2025_121759 crossref_primary_10_1080_15583724_2025_2471487 crossref_primary_10_1016_j_fuel_2023_130848 crossref_primary_10_1016_j_cej_2024_152535 crossref_primary_10_1016_j_jclepro_2023_137679 crossref_primary_10_1080_10916466_2025_2525361 crossref_primary_10_1039_D4CS00574K crossref_primary_10_1016_j_fuel_2025_134443 |
| Cites_doi | 10.1016/j.cep.2022.108927 10.1016/j.jclepro.2015.08.116 10.1016/j.fuel.2017.12.030 10.1039/C7EE02342A 10.1016/j.gee.2019.01.007 10.1016/j.egypro.2011.02.021 10.1016/j.ijggc.2014.07.002 10.1016/j.ijggc.2014.04.020 10.1016/j.ijggc.2020.103059 10.1016/j.seppur.2017.11.024 10.1016/j.jct.2019.07.007 10.1016/j.egypro.2009.02.244 10.1016/j.jngse.2016.06.002 10.1016/j.energy.2011.12.014 10.1016/j.ces.2016.08.017 10.1515/eces-2017-0016 10.1016/j.ijggc.2014.03.001 10.1016/j.ijggc.2014.10.009 10.1016/j.ijggc.2015.06.017 10.1021/je400289v 10.1016/j.egypro.2017.03.1265 10.1016/j.egypro.2017.03.1262 10.1016/j.seppur.2019.116390 10.1016/j.apenergy.2016.02.046 10.1021/acs.iecr.9b03670 10.1021/acs.est.7b05936 10.1016/j.cej.2012.08.016 10.1021/ef2011113 10.1016/j.cherd.2019.02.020 10.1016/S0255-2701(02)00168-X 10.1016/j.fuel.2018.07.147 10.1016/j.biombioe.2022.106422 10.1016/j.cej.2014.11.040 10.1016/j.eti.2021.102006 10.1002/anie.201000431 10.1016/j.apenergy.2019.02.019 10.1016/j.egypro.2014.11.159 10.1021/acs.energyfuels.7b02390 10.1016/j.ijggc.2021.103307 10.1021/ie040253r 10.1021/ie502434m 10.1016/j.energy.2016.10.124 10.1016/j.ijggc.2013.10.001 10.1016/j.cplett.2016.01.059 10.1016/j.jngse.2020.103203 10.1021/acs.iecr.0c01483 10.1016/j.psep.2019.09.008 10.1016/j.energy.2020.119035 10.1016/j.apenergy.2021.116893 10.1021/acssuschemeng.7b03717 10.1016/j.fuel.2018.02.061 10.1016/j.ijggc.2013.03.022 10.1016/j.egypro.2014.11.137 10.1021/ie5048253 10.1016/j.ijggc.2016.08.012 10.1016/j.apenergy.2019.114343 10.1016/j.egypro.2011.01.190 10.1016/j.ijggc.2017.03.026 10.1021/acs.jced.7b00544 10.1016/j.ijggc.2012.06.017 10.1016/j.fuel.2018.08.152 10.1016/j.ijggc.2014.09.012 10.1016/j.egypro.2013.06.082 10.1016/j.jece.2018.11.007 10.1016/j.applthermaleng.2015.03.073 10.1016/j.fluid.2018.01.030 10.1016/j.cjche.2018.11.027 10.1016/j.cep.2011.02.005 10.1016/j.ces.2018.12.045 10.1016/j.energy.2020.118057 10.1016/j.fuel.2014.07.057 10.1016/j.jclepro.2015.11.054 10.1016/j.apenergy.2019.113941 10.1016/j.ijggc.2015.05.007 10.1002/ceat.201300240 10.1016/j.ijggc.2014.09.013 10.1016/j.ijggc.2013.03.026 10.1016/j.apenergy.2015.04.059 10.1016/j.fuel.2020.118940 10.1016/j.ijggc.2012.05.006 10.1016/j.ijggc.2012.10.016 10.1016/j.applthermaleng.2014.01.014 10.1016/j.egypro.2009.01.126 10.1021/ie801002m 10.1016/j.psep.2008.03.005 10.1016/j.ijggc.2013.12.003 10.1016/j.egypro.2017.03.1305 10.1016/j.applthermaleng.2020.116285 10.3390/app12063200 10.1016/j.egypro.2017.03.1345 10.1016/j.ijggc.2014.09.024 10.1016/j.ijggc.2017.08.001 10.1016/j.jclepro.2019.05.265 10.1016/j.egypro.2011.01.187 10.1016/j.ijggc.2009.09.010 10.1021/acs.iecr.6b00318 10.1080/15435075.2014.910781 10.1016/j.molliq.2016.10.044 10.1016/j.fuel.2008.11.009 10.1021/ie4040658 10.1016/j.apenergy.2015.08.083 10.1016/j.ijggc.2017.07.016 10.1021/ie050063w 10.1016/j.jct.2019.02.023 10.1016/j.ijggc.2019.01.009 10.1039/b924889g 10.1016/j.energy.2020.118715 10.1016/j.egypro.2011.01.194 10.1016/j.apenergy.2016.03.043 10.1002/apj.2576 10.1016/j.egypro.2014.11.191 10.1016/j.fuel.2019.115877 10.1016/j.ijggc.2017.04.018 10.1016/j.fuel.2015.06.033 10.1016/j.egypro.2014.11.186 10.1016/j.cjche.2015.06.013 10.1002/ghg.1851 10.1016/j.molliq.2019.111036 10.1016/j.apenergy.2015.12.109 10.1016/j.cherd.2019.04.034 10.1016/j.ijggc.2010.05.003 10.1016/j.ijggc.2013.03.002 10.1016/j.cherd.2011.03.005 10.1016/j.apenergy.2016.11.009 10.1002/aic.690481208 10.3390/en12112202 10.1016/j.fluid.2020.112504 10.1016/j.egypro.2014.11.144 10.1016/j.ijggc.2012.01.005 10.1016/j.egypro.2013.05.175 10.1021/je2006677 10.3390/su13010072 10.1016/j.jece.2020.103845 10.1016/j.apenergy.2018.10.103 10.1016/j.ces.2014.12.053 10.1016/j.energy.2018.09.160 10.1016/j.energy.2008.02.013 10.1016/j.ces.2015.02.001 10.1016/j.ijggc.2008.03.002 10.1016/j.cej.2015.03.030 10.1016/j.ijggc.2018.11.002 10.1021/ie504784p 10.1039/c2ee21152a 10.1016/j.apenergy.2014.02.012 10.1016/j.cherd.2011.02.008 10.1016/j.egypro.2013.06.040 10.1016/j.apenergy.2018.02.100 10.1016/j.egypro.2013.05.104 10.1016/j.energy.2020.117166 10.1016/j.cej.2017.08.111 10.1016/j.energy.2020.117618 10.1016/j.ces.2017.02.031 10.1016/j.apenergy.2019.03.138 10.1016/j.ijggc.2013.01.050 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1016/j.ijggc.2022.103715 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-0148 |
| ExternalDocumentID | oai:HAL:hal-03824986v1 10_1016_j_ijggc_2022_103715 S1750583622001335 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE IMUCA J1W JARJE KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSE SSJ SSR SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC |
| ID | FETCH-LOGICAL-c267t-8c1e5b3f8de78f9a2c55a25c03e239c24e670c0db0a2df097036a6d1b409bf263 |
| ISICitedReferencesCount | 220 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000826461600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1750-5836 |
| IngestDate | Tue Oct 14 20:10:38 EDT 2025 Tue Nov 18 22:32:57 EST 2025 Sat Nov 29 06:58:25 EST 2025 Fri Feb 23 02:40:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mixed amines Process optimization Regeneration energy consumption CO2 absorption Solvent CO2 absorption,Mixed amines,Regeneration energy consumption,Solvent,Process optimization |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c267t-8c1e5b3f8de78f9a2c55a25c03e239c24e670c0db0a2df097036a6d1b409bf263 |
| ORCID | 0000-0002-0631-3046 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03824986v1 crossref_citationtrail_10_1016_j_ijggc_2022_103715 crossref_primary_10_1016_j_ijggc_2022_103715 elsevier_sciencedirect_doi_10_1016_j_ijggc_2022_103715 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 2022-09 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of greenhouse gas control |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Adeosun, Abu-Zahra (bib0001) 2013; 37 Zhang, Borhani, Olabi (bib0180) 2020; 205 Liang, Rongwong, Liu, Fu, Gao, Cao, Zhang, Sema, Henni, Sumon (bib0098) 2015; 40 Choi, Nam, Yoon, Park, Park (bib0046) 2014; 53 Aghel, Heidaryan, Sahraie, Mir (bib0007) 2019 Ayittey, Saptoro, Kumar, Wong (bib0020) 2021; 16 Hafizi, Rajabzadeh, Khalifeh (bib0073) 2020 Guo, Li, Shi, Li, Shen (bib0072) 2019; 239 Jung, Jeong, Lee, Lim, Han (bib0082) 2015; 54 Knuutila, Rennemo, Ciftja (bib0089) 2019; 4 Hasan, Abbas, Nasr (bib0077) 2021; 13 Nwaoha, Tontiwachwuthikul, Benamor (bib0128) 2018; 234 Budzianowski (bib0034) 2016 Adeosun, el Hadri, Goetheer, Abu-Zahra (bib0003) 2013; 3 Zhang, Shen, Shao, Chen, Wang (bib0173) 2018; 52 D'Alessandro, Smit, Long (bib0052) 2010; 49 Dubois, Thomas (bib0059) 2017; 114 Wai, Nwaoha, Saiwan, Idem, Supap (bib0154) 2018; 194 Li, Leigh, Feron, Yu, Tade (bib0101) 2016; 165 Xie, Aroonwilas, Veawab (bib0167) 2013; 37 Haider, Hussain, Kumar (bib0074) 2016; 224 Pinto, Zaidy, Hartono, Svendsen (bib0136) 2014; 28 Salvinder, Zabiri, Taqvi, Ramasamy, Isa, Rozali, Suleman, Maulud, Shariff (bib0142) 2019; 147 Romeo, Minguell, Shirmohammadi, Andrés (bib0139) 2020; 59 Nwaoha, Saiwan, Supap, Idem, Tontiwachwuthikul, Rongwong, Al-Marri, Benamor (bib0123) 2016; 53 Dubois, Thomas (bib0061) 2011; 4 Mohamadi-Baghmolaei, Hajizadeh, Zahedizadeh, Azin, Zendehboudi (bib0115) 2021; 214 Wang, Liu, Wang, Li, Zhang, Chen, Jiang, Zhang (bib0159) 2019; 242 Choi, Nam, Yoon, Park, Park (bib0047) 2014; 53 Karimi, Hillestad, Svendsen (bib0083) 2011; 89 Liu, Ling, Lv, Gao, Na, Liang (bib0106) 2019; 58 Luu, Manaf, Abbas (bib0112) 2015; 39 Zhao, Su, Tao, Li, Peng (bib0183) 2012; 9 Chen, Han, Sun, Luo, Liang (bib0044) 2019 Fu, Zhang, Fu (bib0067) 2019; 134 Le Moullec, Neveux, Al Azki, Chikukwa, Hoff (bib0096) 2014; 31 Singh, Van Swaaij, Brilman (bib0147) 2013; 37 Zhang, Zhang, Dong, Zhao, Zhang, Huang (bib0179) 2012; 5 Khan, Halder, Saha (bib0085) 2017; 64 Esmaeili, Roozbehani (bib0065) 2014; 30 Xiao, Liu, Gao, Olson, Liang (bib0166) 2019; 235 Zhang, Shen, Shao, Chen, Wang (bib0174) 2018; 52 Barzagli, Mani, Peruzzini (bib0028) 2010; 3 Dash, Samanta, Bandyopadhyay (bib0053) 2014; 21 Afkhamipour, Mofarahi, Rezaei, Mahmoodi, Lee (bib0004) 2019; 256 Liu, Fan, Wang, Wang (bib0108) 2016; 112 Wu, Wang, Liao, Shen, Li (bib0165) 2020; 257 Zhao, Liu, Cui, Liu, Yue, Tang, Liu, Lu, Liang (bib0182) 2017; 185 Bahakim, Ricardez-Sandoval (bib0021) 2015; 54 Sema, Naami, Fu, Edali, Liu, Shi, Liang, Idem, Tontiwachwuthikul (bib0144) 2012; 209 Mukhtar, Saqib, Mellon, Babar, Rafiq, Ullah, Bustam, Al-Sehemi, Muhammad, Chawla (bib0120) 2020 Janati, Aghel, Shadloo (bib0081) 2021; 24 Liu, Jing, Zhou, Lv, Zhou (bib0103) 2018; 6 Ahmadi, F., 2012. Assessing the performance of Aspen Plus and Promax for the simulation of CO2 capture plants. Aghel, Gouran, Behaein (bib0006) 2022 Tzirakis, Tsivintzelis, Papadopoulos, Seferlis (bib0151) 2019; 199 Du, Yuan, Rochelle (bib0063) 2016; 155 Zhang, Wang, Sun, Zheng (bib0181) 2014; 123 Zhu, Fang, Lv, Wang, Luo (bib0187) 2012; 26 Aghel, Sahraie, Heidaryan (bib0009) 2020; 237 Hanak, Biliyok, Manovic (bib0075) 2015; 151 Nwaoha, Saiwan, Tontiwachwuthikul, Supap, Rongwong, Idem, AL-Marri, Benamor (bib0124) 2016; 33 Warudkar, Cox, Wong, Hirasaki (bib0162) 2013; 16 Walters, Edgar, Rochelle (bib0155) 2016; 55 Adeosun, El Hadri, Goetheer, Abu-Zahra (bib0002) 2013; 3 Wang, Joel, Ramshaw, Eimer, Musa (bib0158) 2015; 158 Li, Tang, He, Gui, Cui, Mao (bib0100) 2020; 197 Wu, Liu, Chu, Li, Liu (bib0163) 2015; 12 Li, Cheng, Hu, Liu, Zhou, Cen (bib0109) 2018; 216 Sultan, Quach, Muhammad, Bhatti, Lee, Hong, Baek, Chan (bib0150) 2021; 184 Cerrillo-Briones, Ricardez-Sandoval (bib0039) 2019; 144 Cousins, Wardhaugh, Feron (bib0051) 2011; 89 Arshad, Fosbøl, von Solms, Svendsen, Thomsen (bib0019) 2013; 58 Wang, Su, Lu (bib0160) 2020; 510 Dubois, Thomas (bib0060) 2013; 37 Oh, Yun, Kim (bib0131) 2018; 216 Shen, Chen, Wang, Zhang, Jiang, Ye, Wang, Chen (bib0146) 2020; 260 Yuan, Sherman, Rochelle (bib0170) 2017; 114 Zhang, Guo (bib0172) 2015; 272 Balsora, Mondal (bib0022) 2011; 56 Nwaoha, Tontiwachwuthikul, Benamor (bib0127) 2018; 6 Gao, Wu, Liu, Luo, Liang (bib0068) 2017; 31 Dey, Dash, Mandal (bib0057) 2018; 463 Barzagli, Mani, Peruzzini (bib0027) 2013; 16 Zhang, Liu, Huang, Li (bib0171) 2015; 85 Canepa, Wang (bib0038) 2015; 74 Pinto, Zaidy, Hartono, Svendsen (bib0135) 2014; 28 Duan, Zhao, Yang (bib0058) 2012; 45 Bui, Adjiman, Bardow, Anthony, Boston, Brown, Fennell, Fuss, Galindo, Hackett (bib0036) 2018; 11 Chen, Cho, Jhuang, Ku (bib0042) 2021; 7 Knuutila, Nannestad (bib0088) 2017; 61 Schneider, Sander, Gorak (bib0143) 2003; 42 Sakwattanapong, Aroonwilas, Veawab (bib0141) 2005; 44 Nwaoha, Tontiwachwuthikul, Benamor (bib0126) 2019; 82 Penders-van Elk, Hamborg, Huttenhuis, Fradette, Carley, Versteeg (bib0134) 2013; 12 Aghel, Janati, Alobaid, Almoslh, Epple (bib0008) 2022; 12 Romeo, Espatolero, Bolea (bib0138) 2008; 2 Zhu, Liu, Zhou, Yang, Ding, Wen (bib0185) 2014; 37 Chen, Han, Sun, Luo, Liang (bib0045) 2019 Zhang, Fu, Liang, Yang, Rongwong, Na (bib0178) 2014; 63 Monteiro, Pinto, Zaidy, Hartono, Svendsen (bib0117) 2013; 19 Van Wagener, Rochelle (bib0153) 2011; 4 Rochelle (bib0137) 2016 Liang, Fu, Idem, Tontiwachwuthikul (bib0097) 2016; 24 Panahi, Skogestad (bib0133) 2011; 50 Saeed, Alaba, Mazari, Basirun, Lee, Sabzoi (bib0140) 2018; 79 Liu, Li, Zhang, Li, Bi, Zhang (bib0105) 2019; 9 Lucquiaud, Gibbins (bib0111) 2009; 223 Aghel, Sahraie, Heidaryan (bib0010) 2020 Dave, Do, Puxty, Rowland, Feron, Attalla (bib0054) 2009; 1 Lin, Wong (bib0102) 2014; 26 Wang, An, Yu, Zhang, Zhang, Li, Li (bib0156) 2017; 64 Budzianowski (bib0033) 2016 Kruszczak, Kierzkowska-Pawlak (bib0091) 2017; 24 Li, Le Moullec, Lu, Chen, Marcos, Chen (bib0099) 2014; 31 Akinola, Oko, Wang (bib0015) 2019; 236 Kumar, Mondal (bib0092) 2018; 63 Monteiro, Majeed, Knuutila, Svendsen (bib0116) 2015; 129 Chen, Lai (bib0043) 2019; 12 Balsora, Mondal (bib0023) 2011; 56 Mores, Manassaldi, Scenna, Caballero, Mussati, Mussati (bib0118) 2018; 331 Zhang, Zhang (bib0175) 2014; 63 Muchan, Saiwan, Narku-Tetteh, Idem, Supap, Tontiwachwuthikul (bib0119) 2017; 170 Kvamsdal, Chikukwa, Hillestad, Zakeri, Einbu (bib0093) 2011; 4 Wu, Shen, Li, Wang, Lawal (bib0164) 2018; 220 Bravo, Drapanauskaite, Sarunac, Romero, Jesikiewicz, Baltrusaitis (bib0032) 2021; 283 Liu, Chen, Luo, Wang, Meng (bib0107) 2015; 158 Aghel, Behaein, Wongwises, Shadloo (bib0005) 2022; 160 Oexmann, Kather (bib0129) 2010; 4 Barzagli, Lai, Mani (bib0025) 2014; 63 Liu, Li, Zhang, Li, Bi, Zhang (bib0104) 2019; 9 Yang, Yu, Yan, Tu (bib0168) 2014; 53 Aroonwilas, Veawab (bib0018) 2009; 1 Oh, Binns, Cho, Kim (bib0130) 2016; 169 Sharif, Zhang, Wu, Yu, Zhang (bib0145) 2020; 97 Gao, Zhou, Liang, Idem, Fu, Sema, Tontiwachwuthikul (bib0069) 2014; 24 Aghel, Sahraie, Heidaryan (bib0011) 2020; 237 Conway, Beyad, Feron, Richner, Puxty (bib0048) 2014; 63 Conway, Bruggink, Beyad, Luo, Melián-Cabrera, Puxty, Feron (bib0050) 2015; 126 Lawal, Wang, Stephenson, Yeung (bib0094) 2009; 88 Wang, Tian, Fu, Du, Ye (bib0157) 2019; 139 Manaf, Cousins, Feron, Abbas (bib0113) 2016; 113 Garcia, Knuutila, Gu (bib0070) 2017; 114 Amrollahi, Ystad, Ertesvåg, Bolland (bib0017) 2012; 8 Budzianowski (bib0035) 2016 Conway, Beyad, Richner, Puxty, Feron (bib0049) 2015; 264 Otitoju, Oko, Wang (bib0132) 2021; 292 Camper, Bara, Gin, Noble (bib0037) 2008; 47 Farajollahi, Hossainpour (bib0066) 2017; 118 Le Moullec, Kanniche (bib0095) 2011; 4 Nakai, Nishimura, Kaiho, Kubota, Sato (bib0121) 2016; 647 Ahn, Luberti, Liu, Brandani (bib0014) 2013; 16 Akinola, Oko, Wang (bib0016) 2019; 236 Aghel, Sahraie, Heidaryan, Varmira (bib0012) 2019; 131 Chen, Li, Le Moullec, Lu, Marcos, Chen (bib0041) 2017; 114 Zhu, Liu, Zhou, Yang, Ding, Wen (bib0184) 2014; 37 Guo, Li, Shi, Li, Shen (bib0071) 2019; 239 Harun, Nittaya, Douglas, Croiset, Ricardez-Sandoval (bib0076) 2012; 10 Van der Spek, Ramirez (bib0152) 2014; 63 Kim, Svendsen (bib0087) 2011; 5 Helei, Tantikhajorngosol, Chan, Tontiwachwuthikul (bib0079) 2021; 108 Mofarahi, Khojasteh, Khaledi, Farahnak (bib0114) 2008; 33 Cheng, Lai, Tan (bib0040) 2013; 16 Hosseini-Ardali, Hazrati-Kalbibaki, Fattahi, Lezsovits (bib0080) 2020; 211 Zhu, Fang, Lv, Wang, Luo (bib0186) 2012; 26 Kruszczak, Kierzkowska-Pawlak (bib0090) 2017; 24 Khan, Halder, Saha (bib0086) 2015; 32 Bonenfant, Mimeault, Hausler (bib0031) 2005; 44 Hassankiadeh, Jahangiri (bib0078) 2018; 165 El Hadri, Quang, Goetheer, Zahra (bib0064) 2017; 185 Zhang, Chen, Luo, Wang (bib0176) 2017; 63 Zhang, Fu, Liang, Rongwong, Yang, Idem, Tontiwachwuthikul (bib0177) 2014; 136 Nwaoha, Saiwan, Supap, Idem, Tontiwachwuthikul, Rongwong, Al-Marri, Benamor (bib0122) 2016; 53 Bishnoi, Rochelle (bib0029) 2002; 48 Dey, Dash, Balchandani, Mandal (bib0055) 2019; 289 Singh, Versteeg (bib0148) 2008; 86 Sobala, Kierzkowska-Pawlak (bib0149) 2019; 27 Wang, Li (bib0161) 2015 Liu (10.1016/j.ijggc.2022.103715_bib0104) 2019; 9 Le Moullec (10.1016/j.ijggc.2022.103715_bib0095) 2011; 4 Akinola (10.1016/j.ijggc.2022.103715_bib0016) 2019; 236 Wu (10.1016/j.ijggc.2022.103715_bib0164) 2018; 220 Dubois (10.1016/j.ijggc.2022.103715_bib0061) 2011; 4 Helei (10.1016/j.ijggc.2022.103715_bib0079) 2021; 108 Saeed (10.1016/j.ijggc.2022.103715_bib0140) 2018; 79 Mukhtar (10.1016/j.ijggc.2022.103715_bib0120) 2020 Barzagli (10.1016/j.ijggc.2022.103715_bib0028) 2010; 3 Zhang (10.1016/j.ijggc.2022.103715_bib0174) 2018; 52 Kumar (10.1016/j.ijggc.2022.103715_bib0092) 2018; 63 Gao (10.1016/j.ijggc.2022.103715_bib0069) 2014; 24 Kruszczak (10.1016/j.ijggc.2022.103715_bib0091) 2017; 24 Dubois (10.1016/j.ijggc.2022.103715_bib0059) 2017; 114 Dubois (10.1016/j.ijggc.2022.103715_bib0060) 2013; 37 Sema (10.1016/j.ijggc.2022.103715_bib0144) 2012; 209 Sakwattanapong (10.1016/j.ijggc.2022.103715_bib0141) 2005; 44 Li (10.1016/j.ijggc.2022.103715_bib0100) 2020; 197 Guo (10.1016/j.ijggc.2022.103715_bib0072) 2019; 239 Hafizi (10.1016/j.ijggc.2022.103715_bib0073) 2020 Conway (10.1016/j.ijggc.2022.103715_bib0048) 2014; 63 Dey (10.1016/j.ijggc.2022.103715_bib0057) 2018; 463 Zhu (10.1016/j.ijggc.2022.103715_bib0187) 2012; 26 Barzagli (10.1016/j.ijggc.2022.103715_bib0027) 2013; 16 Budzianowski (10.1016/j.ijggc.2022.103715_bib0035) 2016 Otitoju (10.1016/j.ijggc.2022.103715_bib0132) 2021; 292 Lucquiaud (10.1016/j.ijggc.2022.103715_bib0111) 2009; 223 Singh (10.1016/j.ijggc.2022.103715_bib0148) 2008; 86 Guo (10.1016/j.ijggc.2022.103715_bib0071) 2019; 239 Kim (10.1016/j.ijggc.2022.103715_bib0087) 2011; 5 Le Moullec (10.1016/j.ijggc.2022.103715_bib0096) 2014; 31 Jung (10.1016/j.ijggc.2022.103715_bib0082) 2015; 54 Pinto (10.1016/j.ijggc.2022.103715_bib0136) 2014; 28 Bahakim (10.1016/j.ijggc.2022.103715_bib0021) 2015; 54 Zhang (10.1016/j.ijggc.2022.103715_bib0173) 2018; 52 Khan (10.1016/j.ijggc.2022.103715_bib0086) 2015; 32 Liu (10.1016/j.ijggc.2022.103715_bib0105) 2019; 9 Farajollahi (10.1016/j.ijggc.2022.103715_bib0066) 2017; 118 Muchan (10.1016/j.ijggc.2022.103715_bib0119) 2017; 170 Aghel (10.1016/j.ijggc.2022.103715_bib0012) 2019; 131 Conway (10.1016/j.ijggc.2022.103715_bib0050) 2015; 126 Li (10.1016/j.ijggc.2022.103715_bib0099) 2014; 31 Liu (10.1016/j.ijggc.2022.103715_bib0103) 2018; 6 Fu (10.1016/j.ijggc.2022.103715_bib0067) 2019; 134 Wang (10.1016/j.ijggc.2022.103715_bib0158) 2015; 158 Chen (10.1016/j.ijggc.2022.103715_bib0041) 2017; 114 Nakai (10.1016/j.ijggc.2022.103715_bib0121) 2016; 647 Cousins (10.1016/j.ijggc.2022.103715_bib0051) 2011; 89 Harun (10.1016/j.ijggc.2022.103715_bib0076) 2012; 10 Yuan (10.1016/j.ijggc.2022.103715_bib0170) 2017; 114 Dey (10.1016/j.ijggc.2022.103715_bib0055) 2019; 289 Li (10.1016/j.ijggc.2022.103715_bib0109) 2018; 216 Monteiro (10.1016/j.ijggc.2022.103715_bib0116) 2015; 129 Romeo (10.1016/j.ijggc.2022.103715_bib0139) 2020; 59 Mofarahi (10.1016/j.ijggc.2022.103715_bib0114) 2008; 33 Nwaoha (10.1016/j.ijggc.2022.103715_bib0123) 2016; 53 Wu (10.1016/j.ijggc.2022.103715_bib0165) 2020; 257 Duan (10.1016/j.ijggc.2022.103715_bib0058) 2012; 45 Kvamsdal (10.1016/j.ijggc.2022.103715_bib0093) 2011; 4 Lawal (10.1016/j.ijggc.2022.103715_bib0094) 2009; 88 Esmaeili (10.1016/j.ijggc.2022.103715_bib0065) 2014; 30 Balsora (10.1016/j.ijggc.2022.103715_bib0022) 2011; 56 Warudkar (10.1016/j.ijggc.2022.103715_bib0162) 2013; 16 Zhang (10.1016/j.ijggc.2022.103715_bib0180) 2020; 205 Ahn (10.1016/j.ijggc.2022.103715_bib0014) 2013; 16 Nwaoha (10.1016/j.ijggc.2022.103715_bib0128) 2018; 234 Adeosun (10.1016/j.ijggc.2022.103715_bib0002) 2013; 3 Liang (10.1016/j.ijggc.2022.103715_bib0098) 2015; 40 Gao (10.1016/j.ijggc.2022.103715_bib0068) 2017; 31 Wang (10.1016/j.ijggc.2022.103715_bib0156) 2017; 64 Nwaoha (10.1016/j.ijggc.2022.103715_bib0126) 2019; 82 Liu (10.1016/j.ijggc.2022.103715_bib0106) 2019; 58 Dave (10.1016/j.ijggc.2022.103715_bib0054) 2009; 1 Chen (10.1016/j.ijggc.2022.103715_bib0042) 2021; 7 Cheng (10.1016/j.ijggc.2022.103715_bib0040) 2013; 16 Nwaoha (10.1016/j.ijggc.2022.103715_bib0127) 2018; 6 Zhao (10.1016/j.ijggc.2022.103715_bib0183) 2012; 9 Penders-van Elk (10.1016/j.ijggc.2022.103715_bib0134) 2013; 12 Aghel (10.1016/j.ijggc.2022.103715_bib0011) 2020; 237 Manaf (10.1016/j.ijggc.2022.103715_bib0113) 2016; 113 Sobala (10.1016/j.ijggc.2022.103715_bib0149) 2019; 27 Aghel (10.1016/j.ijggc.2022.103715_bib0008) 2022; 12 Yang (10.1016/j.ijggc.2022.103715_bib0168) 2014; 53 Choi (10.1016/j.ijggc.2022.103715_bib0047) 2014; 53 Aghel (10.1016/j.ijggc.2022.103715_bib0006) 2022 Hosseini-Ardali (10.1016/j.ijggc.2022.103715_bib0080) 2020; 211 Wang (10.1016/j.ijggc.2022.103715_bib0157) 2019; 139 Sultan (10.1016/j.ijggc.2022.103715_bib0150) 2021; 184 Walters (10.1016/j.ijggc.2022.103715_bib0155) 2016; 55 Camper (10.1016/j.ijggc.2022.103715_bib0037) 2008; 47 Knuutila (10.1016/j.ijggc.2022.103715_bib0089) 2019; 4 Conway (10.1016/j.ijggc.2022.103715_bib0049) 2015; 264 Chen (10.1016/j.ijggc.2022.103715_bib0043) 2019; 12 Bravo (10.1016/j.ijggc.2022.103715_bib0032) 2021; 283 Khan (10.1016/j.ijggc.2022.103715_bib0085) 2017; 64 Wai (10.1016/j.ijggc.2022.103715_bib0154) 2018; 194 Oh (10.1016/j.ijggc.2022.103715_bib0130) 2016; 169 Shen (10.1016/j.ijggc.2022.103715_bib0146) 2020; 260 Salvinder (10.1016/j.ijggc.2022.103715_bib0142) 2019; 147 Panahi (10.1016/j.ijggc.2022.103715_bib0133) 2011; 50 Afkhamipour (10.1016/j.ijggc.2022.103715_bib0004) 2019; 256 Monteiro (10.1016/j.ijggc.2022.103715_bib0117) 2013; 19 Xiao (10.1016/j.ijggc.2022.103715_bib0166) 2019; 235 Romeo (10.1016/j.ijggc.2022.103715_bib0138) 2008; 2 Wu (10.1016/j.ijggc.2022.103715_bib0163) 2015; 12 Adeosun (10.1016/j.ijggc.2022.103715_bib0001) 2013; 37 Zhang (10.1016/j.ijggc.2022.103715_bib0176) 2017; 63 Chen (10.1016/j.ijggc.2022.103715_bib0044) 2019 Xie (10.1016/j.ijggc.2022.103715_bib0167) 2013; 37 Zhang (10.1016/j.ijggc.2022.103715_bib0171) 2015; 85 Wang (10.1016/j.ijggc.2022.103715_bib0160) 2020; 510 Wang (10.1016/j.ijggc.2022.103715_bib0159) 2019; 242 Hanak (10.1016/j.ijggc.2022.103715_bib0075) 2015; 151 Li (10.1016/j.ijggc.2022.103715_bib0101) 2016; 165 Van der Spek (10.1016/j.ijggc.2022.103715_bib0152) 2014; 63 Zhang (10.1016/j.ijggc.2022.103715_bib0181) 2014; 123 Zhu (10.1016/j.ijggc.2022.103715_bib0185) 2014; 37 Janati (10.1016/j.ijggc.2022.103715_bib0081) 2021; 24 Bui (10.1016/j.ijggc.2022.103715_bib0036) 2018; 11 Amrollahi (10.1016/j.ijggc.2022.103715_bib0017) 2012; 8 Ayittey (10.1016/j.ijggc.2022.103715_bib0020) 2021; 16 D'Alessandro (10.1016/j.ijggc.2022.103715_bib0052) 2010; 49 Zhao (10.1016/j.ijggc.2022.103715_bib0182) 2017; 185 Liang (10.1016/j.ijggc.2022.103715_bib0097) 2016; 24 Zhang (10.1016/j.ijggc.2022.103715_bib0177) 2014; 136 Hassankiadeh (10.1016/j.ijggc.2022.103715_bib0078) 2018; 165 Aroonwilas (10.1016/j.ijggc.2022.103715_bib0018) 2009; 1 Aghel (10.1016/j.ijggc.2022.103715_bib0010) 2020 Oexmann (10.1016/j.ijggc.2022.103715_bib0129) 2010; 4 Haider (10.1016/j.ijggc.2022.103715_bib0074) 2016; 224 Barzagli (10.1016/j.ijggc.2022.103715_bib0025) 2014; 63 Canepa (10.1016/j.ijggc.2022.103715_bib0038) 2015; 74 Luu (10.1016/j.ijggc.2022.103715_bib0112) 2015; 39 Wang (10.1016/j.ijggc.2022.103715_bib0161) 2015 Karimi (10.1016/j.ijggc.2022.103715_bib0083) 2011; 89 Nwaoha (10.1016/j.ijggc.2022.103715_bib0122) 2016; 53 Liu (10.1016/j.ijggc.2022.103715_bib0107) 2015; 158 Balsora (10.1016/j.ijggc.2022.103715_bib0023) 2011; 56 Knuutila (10.1016/j.ijggc.2022.103715_bib0088) 2017; 61 Lin (10.1016/j.ijggc.2022.103715_bib0102) 2014; 26 Mohamadi-Baghmolaei (10.1016/j.ijggc.2022.103715_bib0115) 2021; 214 Budzianowski (10.1016/j.ijggc.2022.103715_bib0034) 2016 Schneider (10.1016/j.ijggc.2022.103715_bib0143) 2003; 42 Zhu (10.1016/j.ijggc.2022.103715_bib0186) 2012; 26 Du (10.1016/j.ijggc.2022.103715_bib0063) 2016; 155 Zhang (10.1016/j.ijggc.2022.103715_bib0178) 2014; 63 Bonenfant (10.1016/j.ijggc.2022.103715_bib0031) 2005; 44 Chen (10.1016/j.ijggc.2022.103715_bib0045) 2019 Dash (10.1016/j.ijggc.2022.103715_bib0053) 2014; 21 Nwaoha (10.1016/j.ijggc.2022.103715_bib0124) 2016; 33 10.1016/j.ijggc.2022.103715_bib0013 Bishnoi (10.1016/j.ijggc.2022.103715_bib0029) 2002; 48 El Hadri (10.1016/j.ijggc.2022.103715_bib0064) 2017; 185 Singh (10.1016/j.ijggc.2022.103715_bib0147) 2013; 37 Rochelle (10.1016/j.ijggc.2022.103715_bib0137) 2016 Zhang (10.1016/j.ijggc.2022.103715_bib0175) 2014; 63 Zhu (10.1016/j.ijggc.2022.103715_bib0184) 2014; 37 Aghel (10.1016/j.ijggc.2022.103715_bib0009) 2020; 237 Pinto (10.1016/j.ijggc.2022.103715_bib0135) 2014; 28 Akinola (10.1016/j.ijggc.2022.103715_bib0015) 2019; 236 Aghel (10.1016/j.ijggc.2022.103715_bib0005) 2022; 160 Arshad (10.1016/j.ijggc.2022.103715_bib0019) 2013; 58 Choi (10.1016/j.ijggc.2022.103715_bib0046) 2014; 53 Liu (10.1016/j.ijggc.2022.103715_bib0108) 2016; 112 Oh (10.1016/j.ijggc.2022.103715_bib0131) 2018; 216 Adeosun (10.1016/j.ijggc.2022.103715_bib0003) 2013; 3 Cerrillo-Briones (10.1016/j.ijggc.2022.103715_bib0039) 2019; 144 Zhang (10.1016/j.ijggc.2022.103715_bib0179) 2012; 5 Budzianowski (10.1016/j.ijggc.2022.103715_bib0033) 2016 Aghel (10.1016/j.ijggc.2022.103715_bib0007) 2019 Hasan (10.1016/j.ijggc.2022.103715_bib0077) 2021; 13 Kruszczak (10.1016/j.ijggc.2022.103715_bib0090) 2017; 24 Mores (10.1016/j.ijggc.2022.103715_bib0118) 2018; 331 Sharif (10.1016/j.ijggc.2022.103715_bib0145) 2020; 97 Zhang (10.1016/j.ijggc.2022.103715_bib0172) 2015; 272 Garcia (10.1016/j.ijggc.2022.103715_bib0070) 2017; 114 Tzirakis (10.1016/j.ijggc.2022.103715_bib0151) 2019; 199 Van Wagener (10.1016/j.ijggc.2022.103715_bib0153) 2011; 4 |
| References_xml | – volume: 31 start-page: 96 year: 2014 end-page: 112 ident: bib0096 article-title: Process modifications for solvent-based post-combustion CO2 capture publication-title: International Journal of Greenhouse Gas Control – volume: 257 year: 2020 ident: bib0165 article-title: Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation publication-title: Applied Energy – volume: 136 start-page: 261 year: 2014 end-page: 267 ident: bib0177 article-title: Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing publication-title: Fuel – volume: 26 start-page: 69 year: 2014 end-page: 75 ident: bib0102 article-title: Carbon dioxide capture and regeneration with amine/alcohol/water blends publication-title: International Journal of Greenhouse Gas Control – volume: 13 start-page: 72 year: 2021 ident: bib0077 article-title: Improving the carbon capture efficiency for gas power plants through amine-based absorbents publication-title: Sustainability – volume: 205 year: 2020 ident: bib0180 article-title: Status and perspective of CO2 absorption process publication-title: Energy – volume: 44 start-page: 3720 year: 2005 end-page: 3725 ident: bib0031 article-title: Comparative analysis of the carbon dioxide absorption and recuperation capacities in aqueous 2-(2-aminoethylamino) ethanol (AEE) and blends of aqueous AEE and N-methyldiethanolamine solutions publication-title: Ind Eng Chem Res – volume: 89 start-page: 1237 year: 2011 end-page: 1251 ident: bib0051 article-title: Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption publication-title: Chemical Engineering Research and Design – volume: 44 start-page: 4465 year: 2005 end-page: 4473 ident: bib0141 article-title: Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines publication-title: Ind Eng Chem Res – volume: 5 start-page: 390 year: 2011 end-page: 395 ident: bib0087 article-title: Comparative study of the heats of absorption of post-combustion CO2 absorbents publication-title: International Journal of Greenhouse Gas Control – year: 2020 ident: bib0120 article-title: CO2 Capturing, Thermo-Kinetic Principles, Synthesis and Amine Functionalization of Covalent Organic Polymers for CO2 Separation from Natural Gas: A publication-title: Review. Journal of Natural Gas Science and Engineering – volume: 331 start-page: 870 year: 2018 end-page: 894 ident: bib0118 article-title: Optimization of the design, operating conditions, and coupling configuration of combined cycle power plants and CO2 capture processes by minimizing the mitigation cost publication-title: Chemical Engineering Journal – volume: 264 start-page: 954 year: 2015 end-page: 961 ident: bib0049 article-title: Rapid CO2 absorption into aqueous benzylamine (BZA) solutions and its formulations with monoethanolamine (MEA), and 2-amino-2-methyl-1-propanol (AMP) as components for post combustion capture processes publication-title: Chemical Engineering Journal – volume: 510 year: 2020 ident: bib0160 article-title: Energy-consumption analysis of carbon-based material for CO2 capture process publication-title: Fluid Phase Equilibria – volume: 24 year: 2021 ident: bib0081 article-title: The effect of alkanolamine mixtures on CO2 absorption efficiency in T-Shaped microchannel publication-title: Environmental Technology & Innovation – volume: 292 year: 2021 ident: bib0132 article-title: Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation publication-title: Applied Energy – volume: 27 start-page: 628 year: 2019 end-page: 633 ident: bib0149 article-title: Heat of absorption of CO2 in aqueous N, N-diethylethanolamine+ N-methyl-1, 3-propanediamine solutions at 313 K publication-title: Chinese Journal of Chemical Engineering – volume: 58 start-page: 1974 year: 2013 end-page: 1988 ident: bib0019 article-title: Heat of absorption of CO2 in phase change solvents: 2-(diethylamino) ethanol and 3-(methylamino) propylamine publication-title: Journal of Chemical & Engineering Data – volume: 216 start-page: 418 year: 2018 end-page: 426 ident: bib0109 article-title: Phase-changing solution PZ/DMF for efficient CO2 capture and low corrosiveness to carbon steel publication-title: Fuel – volume: 48 start-page: 2788 year: 2002 end-page: 2799 ident: bib0029 article-title: Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine publication-title: AIChE Journal – volume: 4 start-page: 439 year: 2019 end-page: 452 ident: bib0089 article-title: New solvent blends for post-combustion CO2 capture publication-title: Green Energy & Environment – volume: 21 start-page: 130 year: 2014 end-page: 139 ident: bib0053 article-title: Simulation and parametric study of post combustion CO2 capture process using (AMP+ PZ) blended solvent publication-title: International Journal of Greenhouse Gas Control – volume: 235 start-page: 311 year: 2019 end-page: 319 ident: bib0166 article-title: CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine publication-title: Applied Energy – volume: 256 year: 2019 ident: bib0004 article-title: Experimental and theoretical investigation of equilibrium absorption performance of CO2 using a mixed 1-dimethylamino-2-propanol (1DMA2P) and monoethanolamine (MEA) solution publication-title: Fuel – volume: 114 start-page: 1772 year: 2017 end-page: 1784 ident: bib0070 article-title: Determination of kinetics of CO2 absorption in unloaded and loaded DEEA+ MAPA blend publication-title: Energy Procedia – volume: 165 start-page: 164 year: 2018 end-page: 178 ident: bib0078 article-title: Application of aqueous blends of AMP and piperazine to the low CO2 partial pressure capturing: New experimental and theoretical analysis publication-title: Energy – volume: 56 start-page: 4691 year: 2011 end-page: 4695 ident: bib0022 article-title: Solubility of CO2 in an aqueous blend of diethanolamine and trisodium phosphate publication-title: Journal of Chemical & Engineering Data – volume: 16 start-page: 217 year: 2013 end-page: 223 ident: bib0027 article-title: Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP) publication-title: International Journal of Greenhouse Gas Control – volume: 74 start-page: 10 year: 2015 end-page: 19 ident: bib0038 article-title: Techno-economic analysis of a CO2 capture plant integrated with a commercial scale combined cycle gas turbine (CCGT) power plant publication-title: Applied Thermal Engineering – volume: 24 start-page: 239 year: 2017 end-page: 248 ident: bib0091 article-title: CO2 capture by absorption in activated aqueous solutions of N, N-diethylethanoloamine publication-title: Ecological Chemistry and Engineering S – volume: 169 start-page: 353 year: 2016 end-page: 362 ident: bib0130 article-title: Energy minimization of MEA-based CO2 capture process publication-title: Applied Energy – volume: 28 start-page: 318 year: 2014 end-page: 327 ident: bib0136 article-title: Evaluation of a phase change solvent for CO2 capture: Absorption and desorption tests publication-title: International Journal of Greenhouse Gas Control – volume: 4 start-page: 1526 year: 2011 end-page: 1533 ident: bib0093 article-title: A comparison of different parameter correlation models and the validation of an MEA-based absorber model publication-title: Energy Procedia – volume: 61 start-page: 94 year: 2017 end-page: 103 ident: bib0088 article-title: Effect of the concentration of MAPA on the heat of absorption of CO2 and on the cyclic capacity in DEEA-MAPA blends publication-title: International Journal of Greenhouse Gas Control – volume: 24 start-page: 239 year: 2017 end-page: 248 ident: bib0090 article-title: CO2 capture by absorption in activated aqueous solutions of N, N-diethylethanoloamine publication-title: Ecological Chemistry and Engineering S – volume: 216 start-page: 311 year: 2018 end-page: 322 ident: bib0131 article-title: Process integration and design for maximizing energy efficiency of a coal-fired power plant integrated with amine-based CO2 capture process publication-title: Applied Energy – volume: 147 start-page: 319 year: 2019 end-page: 337 ident: bib0142 article-title: An overview on control strategies for CO2 capture using absorption/stripping system publication-title: Chemical Engineering Research and Design – volume: 52 start-page: 3660 year: 2018 end-page: 3668 ident: bib0173 article-title: Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas publication-title: Environ Sci Technol – volume: 3 start-page: 772 year: 2010 end-page: 779 ident: bib0028 article-title: Continuous cycles of CO 2 absorption and amine regeneration with aqueous alkanolamines: a comparison of the efficiency between pure and blended DEA, MDEA and AMP solutions by 13C NMR spectroscopy publication-title: Energy & Environmental Science – volume: 4 start-page: 1323 year: 2011 end-page: 1330 ident: bib0153 article-title: Stripper configurations for CO2 capture by aqueous monoethanolamine and piperazine publication-title: Energy Procedia – volume: 16 start-page: e2576 year: 2021 ident: bib0020 article-title: Energy-saving process configurations for monoethanolamine-based CO2 capture system publication-title: Asia-Pacific Journal of Chemical Engineering – volume: 79 start-page: 212 year: 2018 end-page: 233 ident: bib0140 article-title: Opportunities and challenges in the development of monoethanolamine and its blends for post-combustion CO2 capture publication-title: International Journal of Greenhouse Gas Control – volume: 37 start-page: 2021 year: 2013 end-page: 2046 ident: bib0147 article-title: Energy efficient solvents for CO2 absorption from flue gas: Vapor liquid equilibrium and pilot plant study publication-title: Energy Procedia – volume: 9 start-page: 349 year: 2019 end-page: 359 ident: bib0105 article-title: Promotion of CO2 capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi-solvent blends publication-title: Greenhouse Gases: Science and Technology – volume: 86 start-page: 347 year: 2008 end-page: 359 ident: bib0148 article-title: Structure and activity relationships for CO2 regeneration from aqueous amine-based absorbents publication-title: Process Safety and Environmental Protection – volume: 88 start-page: 2455 year: 2009 end-page: 2462 ident: bib0094 article-title: Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants publication-title: Fuel – year: 2016 ident: bib0035 article-title: Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption: Compounds, Blends and Advanced Solvent Systems – volume: 12 start-page: 259 year: 2013 end-page: 268 ident: bib0134 article-title: Kinetics of absorption of carbon dioxide in aqueous amine and carbonate solutions with carbonic anhydrase publication-title: International Journal of Greenhouse Gas Control – volume: 108 year: 2021 ident: bib0079 article-title: Technology development and applications of artificial intelligence for post-combustion carbon dioxide capture: Critical literature review and perspectives publication-title: International Journal of Greenhouse Gas Control – volume: 42 start-page: 955 year: 2003 end-page: 964 ident: bib0143 article-title: Dynamic simulation of industrial reactive absorption processes publication-title: Chemical Engineering and Processing: Process Intensification – volume: 37 start-page: 211 year: 2013 end-page: 218 ident: bib0001 article-title: Evaluation of amine-blend solvent systems for CO2 post-combustion capture applications publication-title: Energy Procedia – volume: 63 start-page: 1347 year: 2014 end-page: 1353 ident: bib0175 article-title: Computational study of CO2 absorption in aqueous and non-aqueous solutions using MEA publication-title: Energy Procedia – volume: 5 start-page: 6668 year: 2012 end-page: 6681 ident: bib0179 article-title: Carbon capture with ionic liquids: overview and progress publication-title: Energy & Environmental Science – volume: 37 start-page: 1648 year: 2013 end-page: 1657 ident: bib0060 article-title: Postcombustion CO2 capture by chemical absorption: screening of aqueous amine (s)-based solvents publication-title: Energy Procedia – start-page: 3 year: 2015 end-page: 22 ident: bib0161 article-title: Phase-Change Solvents for CO2 Capture, in: Novel Materials for Carbon Dioxide Mitigation Technology – volume: 1 start-page: 949 year: 2009 end-page: 954 ident: bib0054 article-title: CO2 capture by aqueous amines and aqueous ammonia–A Comparison publication-title: Energy Procedia – volume: 16 start-page: 206 year: 2013 end-page: 216 ident: bib0040 article-title: Thermal regeneration of alkanolamine solutions in a rotating packed bed publication-title: International Journal of Greenhouse Gas Control – volume: 237 year: 2020 ident: bib0009 article-title: Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor publication-title: Separation and Purification Technology – volume: 16 start-page: 29 year: 2013 end-page: 40 ident: bib0014 article-title: Process configuration studies of the amine capture process for coal-fired power plants publication-title: International Journal of Greenhouse Gas Control – volume: 7 start-page: 25 year: 2021 ident: bib0042 article-title: Selection of Mixed Amines in the CO2 Capture Process publication-title: C (Basel) – volume: 184 year: 2021 ident: bib0150 article-title: Advanced post combustion CO2 capture process–A systematic approach to minimize thermal energy requirement publication-title: Applied Thermal Engineering – volume: 113 start-page: 635 year: 2016 end-page: 653 ident: bib0113 article-title: Dynamic modelling, identification and preliminary control analysis of an amine-based post-combustion CO2 capture pilot plant publication-title: Journal of Cleaner Production – volume: 53 start-page: 292 year: 2016 end-page: 304 ident: bib0123 article-title: Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA) publication-title: International Journal of Greenhouse Gas Control – volume: 52 start-page: 3660 year: 2018 end-page: 3668 ident: bib0174 article-title: Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas publication-title: Environ Sci Technol – volume: 40 start-page: 26 year: 2015 end-page: 54 ident: bib0098 article-title: Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents publication-title: International Journal of Greenhouse Gas Control – volume: 82 start-page: 218 year: 2019 end-page: 228 ident: bib0126 article-title: CO2 capture from water-gas shift process plant: Comparative bench-scale pilot plant investigation of MDEA-PZ blend vs novel MDEA activated by 1, 5-diamino-2-methylpentane publication-title: International Journal of Greenhouse Gas Control – volume: 8 start-page: 1 year: 2012 end-page: 11 ident: bib0017 article-title: Optimized process configurations of post-combustion CO2 capture for natural-gas-fired power plant–Power plant efficiency analysis publication-title: International Journal of Greenhouse Gas Control – year: 2022 ident: bib0006 article-title: Intensified biogas upgrading via various wastewater using microchannel publication-title: Chemical Engineering and Processing-Process Intensification – volume: 37 start-page: 826 year: 2013 end-page: 833 ident: bib0167 article-title: Measurement of heat of CO2 absorption into 2-amino-2-methyl-1-propanol (AMP)/piperazine (PZ) blends using differential reaction calorimeter publication-title: Energy Procedia – volume: 58 start-page: 20461 year: 2019 end-page: 20471 ident: bib0106 article-title: New insights and assessment of primary alkanolamine/sulfolane biphasic solutions for post-combustion CO2 capture: absorption, desorption, phase separation, and technological process publication-title: Industrial & Engineering Chemistry Research – volume: 647 start-page: 127 year: 2016 end-page: 131 ident: bib0121 article-title: Contrasting mechanisms for CO2 absorption and regeneration processes in aqueous amine solutions: Insights from density-functional tight-binding molecular dynamics simulations publication-title: Chemical Physics Letters – volume: 9 start-page: 355 year: 2012 end-page: 371 ident: bib0183 article-title: Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review publication-title: International Journal of Greenhouse Gas Control – volume: 144 start-page: 386 year: 2019 end-page: 396 ident: bib0039 article-title: Robust optimization of a post-combustion CO2 capture absorber column under process uncertainty publication-title: Chemical Engineering Research and Design – volume: 214 year: 2021 ident: bib0115 article-title: Evaluation of hybridized performance of amine scrubbing plant based on exergy, energy, environmental, and economic prospects: A gas sweetening plant case study publication-title: Energy – volume: 220 start-page: 931 year: 2018 end-page: 941 ident: bib0164 article-title: Flexible operation of post-combustion solvent-based carbon capture for coal-fired power plants using multi-model predictive control: A simulation study publication-title: Fuel – volume: 123 start-page: 179 year: 2014 end-page: 184 ident: bib0181 article-title: A novel method for the preparation of CO2 sorption sorbents with high performance publication-title: Appl Energy – volume: 4 start-page: 1303 year: 2011 end-page: 1309 ident: bib0095 article-title: Optimization of MEA based post combustion CO2 capture process: Flowsheeting and energetic integration publication-title: Energy Procedia – volume: 47 start-page: 8496 year: 2008 end-page: 8498 ident: bib0037 article-title: Room-temperature ionic liquid− amine solutions: tunable solvents for efficient and reversible capture of CO2 publication-title: Industrial & Engineering Chemistry Research – volume: 63 start-page: 1497 year: 2014 end-page: 1503 ident: bib0178 article-title: Experimental Studies of Regeneration Heat Duty for CO2 Desorption from Aqueous DETA Solution in a Randomly Packed Column publication-title: Energy Procedia – volume: 31 start-page: 13883 year: 2017 end-page: 13891 ident: bib0068 article-title: Experimental studies on the effect of tertiary amine promoters in aqueous monoethanolamine (MEA) solutions on the absorption/stripping performances in post-combustion CO2 capture publication-title: Energy & Fuels – volume: 9 start-page: 349 year: 2019 end-page: 359 ident: bib0104 article-title: Promotion of CO2 capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi-solvent blends publication-title: Greenhouse Gases: Science and Technology – volume: 139 year: 2019 ident: bib0157 article-title: Experimental investigation on CO2 absorption capacity and viscosity for high concentrated 1-dimethylamino-2-propanol–monoethanolamine aqueous blends publication-title: The Journal of Chemical Thermodynamics – volume: 24 start-page: 87 year: 2014 end-page: 97 ident: bib0069 article-title: Comparative studies of heat duty and total equivalent work of a new heat pump distillation with split flow process, conventional split flow process, and conventional baseline process for CO2 capture using monoethanolamine publication-title: International journal of greenhouse gas control – volume: 55 start-page: 4646 year: 2016 end-page: 4657 ident: bib0155 article-title: Regulatory control of amine scrubbing for CO2 capture from power plants publication-title: Industrial & Engineering Chemistry Research – volume: 236 start-page: 135 year: 2019 end-page: 146 ident: bib0015 article-title: Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation publication-title: Fuel – volume: 54 start-page: 3879 year: 2015 end-page: 3892 ident: bib0021 article-title: Optimal design of a postcombustion CO2 capture pilot-scale plant under process uncertainty: a ranking-based approach publication-title: Industrial & Engineering Chemistry Research – volume: 63 start-page: 1163 year: 2018 end-page: 1169 ident: bib0092 article-title: Equilibrium Solubility of CO2 in Aqueous Blend of 2-(Diethylamine) ethanol and 2-(2-Aminoethylamine) ethanol publication-title: Journal of Chemical & Engineering Data – volume: 236 start-page: 135 year: 2019 end-page: 146 ident: bib0016 article-title: Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation publication-title: Fuel – volume: 118 start-page: 927 year: 2017 end-page: 936 ident: bib0066 article-title: Application of organic Rankine cycle in integration of thermal power plant with post-combustion CO2 capture and compression publication-title: Energy – volume: 234 start-page: 1089 year: 2018 end-page: 1098 ident: bib0128 article-title: A comparative study of novel activated AMP using 1, 5-diamino-2-methylpentane vs MEA solution for CO2 capture from gas-fired power plant publication-title: Fuel – volume: 239 start-page: 725 year: 2019 end-page: 734 ident: bib0072 article-title: Nonaqueous amine-based absorbents for energy efficient CO2 capture publication-title: Applied Energy – volume: 64 start-page: 163 year: 2017 end-page: 173 ident: bib0085 article-title: Experimental investigation on efficient carbon dioxide capture using piperazine (PZ) activated aqueous methyldiethanolamine (MDEA) solution in a packed column publication-title: International Journal of Greenhouse Gas Control – volume: 63 start-page: 1835 year: 2014 end-page: 1841 ident: bib0048 article-title: CO2 absorption into aqueous amine blends containing benzylamine (BZA), monoethanolamine (MEA), and sterically hindered/tertiary amines publication-title: Energy Procedia – volume: 239 start-page: 725 year: 2019 end-page: 734 ident: bib0071 article-title: Nonaqueous amine-based absorbents for energy efficient CO2 capture publication-title: Applied Energy – volume: 24 start-page: 278 year: 2016 end-page: 288 ident: bib0097 article-title: Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents publication-title: Chin J Chem Eng – volume: 283 year: 2021 ident: bib0032 article-title: Optimization of energy requirements for CO2 post-combustion capture process through advanced thermal integration publication-title: Fuel – volume: 242 start-page: 302 year: 2019 end-page: 310 ident: bib0159 article-title: Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas publication-title: Appl Energy – volume: 12 start-page: 2202 year: 2019 ident: bib0043 article-title: Optimization in the stripping process of CO2 gas using mixed amines publication-title: Energies (Basel) – volume: 131 start-page: 152 year: 2019 end-page: 159 ident: bib0012 article-title: Experimental study of carbon dioxide absorption by mixed aqueous solutions of methyl diethanolamine (MDEA) and piperazine (PZ) in a microreactor publication-title: Process Safety and Environmental Protection – volume: 463 start-page: 91 year: 2018 end-page: 105 ident: bib0057 article-title: Equilibrium CO2 solubility and thermophysical properties of aqueous blends of 1-(2-aminoethyl) piperazine and N-methyldiethanolamine publication-title: Fluid Phase Equilibria – volume: 97 year: 2020 ident: bib0145 article-title: Evaluation of CO2 absorption performance by molecular dynamic simulation for mixed secondary and tertiary amines publication-title: International Journal of Greenhouse Gas Control – volume: 63 start-page: 1287 year: 2014 end-page: 1295 ident: bib0152 article-title: A structured approach for selecting carbon capture process models. A case study on monoethanolamine publication-title: Energy Procedia – volume: 158 start-page: 625 year: 2015 end-page: 633 ident: bib0107 article-title: Study on heat integration of supercritical coal-fired power plant with post-combustion CO2 capture process through process simulation publication-title: Fuel – volume: 151 start-page: 258 year: 2015 end-page: 272 ident: bib0075 article-title: Efficiency improvements for the coal-fired power plant retrofit with CO2 capture plant using chilled ammonia process publication-title: Applied Energy – volume: 134 start-page: 61 year: 2019 end-page: 68 ident: bib0067 article-title: Experiment and model for the viscosity of carbonated 3-(dimethylamino) propan-1-ol and 2-(ethylamino) ethanol blended aqueous solutions publication-title: The Journal of Chemical Thermodynamics – volume: 64 start-page: 276 year: 2017 end-page: 283 ident: bib0156 article-title: Mass transfer characteristics of CO2 absorption into a phase-change solvent in a wetted-wall column publication-title: International Journal of Greenhouse Gas Control – volume: 185 start-page: 362 year: 2017 end-page: 375 ident: bib0182 article-title: Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant: process improvement publication-title: Appl Energy – year: 2016 ident: bib0034 article-title: Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption: Compounds, Blends and Advanced Solvent Systems – volume: 224 start-page: 1025 year: 2016 end-page: 1031 ident: bib0074 article-title: CO2 absorption and kinetic study in ionic liquid amine blends publication-title: Journal of Molecular Liquids – volume: 114 start-page: 2103 year: 2017 end-page: 2120 ident: bib0170 article-title: Effects of viscosity on CO2 absorption in aqueous piperazine/2-methylpiperazine publication-title: Energy Procedia – volume: 53 start-page: 14451 year: 2014 end-page: 14461 ident: bib0047 article-title: Carbon dioxide absorption into aqueous blends of methyldiethanolamine (MDEA) and alkyl amines containing multiple amino groups publication-title: Industrial & Engineering Chemistry Research – volume: 63 start-page: 37 year: 2017 end-page: 46 ident: bib0176 article-title: Modelling and process analysis of post-combustion carbon capture with the blend of 2-amino-2-methyl-1-propanol and piperazine publication-title: International Journal of Greenhouse Gas Control – volume: 114 start-page: 1409 year: 2017 end-page: 1423 ident: bib0059 article-title: Simulations of various configurations of the post-combustion CO2 capture process applied to a cement plant flue gas: parametric study with different solvents publication-title: Energy Procedia – volume: 30 start-page: 212 year: 2014 end-page: 215 ident: bib0065 article-title: Pilot-scale experiments for post-combustion CO2 capture from gas fired power plants with a novel solvent publication-title: International Journal of Greenhouse Gas Control – volume: 6 start-page: 7102 year: 2018 end-page: 7110 ident: bib0127 article-title: CO2 capture from lime kiln using AMP-DA2MP amine solvent blend: A pilot plant study publication-title: J Environ Chem Eng – volume: 11 start-page: 1062 year: 2018 end-page: 1176 ident: bib0036 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energy & Environmental Science – volume: 199 start-page: 20 year: 2019 end-page: 27 ident: bib0151 article-title: Experimental measurement and assessment of equilibrium behaviour for phase change solvents used in CO2 capture publication-title: Chemical Engineering Science – volume: 4 start-page: 36 year: 2010 end-page: 43 ident: bib0129 article-title: Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents publication-title: International Journal of Greenhouse Gas Control – volume: 28 start-page: 318 year: 2014 end-page: 327 ident: bib0135 article-title: Evaluation of a phase change solvent for CO2 capture: Absorption and desorption tests publication-title: International Journal of Greenhouse Gas Control – volume: 185 start-page: 1433 year: 2017 end-page: 1449 ident: bib0064 article-title: Aqueous amine solution characterization for post-combustion CO2 capture process publication-title: Applied Energy – volume: 49 start-page: 6058 year: 2010 end-page: 6082 ident: bib0052 article-title: Carbon dioxide capture: prospects for new materials publication-title: Angewandte Chemie International Edition – volume: 289 year: 2019 ident: bib0055 article-title: Investigation on the inclusion of 1-(2-aminoethyl) piperazine as a promoter on the equilibrium CO2 solubility of aqueous 2-amino-2-methyl-1-propanol publication-title: Journal of Molecular Liquids – volume: 170 start-page: 574 year: 2017 end-page: 582 ident: bib0119 article-title: Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO2 capture publication-title: Chemical Engineering Science – reference: Ahmadi, F., 2012. Assessing the performance of Aspen Plus and Promax for the simulation of CO2 capture plants. – volume: 223 start-page: 213 year: 2009 end-page: 226 ident: bib0111 article-title: Retrofitting CO2 capture ready fossil plants with post-combustion capture. Part 1: requirements for supercritical pulverized coal plants using solvent-based flue gas scrubbing publication-title: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy – volume: 31 start-page: 25 year: 2014 end-page: 32 ident: bib0099 article-title: Solubility and energy analysis for CO2 absorption in piperazine derivatives and their mixtures publication-title: International Journal of Greenhouse Gas Control – volume: 45 start-page: 107 year: 2012 end-page: 116 ident: bib0058 article-title: Integration and optimization study on the coal-fired power plant with CO2 capture using publication-title: MEA. Energy – volume: 3 start-page: 12 year: 2013 end-page: 23 ident: bib0002 article-title: Absorption of CO2by Amine Blends Solution: An Experimental Evaluation publication-title: International journal of engineering and science – volume: 211 year: 2020 ident: bib0080 article-title: Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent publication-title: Energy – volume: 272 start-page: 135 year: 2015 end-page: 144 ident: bib0172 article-title: Reaction sensitivity analysis of regeneration process of CO2 capture using aqueous ammonia publication-title: Chemical Engineering Journal – volume: 53 start-page: 2790 year: 2014 end-page: 2799 ident: bib0168 article-title: CO2 capture using amine solution mixed with ionic liquid publication-title: Industrial & Engineering Chemistry Research – volume: 85 start-page: 214 year: 2015 end-page: 224 ident: bib0171 article-title: Process integration analysis and improved options for an MEA CO2 capture system based on the pinch analysis publication-title: Applied Thermal Engineering – volume: 165 start-page: 648 year: 2016 end-page: 659 ident: bib0101 article-title: Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: techno-economic assessment of the MEA process and its improvements publication-title: Appl Energy – volume: 37 start-page: 635 year: 2014 end-page: 642 ident: bib0185 article-title: Absorption of carbon dioxide from flue gas using blended amine solutions publication-title: Chemical Engineering & Technology – volume: 129 start-page: 145 year: 2015 end-page: 155 ident: bib0116 article-title: Kinetics of CO2 absorption in aqueous blends of N, N-diethylethanolamine (DEEA) and N-methyl-1, 3-propane-diamine (MAPA) publication-title: Chemical Engineering Science – volume: 53 start-page: 14451 year: 2014 end-page: 14461 ident: bib0046 article-title: Carbon dioxide absorption into aqueous blends of methyldiethanolamine (MDEA) and alkyl amines containing multiple amino groups publication-title: Industrial & Engineering Chemistry Research – year: 2016 ident: bib0033 article-title: Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption: Compounds, Blends and Advanced Solvent Systems – volume: 160 year: 2022 ident: bib0005 article-title: A review of recent progress in biogas upgrading: With emphasis on carbon capture publication-title: Biomass and Bioenergy – volume: 53 start-page: 292 year: 2016 end-page: 304 ident: bib0122 article-title: Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA) publication-title: International Journal of Greenhouse Gas Control – year: 2019 ident: bib0044 article-title: The comparative kinetics study of CO2 absorption into non-aqueous DEEA/MEA and DMEA/MEA blended systems solution by using stopped-flow technique publication-title: Chemical Engineering Journal – volume: 126 start-page: 446 year: 2015 end-page: 454 ident: bib0050 article-title: CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N, N-dimethylethanolamine (DMEA), N, N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes publication-title: Chemical Engineering Science – start-page: 35 year: 2016 end-page: 67 ident: bib0137 article-title: Conventional amine scrubbing for CO2 capture, in: Absorption-Based Post-Combustion Capture of Carbon Dioxide – volume: 209 start-page: 501 year: 2012 end-page: 512 ident: bib0144 article-title: Comprehensive mass transfer and reaction kinetics studies of CO2 absorption into aqueous solutions of blended MDEA–MEA publication-title: Chemical engineering journal – volume: 2 start-page: 563 year: 2008 end-page: 570 ident: bib0138 article-title: Designing a supercritical steam cycle to integrate the energy requirements of CO2 amine scrubbing publication-title: International Journal of Greenhouse Gas Control – volume: 37 start-page: 635 year: 2014 end-page: 642 ident: bib0184 article-title: Absorption of carbon dioxide from flue gas using blended amine solutions publication-title: Chemical Engineering & Technology – volume: 112 start-page: 4012 year: 2016 end-page: 4021 ident: bib0108 article-title: Studies of CO2 absorption/regeneration performances of novel aqueous monothanlamine (MEA)-based solutions publication-title: Journal of Cleaner Production – volume: 16 start-page: 342 year: 2013 end-page: 350 ident: bib0162 article-title: Influence of stripper operating parameters on the performance of amine absorption systems for post-combustion carbon capture: Part I. High pressure strippers publication-title: International Journal of Greenhouse Gas Control – volume: 32 start-page: 15 year: 2015 end-page: 23 ident: bib0086 article-title: Carbon dioxide capture characteristics from flue gas using aqueous 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA) solutions in packed bed absorption and regeneration columns publication-title: International Journal of Greenhouse Gas Control – volume: 4 start-page: 1353 year: 2011 end-page: 1360 ident: bib0061 article-title: Carbon dioxide absorption into aqueous amine based solvents: modeling and absorption tests publication-title: Energy Procedia – volume: 33 start-page: 1311 year: 2008 end-page: 1319 ident: bib0114 article-title: Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine publication-title: Energy – volume: 114 start-page: 1388 year: 2017 end-page: 1393 ident: bib0041 article-title: Process simulation for CO2 capture with the aqueous solution of 1-methylpiperazine and its mixture with piperazine publication-title: Energy Procedia – volume: 54 start-page: 3865 year: 2015 end-page: 3878 ident: bib0082 article-title: New configuration of the CO2 capture process using aqueous monoethanolamine for coal-fired power plants publication-title: Industrial & Engineering Chemistry Research – volume: 158 start-page: 275 year: 2015 end-page: 291 ident: bib0158 article-title: Process intensification for post-combustion CO2 capture with chemical absorption: a critical review publication-title: Applied Energy – volume: 63 start-page: 1795 year: 2014 end-page: 1804 ident: bib0025 article-title: Novel non-aqueous amine solvents for reversible CO2 capture publication-title: Energy Procedia – volume: 39 start-page: 377 year: 2015 end-page: 389 ident: bib0112 article-title: Dynamic modelling and control strategies for flexible operation of amine-based post-combustion CO2 capture systems publication-title: International Journal of Greenhouse Gas Control – volume: 50 start-page: 247 year: 2011 end-page: 253 ident: bib0133 article-title: Economically efficient operation of CO2 capturing process part I: Self-optimizing procedure for selecting the best controlled variables publication-title: Chemical Engineering and Processing: Process Intensification – year: 2019 ident: bib0007 article-title: Application of the microchannel reactor to carbon dioxide absorption publication-title: Journal of Cleaner Production – volume: 59 start-page: 10082 year: 2020 end-page: 10092 ident: bib0139 article-title: Comparative analysis of the efficiency penalty in power plants of different amine-based solvents for CO2 capture publication-title: Industrial & Engineering Chemistry Research – volume: 1 start-page: 4315 year: 2009 end-page: 4321 ident: bib0018 article-title: Integration of CO2 capture unit using blended MEA–AMP solution into coal-fired power plants publication-title: Energy Procedia – volume: 155 start-page: 397 year: 2016 end-page: 404 ident: bib0063 article-title: Capacity and absorption rate of tertiary and hindered amines blended with piperazine for CO2 capture publication-title: Chemical Engineering Science – year: 2020 ident: bib0073 article-title: Enhanced CO2 absorption and desorption efficiency using DETA functionalized nanomagnetite/water nano-fluid publication-title: Journal of Environmental Chemical Engineering – volume: 56 start-page: 4691 year: 2011 end-page: 4695 ident: bib0023 article-title: Solubility of CO2 in an aqueous blend of diethanolamine and trisodium phosphate publication-title: Journal of Chemical & Engineering Data – volume: 197 year: 2020 ident: bib0100 article-title: Structure-activity relationship for CO2 absorbent publication-title: Energy – volume: 19 start-page: 432 year: 2013 end-page: 440 ident: bib0117 article-title: VLE data and modelling of aqueous N, N-diethylethanolamine (DEEA) solutions publication-title: International Journal of Greenhouse Gas Control – volume: 194 start-page: 89 year: 2018 end-page: 95 ident: bib0154 article-title: Absorption heat, solubility, absorption and desorption rates, cyclic capacity, heat duty, and absorption kinetic modeling of AMP–DETA blend for post–combustion CO2 capture publication-title: Separation and Purification Technology – volume: 6 start-page: 1352 year: 2018 end-page: 1361 ident: bib0103 article-title: Performance and mechanisms of triethylene tetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP) in aqueous and nonaqueous solutions for CO2 capture publication-title: ACS Sustainable Chemistry & Engineering – volume: 33 start-page: 742 year: 2016 end-page: 750 ident: bib0124 article-title: Carbon dioxide (CO2) capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends publication-title: Journal of Natural Gas Science and Engineering – year: 2020 ident: bib0010 article-title: Comparison of aqueous and non-aqueous alkanolamines solutions for carbon dioxide desorption in a microreactor publication-title: Energy – volume: 260 year: 2020 ident: bib0146 article-title: Two-stage interaction performance of CO2 absorption into biphasic solvents: Mechanism analysis, quantum calculation and energy consumption publication-title: Applied Energy – year: 2019 ident: bib0045 article-title: The comparative kinetics study of CO2 absorption into non-aqueous DEEA/MEA and DMEA/MEA blended systems solution by using stopped-flow technique publication-title: Chemical Engineering Journal – volume: 10 start-page: 295 year: 2012 end-page: 309 ident: bib0076 article-title: Dynamic simulation of MEA absorption process for CO2 capture from power plants publication-title: International Journal of Greenhouse Gas Control – volume: 3 start-page: 12 year: 2013 end-page: 23 ident: bib0003 article-title: Absorption of CO2by Amine Blends Solution: An Experimental Evaluation publication-title: International journal of engineering and science – volume: 89 start-page: 1229 year: 2011 end-page: 1236 ident: bib0083 article-title: Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture publication-title: Chemical engineering research and design – volume: 237 year: 2020 ident: bib0011 article-title: Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor publication-title: Separation and Purification Technology – volume: 12 start-page: 1025 year: 2015 end-page: 1030 ident: bib0163 article-title: Optimal absorbent evaluation for the CO2 separating process by absorption loading, desorption efficiency, cost, and environmental tolerance publication-title: International Journal of Green Energy – volume: 26 start-page: 147 year: 2012 end-page: 153 ident: bib0186 article-title: Selection of blended solvents for CO2 absorption from coal-fired flue gas. Part 1: Monoethanolamine (MEA)-based solvents publication-title: Energy & fuels – volume: 26 start-page: 147 year: 2012 end-page: 153 ident: bib0187 article-title: Selection of blended solvents for CO2 absorption from coal-fired flue gas. Part 1: Monoethanolamine (MEA)-based solvents publication-title: Energy & fuels – volume: 12 start-page: 3200 year: 2022 ident: bib0008 article-title: Application of Nanofluids in CO2 Absorption: A Review publication-title: Applied Sciences – year: 2022 ident: 10.1016/j.ijggc.2022.103715_bib0006 article-title: Intensified biogas upgrading via various wastewater using microchannel publication-title: Chemical Engineering and Processing-Process Intensification doi: 10.1016/j.cep.2022.108927 – volume: 112 start-page: 4012 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0108 article-title: Studies of CO2 absorption/regeneration performances of novel aqueous monothanlamine (MEA)-based solutions publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2015.08.116 – volume: 216 start-page: 418 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0109 article-title: Phase-changing solution PZ/DMF for efficient CO2 capture and low corrosiveness to carbon steel publication-title: Fuel doi: 10.1016/j.fuel.2017.12.030 – volume: 11 start-page: 1062 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0036 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energy & Environmental Science doi: 10.1039/C7EE02342A – volume: 4 start-page: 439 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0089 article-title: New solvent blends for post-combustion CO2 capture publication-title: Green Energy & Environment doi: 10.1016/j.gee.2019.01.007 – volume: 4 start-page: 1526 year: 2011 ident: 10.1016/j.ijggc.2022.103715_bib0093 article-title: A comparison of different parameter correlation models and the validation of an MEA-based absorber model publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.02.021 – volume: 28 start-page: 318 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0135 article-title: Evaluation of a phase change solvent for CO2 capture: Absorption and desorption tests publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2014.07.002 – volume: 26 start-page: 69 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0102 article-title: Carbon dioxide capture and regeneration with amine/alcohol/water blends publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2014.04.020 – volume: 97 year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0145 article-title: Evaluation of CO2 absorption performance by molecular dynamic simulation for mixed secondary and tertiary amines publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2020.103059 – volume: 194 start-page: 89 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0154 article-title: Absorption heat, solubility, absorption and desorption rates, cyclic capacity, heat duty, and absorption kinetic modeling of AMP–DETA blend for post–combustion CO2 capture publication-title: Separation and Purification Technology doi: 10.1016/j.seppur.2017.11.024 – volume: 139 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0157 article-title: Experimental investigation on CO2 absorption capacity and viscosity for high concentrated 1-dimethylamino-2-propanol–monoethanolamine aqueous blends publication-title: The Journal of Chemical Thermodynamics doi: 10.1016/j.jct.2019.07.007 – start-page: 3 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0161 – volume: 1 start-page: 4315 year: 2009 ident: 10.1016/j.ijggc.2022.103715_bib0018 article-title: Integration of CO2 capture unit using blended MEA–AMP solution into coal-fired power plants publication-title: Energy Procedia doi: 10.1016/j.egypro.2009.02.244 – volume: 33 start-page: 742 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0124 article-title: Carbon dioxide (CO2) capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2016.06.002 – volume: 45 start-page: 107 year: 2012 ident: 10.1016/j.ijggc.2022.103715_bib0058 article-title: Integration and optimization study on the coal-fired power plant with CO2 capture using publication-title: MEA. Energy doi: 10.1016/j.energy.2011.12.014 – year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0034 – volume: 155 start-page: 397 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0063 article-title: Capacity and absorption rate of tertiary and hindered amines blended with piperazine for CO2 capture publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2016.08.017 – volume: 24 start-page: 239 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0091 article-title: CO2 capture by absorption in activated aqueous solutions of N, N-diethylethanoloamine publication-title: Ecological Chemistry and Engineering S doi: 10.1515/eces-2017-0016 – volume: 3 start-page: 12 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0003 article-title: Absorption of CO2by Amine Blends Solution: An Experimental Evaluation publication-title: International journal of engineering and science – volume: 24 start-page: 87 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0069 article-title: Comparative studies of heat duty and total equivalent work of a new heat pump distillation with split flow process, conventional split flow process, and conventional baseline process for CO2 capture using monoethanolamine publication-title: International journal of greenhouse gas control doi: 10.1016/j.ijggc.2014.03.001 – volume: 32 start-page: 15 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0086 article-title: Carbon dioxide capture characteristics from flue gas using aqueous 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA) solutions in packed bed absorption and regeneration columns publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2014.10.009 – volume: 40 start-page: 26 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0098 article-title: Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2015.06.017 – volume: 58 start-page: 1974 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0019 article-title: Heat of absorption of CO2 in phase change solvents: 2-(diethylamino) ethanol and 3-(methylamino) propylamine publication-title: Journal of Chemical & Engineering Data doi: 10.1021/je400289v – volume: 114 start-page: 1409 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0059 article-title: Simulations of various configurations of the post-combustion CO2 capture process applied to a cement plant flue gas: parametric study with different solvents publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1265 – volume: 114 start-page: 1388 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0041 article-title: Process simulation for CO2 capture with the aqueous solution of 1-methylpiperazine and its mixture with piperazine publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1262 – volume: 237 year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0009 article-title: Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor publication-title: Separation and Purification Technology doi: 10.1016/j.seppur.2019.116390 – volume: 169 start-page: 353 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0130 article-title: Energy minimization of MEA-based CO2 capture process publication-title: Applied Energy doi: 10.1016/j.apenergy.2016.02.046 – volume: 58 start-page: 20461 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0106 article-title: New insights and assessment of primary alkanolamine/sulfolane biphasic solutions for post-combustion CO2 capture: absorption, desorption, phase separation, and technological process publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.9b03670 – volume: 52 start-page: 3660 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0174 article-title: Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b05936 – volume: 209 start-page: 501 year: 2012 ident: 10.1016/j.ijggc.2022.103715_bib0144 article-title: Comprehensive mass transfer and reaction kinetics studies of CO2 absorption into aqueous solutions of blended MDEA–MEA publication-title: Chemical engineering journal doi: 10.1016/j.cej.2012.08.016 – volume: 26 start-page: 147 year: 2012 ident: 10.1016/j.ijggc.2022.103715_bib0186 article-title: Selection of blended solvents for CO2 absorption from coal-fired flue gas. Part 1: Monoethanolamine (MEA)-based solvents publication-title: Energy & fuels doi: 10.1021/ef2011113 – volume: 144 start-page: 386 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0039 article-title: Robust optimization of a post-combustion CO2 capture absorber column under process uncertainty publication-title: Chemical Engineering Research and Design doi: 10.1016/j.cherd.2019.02.020 – volume: 42 start-page: 955 year: 2003 ident: 10.1016/j.ijggc.2022.103715_bib0143 article-title: Dynamic simulation of industrial reactive absorption processes publication-title: Chemical Engineering and Processing: Process Intensification doi: 10.1016/S0255-2701(02)00168-X – volume: 234 start-page: 1089 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0128 article-title: A comparative study of novel activated AMP using 1, 5-diamino-2-methylpentane vs MEA solution for CO2 capture from gas-fired power plant publication-title: Fuel doi: 10.1016/j.fuel.2018.07.147 – volume: 160 year: 2022 ident: 10.1016/j.ijggc.2022.103715_bib0005 article-title: A review of recent progress in biogas upgrading: With emphasis on carbon capture publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2022.106422 – volume: 264 start-page: 954 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0049 article-title: Rapid CO2 absorption into aqueous benzylamine (BZA) solutions and its formulations with monoethanolamine (MEA), and 2-amino-2-methyl-1-propanol (AMP) as components for post combustion capture processes publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2014.11.040 – volume: 3 start-page: 12 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0002 article-title: Absorption of CO2by Amine Blends Solution: An Experimental Evaluation publication-title: International journal of engineering and science – volume: 24 year: 2021 ident: 10.1016/j.ijggc.2022.103715_bib0081 article-title: The effect of alkanolamine mixtures on CO2 absorption efficiency in T-Shaped microchannel publication-title: Environmental Technology & Innovation doi: 10.1016/j.eti.2021.102006 – volume: 49 start-page: 6058 year: 2010 ident: 10.1016/j.ijggc.2022.103715_bib0052 article-title: Carbon dioxide capture: prospects for new materials publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201000431 – volume: 239 start-page: 725 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0072 article-title: Nonaqueous amine-based absorbents for energy efficient CO2 capture publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.02.019 – volume: 24 start-page: 239 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0090 article-title: CO2 capture by absorption in activated aqueous solutions of N, N-diethylethanoloamine publication-title: Ecological Chemistry and Engineering S doi: 10.1515/eces-2017-0016 – volume: 63 start-page: 1497 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0178 article-title: Experimental Studies of Regeneration Heat Duty for CO2 Desorption from Aqueous DETA Solution in a Randomly Packed Column publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.159 – volume: 31 start-page: 13883 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0068 article-title: Experimental studies on the effect of tertiary amine promoters in aqueous monoethanolamine (MEA) solutions on the absorption/stripping performances in post-combustion CO2 capture publication-title: Energy & Fuels doi: 10.1021/acs.energyfuels.7b02390 – volume: 108 year: 2021 ident: 10.1016/j.ijggc.2022.103715_bib0079 article-title: Technology development and applications of artificial intelligence for post-combustion carbon dioxide capture: Critical literature review and perspectives publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2021.103307 – volume: 52 start-page: 3660 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0173 article-title: Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b05936 – volume: 44 start-page: 3720 year: 2005 ident: 10.1016/j.ijggc.2022.103715_bib0031 article-title: Comparative analysis of the carbon dioxide absorption and recuperation capacities in aqueous 2-(2-aminoethylamino) ethanol (AEE) and blends of aqueous AEE and N-methyldiethanolamine solutions publication-title: Ind Eng Chem Res doi: 10.1021/ie040253r – volume: 53 start-page: 14451 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0047 article-title: Carbon dioxide absorption into aqueous blends of methyldiethanolamine (MDEA) and alkyl amines containing multiple amino groups publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie502434m – volume: 118 start-page: 927 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0066 article-title: Application of organic Rankine cycle in integration of thermal power plant with post-combustion CO2 capture and compression publication-title: Energy doi: 10.1016/j.energy.2016.10.124 – volume: 223 start-page: 213 year: 2009 ident: 10.1016/j.ijggc.2022.103715_bib0111 article-title: Retrofitting CO2 capture ready fossil plants with post-combustion capture. Part 1: requirements for supercritical pulverized coal plants using solvent-based flue gas scrubbing publication-title: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy – volume: 19 start-page: 432 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0117 article-title: VLE data and modelling of aqueous N, N-diethylethanolamine (DEEA) solutions publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2013.10.001 – volume: 647 start-page: 127 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0121 article-title: Contrasting mechanisms for CO2 absorption and regeneration processes in aqueous amine solutions: Insights from density-functional tight-binding molecular dynamics simulations publication-title: Chemical Physics Letters doi: 10.1016/j.cplett.2016.01.059 – year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0120 article-title: CO2 Capturing, Thermo-Kinetic Principles, Synthesis and Amine Functionalization of Covalent Organic Polymers for CO2 Separation from Natural Gas: A publication-title: Review. Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2020.103203 – volume: 59 start-page: 10082 year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0139 article-title: Comparative analysis of the efficiency penalty in power plants of different amine-based solvents for CO2 capture publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.0c01483 – volume: 131 start-page: 152 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0012 article-title: Experimental study of carbon dioxide absorption by mixed aqueous solutions of methyl diethanolamine (MDEA) and piperazine (PZ) in a microreactor publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2019.09.008 – volume: 211 year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0080 article-title: Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent publication-title: Energy doi: 10.1016/j.energy.2020.119035 – volume: 292 year: 2021 ident: 10.1016/j.ijggc.2022.103715_bib0132 article-title: Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation publication-title: Applied Energy doi: 10.1016/j.apenergy.2021.116893 – volume: 6 start-page: 1352 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0103 article-title: Performance and mechanisms of triethylene tetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP) in aqueous and nonaqueous solutions for CO2 capture publication-title: ACS Sustainable Chemistry & Engineering doi: 10.1021/acssuschemeng.7b03717 – volume: 220 start-page: 931 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0164 article-title: Flexible operation of post-combustion solvent-based carbon capture for coal-fired power plants using multi-model predictive control: A simulation study publication-title: Fuel doi: 10.1016/j.fuel.2018.02.061 – volume: 16 start-page: 206 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0040 article-title: Thermal regeneration of alkanolamine solutions in a rotating packed bed publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2013.03.022 – year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0033 – volume: 63 start-page: 1287 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0152 article-title: A structured approach for selecting carbon capture process models. A case study on monoethanolamine publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.137 – volume: 54 start-page: 3879 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0021 article-title: Optimal design of a postcombustion CO2 capture pilot-scale plant under process uncertainty: a ranking-based approach publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie5048253 – volume: 53 start-page: 292 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0123 article-title: Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA) publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2016.08.012 – volume: 260 year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0146 article-title: Two-stage interaction performance of CO2 absorption into biphasic solvents: Mechanism analysis, quantum calculation and energy consumption publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.114343 – year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0035 – volume: 4 start-page: 1323 year: 2011 ident: 10.1016/j.ijggc.2022.103715_bib0153 article-title: Stripper configurations for CO2 capture by aqueous monoethanolamine and piperazine publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.01.190 – volume: 61 start-page: 94 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0088 article-title: Effect of the concentration of MAPA on the heat of absorption of CO2 and on the cyclic capacity in DEEA-MAPA blends publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2017.03.026 – volume: 63 start-page: 1163 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0092 article-title: Equilibrium Solubility of CO2 in Aqueous Blend of 2-(Diethylamine) ethanol and 2-(2-Aminoethylamine) ethanol publication-title: Journal of Chemical & Engineering Data doi: 10.1021/acs.jced.7b00544 – volume: 10 start-page: 295 year: 2012 ident: 10.1016/j.ijggc.2022.103715_bib0076 article-title: Dynamic simulation of MEA absorption process for CO2 capture from power plants publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2012.06.017 – volume: 236 start-page: 135 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0015 article-title: Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation publication-title: Fuel doi: 10.1016/j.fuel.2018.08.152 – volume: 31 start-page: 25 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0099 article-title: Solubility and energy analysis for CO2 absorption in piperazine derivatives and their mixtures publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2014.09.012 – volume: 37 start-page: 2021 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0147 article-title: Energy efficient solvents for CO2 absorption from flue gas: Vapor liquid equilibrium and pilot plant study publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.06.082 – volume: 237 year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0011 article-title: Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor publication-title: Separation and Purification Technology doi: 10.1016/j.seppur.2019.116390 – volume: 6 start-page: 7102 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0127 article-title: CO2 capture from lime kiln using AMP-DA2MP amine solvent blend: A pilot plant study publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2018.11.007 – volume: 85 start-page: 214 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0171 article-title: Process integration analysis and improved options for an MEA CO2 capture system based on the pinch analysis publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2015.03.073 – volume: 463 start-page: 91 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0057 article-title: Equilibrium CO2 solubility and thermophysical properties of aqueous blends of 1-(2-aminoethyl) piperazine and N-methyldiethanolamine publication-title: Fluid Phase Equilibria doi: 10.1016/j.fluid.2018.01.030 – volume: 27 start-page: 628 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0149 article-title: Heat of absorption of CO2 in aqueous N, N-diethylethanolamine+ N-methyl-1, 3-propanediamine solutions at 313 K publication-title: Chinese Journal of Chemical Engineering doi: 10.1016/j.cjche.2018.11.027 – volume: 50 start-page: 247 year: 2011 ident: 10.1016/j.ijggc.2022.103715_bib0133 article-title: Economically efficient operation of CO2 capturing process part I: Self-optimizing procedure for selecting the best controlled variables publication-title: Chemical Engineering and Processing: Process Intensification doi: 10.1016/j.cep.2011.02.005 – volume: 199 start-page: 20 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0151 article-title: Experimental measurement and assessment of equilibrium behaviour for phase change solvents used in CO2 capture publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2018.12.045 – volume: 205 year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0180 article-title: Status and perspective of CO2 absorption process publication-title: Energy doi: 10.1016/j.energy.2020.118057 – volume: 28 start-page: 318 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0136 article-title: Evaluation of a phase change solvent for CO2 capture: Absorption and desorption tests publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2014.07.002 – volume: 136 start-page: 261 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0177 article-title: Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing publication-title: Fuel doi: 10.1016/j.fuel.2014.07.057 – volume: 113 start-page: 635 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0113 article-title: Dynamic modelling, identification and preliminary control analysis of an amine-based post-combustion CO2 capture pilot plant publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2015.11.054 – volume: 257 year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0165 article-title: Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.113941 – volume: 39 start-page: 377 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0112 article-title: Dynamic modelling and control strategies for flexible operation of amine-based post-combustion CO2 capture systems publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2015.05.007 – volume: 37 start-page: 635 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0184 article-title: Absorption of carbon dioxide from flue gas using blended amine solutions publication-title: Chemical Engineering & Technology doi: 10.1002/ceat.201300240 – volume: 30 start-page: 212 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0065 article-title: Pilot-scale experiments for post-combustion CO2 capture from gas fired power plants with a novel solvent publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2014.09.013 – volume: 16 start-page: 217 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0027 article-title: Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP) publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2013.03.026 – volume: 151 start-page: 258 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0075 article-title: Efficiency improvements for the coal-fired power plant retrofit with CO2 capture plant using chilled ammonia process publication-title: Applied Energy doi: 10.1016/j.apenergy.2015.04.059 – volume: 283 year: 2021 ident: 10.1016/j.ijggc.2022.103715_bib0032 article-title: Optimization of energy requirements for CO2 post-combustion capture process through advanced thermal integration publication-title: Fuel doi: 10.1016/j.fuel.2020.118940 – volume: 9 start-page: 355 year: 2012 ident: 10.1016/j.ijggc.2022.103715_bib0183 article-title: Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2012.05.006 – volume: 12 start-page: 259 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0134 article-title: Kinetics of absorption of carbon dioxide in aqueous amine and carbonate solutions with carbonic anhydrase publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2012.10.016 – volume: 74 start-page: 10 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0038 article-title: Techno-economic analysis of a CO2 capture plant integrated with a commercial scale combined cycle gas turbine (CCGT) power plant publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2014.01.014 – volume: 1 start-page: 949 year: 2009 ident: 10.1016/j.ijggc.2022.103715_bib0054 article-title: CO2 capture by aqueous amines and aqueous ammonia–A Comparison publication-title: Energy Procedia doi: 10.1016/j.egypro.2009.01.126 – volume: 47 start-page: 8496 year: 2008 ident: 10.1016/j.ijggc.2022.103715_bib0037 article-title: Room-temperature ionic liquid− amine solutions: tunable solvents for efficient and reversible capture of CO2 publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie801002m – volume: 86 start-page: 347 year: 2008 ident: 10.1016/j.ijggc.2022.103715_bib0148 article-title: Structure and activity relationships for CO2 regeneration from aqueous amine-based absorbents publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2008.03.005 – volume: 21 start-page: 130 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0053 article-title: Simulation and parametric study of post combustion CO2 capture process using (AMP+ PZ) blended solvent publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2013.12.003 – volume: 114 start-page: 1772 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0070 article-title: Determination of kinetics of CO2 absorption in unloaded and loaded DEEA+ MAPA blend publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1305 – volume: 184 year: 2021 ident: 10.1016/j.ijggc.2022.103715_bib0150 article-title: Advanced post combustion CO2 capture process–A systematic approach to minimize thermal energy requirement publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2020.116285 – volume: 12 start-page: 3200 year: 2022 ident: 10.1016/j.ijggc.2022.103715_bib0008 article-title: Application of Nanofluids in CO2 Absorption: A Review publication-title: Applied Sciences doi: 10.3390/app12063200 – volume: 114 start-page: 2103 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0170 article-title: Effects of viscosity on CO2 absorption in aqueous piperazine/2-methylpiperazine publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1345 – volume: 31 start-page: 96 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0096 article-title: Process modifications for solvent-based post-combustion CO2 capture publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2014.09.024 – volume: 53 start-page: 14451 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0046 article-title: Carbon dioxide absorption into aqueous blends of methyldiethanolamine (MDEA) and alkyl amines containing multiple amino groups publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie502434m – volume: 64 start-page: 276 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0156 article-title: Mass transfer characteristics of CO2 absorption into a phase-change solvent in a wetted-wall column publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2017.08.001 – year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0007 article-title: Application of the microchannel reactor to carbon dioxide absorption publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2019.05.265 – volume: 4 start-page: 1303 year: 2011 ident: 10.1016/j.ijggc.2022.103715_bib0095 article-title: Optimization of MEA based post combustion CO2 capture process: Flowsheeting and energetic integration publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.01.187 – year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0044 article-title: The comparative kinetics study of CO2 absorption into non-aqueous DEEA/MEA and DMEA/MEA blended systems solution by using stopped-flow technique publication-title: Chemical Engineering Journal – volume: 4 start-page: 36 year: 2010 ident: 10.1016/j.ijggc.2022.103715_bib0129 article-title: Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2009.09.010 – volume: 55 start-page: 4646 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0155 article-title: Regulatory control of amine scrubbing for CO2 capture from power plants publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.6b00318 – volume: 12 start-page: 1025 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0163 article-title: Optimal absorbent evaluation for the CO2 separating process by absorption loading, desorption efficiency, cost, and environmental tolerance publication-title: International Journal of Green Energy doi: 10.1080/15435075.2014.910781 – volume: 224 start-page: 1025 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0074 article-title: CO2 absorption and kinetic study in ionic liquid amine blends publication-title: Journal of Molecular Liquids doi: 10.1016/j.molliq.2016.10.044 – volume: 88 start-page: 2455 year: 2009 ident: 10.1016/j.ijggc.2022.103715_bib0094 article-title: Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants publication-title: Fuel doi: 10.1016/j.fuel.2008.11.009 – start-page: 35 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0137 – volume: 53 start-page: 2790 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0168 article-title: CO2 capture using amine solution mixed with ionic liquid publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie4040658 – volume: 158 start-page: 275 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0158 article-title: Process intensification for post-combustion CO2 capture with chemical absorption: a critical review publication-title: Applied Energy doi: 10.1016/j.apenergy.2015.08.083 – volume: 64 start-page: 163 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0085 article-title: Experimental investigation on efficient carbon dioxide capture using piperazine (PZ) activated aqueous methyldiethanolamine (MDEA) solution in a packed column publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2017.07.016 – volume: 44 start-page: 4465 year: 2005 ident: 10.1016/j.ijggc.2022.103715_bib0141 article-title: Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines publication-title: Ind Eng Chem Res doi: 10.1021/ie050063w – volume: 134 start-page: 61 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0067 article-title: Experiment and model for the viscosity of carbonated 3-(dimethylamino) propan-1-ol and 2-(ethylamino) ethanol blended aqueous solutions publication-title: The Journal of Chemical Thermodynamics doi: 10.1016/j.jct.2019.02.023 – volume: 82 start-page: 218 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0126 article-title: CO2 capture from water-gas shift process plant: Comparative bench-scale pilot plant investigation of MDEA-PZ blend vs novel MDEA activated by 1, 5-diamino-2-methylpentane publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2019.01.009 – volume: 3 start-page: 772 year: 2010 ident: 10.1016/j.ijggc.2022.103715_bib0028 article-title: Continuous cycles of CO 2 absorption and amine regeneration with aqueous alkanolamines: a comparison of the efficiency between pure and blended DEA, MDEA and AMP solutions by 13C NMR spectroscopy publication-title: Energy & Environmental Science doi: 10.1039/b924889g – volume: 26 start-page: 147 year: 2012 ident: 10.1016/j.ijggc.2022.103715_bib0187 article-title: Selection of blended solvents for CO2 absorption from coal-fired flue gas. Part 1: Monoethanolamine (MEA)-based solvents publication-title: Energy & fuels doi: 10.1021/ef2011113 – volume: 214 year: 2021 ident: 10.1016/j.ijggc.2022.103715_bib0115 article-title: Evaluation of hybridized performance of amine scrubbing plant based on exergy, energy, environmental, and economic prospects: A gas sweetening plant case study publication-title: Energy doi: 10.1016/j.energy.2020.118715 – volume: 4 start-page: 1353 year: 2011 ident: 10.1016/j.ijggc.2022.103715_bib0061 article-title: Carbon dioxide absorption into aqueous amine based solvents: modeling and absorption tests publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.01.194 – volume: 185 start-page: 1433 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0064 article-title: Aqueous amine solution characterization for post-combustion CO2 capture process publication-title: Applied Energy doi: 10.1016/j.apenergy.2016.03.043 – volume: 16 start-page: e2576 year: 2021 ident: 10.1016/j.ijggc.2022.103715_bib0020 article-title: Energy-saving process configurations for monoethanolamine-based CO2 capture system publication-title: Asia-Pacific Journal of Chemical Engineering doi: 10.1002/apj.2576 – volume: 63 start-page: 1835 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0048 article-title: CO2 absorption into aqueous amine blends containing benzylamine (BZA), monoethanolamine (MEA), and sterically hindered/tertiary amines publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.191 – volume: 236 start-page: 135 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0016 article-title: Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation publication-title: Fuel doi: 10.1016/j.fuel.2018.08.152 – volume: 256 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0004 article-title: Experimental and theoretical investigation of equilibrium absorption performance of CO2 using a mixed 1-dimethylamino-2-propanol (1DMA2P) and monoethanolamine (MEA) solution publication-title: Fuel doi: 10.1016/j.fuel.2019.115877 – volume: 63 start-page: 37 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0176 article-title: Modelling and process analysis of post-combustion carbon capture with the blend of 2-amino-2-methyl-1-propanol and piperazine publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2017.04.018 – volume: 158 start-page: 625 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0107 article-title: Study on heat integration of supercritical coal-fired power plant with post-combustion CO2 capture process through process simulation publication-title: Fuel doi: 10.1016/j.fuel.2015.06.033 – volume: 63 start-page: 1795 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0025 article-title: Novel non-aqueous amine solvents for reversible CO2 capture publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.186 – volume: 24 start-page: 278 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0097 article-title: Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents publication-title: Chin J Chem Eng doi: 10.1016/j.cjche.2015.06.013 – volume: 9 start-page: 349 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0105 article-title: Promotion of CO2 capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi-solvent blends publication-title: Greenhouse Gases: Science and Technology doi: 10.1002/ghg.1851 – volume: 289 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0055 article-title: Investigation on the inclusion of 1-(2-aminoethyl) piperazine as a promoter on the equilibrium CO2 solubility of aqueous 2-amino-2-methyl-1-propanol publication-title: Journal of Molecular Liquids doi: 10.1016/j.molliq.2019.111036 – volume: 165 start-page: 648 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0101 article-title: Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: techno-economic assessment of the MEA process and its improvements publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.12.109 – volume: 147 start-page: 319 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0142 article-title: An overview on control strategies for CO2 capture using absorption/stripping system publication-title: Chemical Engineering Research and Design doi: 10.1016/j.cherd.2019.04.034 – volume: 5 start-page: 390 year: 2011 ident: 10.1016/j.ijggc.2022.103715_bib0087 article-title: Comparative study of the heats of absorption of post-combustion CO2 absorbents publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2010.05.003 – volume: 16 start-page: 29 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0014 article-title: Process configuration studies of the amine capture process for coal-fired power plants publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2013.03.002 – volume: 239 start-page: 725 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0071 article-title: Nonaqueous amine-based absorbents for energy efficient CO2 capture publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.02.019 – volume: 89 start-page: 1229 year: 2011 ident: 10.1016/j.ijggc.2022.103715_bib0083 article-title: Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture publication-title: Chemical engineering research and design doi: 10.1016/j.cherd.2011.03.005 – volume: 185 start-page: 362 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0182 article-title: Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant: process improvement publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.009 – volume: 48 start-page: 2788 year: 2002 ident: 10.1016/j.ijggc.2022.103715_bib0029 article-title: Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine publication-title: AIChE Journal doi: 10.1002/aic.690481208 – volume: 9 start-page: 349 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0104 article-title: Promotion of CO2 capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi-solvent blends publication-title: Greenhouse Gases: Science and Technology doi: 10.1002/ghg.1851 – volume: 12 start-page: 2202 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0043 article-title: Optimization in the stripping process of CO2 gas using mixed amines publication-title: Energies (Basel) doi: 10.3390/en12112202 – volume: 510 year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0160 article-title: Energy-consumption analysis of carbon-based material for CO2 capture process publication-title: Fluid Phase Equilibria doi: 10.1016/j.fluid.2020.112504 – volume: 63 start-page: 1347 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0175 article-title: Computational study of CO2 absorption in aqueous and non-aqueous solutions using MEA publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.144 – volume: 8 start-page: 1 year: 2012 ident: 10.1016/j.ijggc.2022.103715_bib0017 article-title: Optimized process configurations of post-combustion CO2 capture for natural-gas-fired power plant–Power plant efficiency analysis publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2012.01.005 – volume: 37 start-page: 826 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0167 article-title: Measurement of heat of CO2 absorption into 2-amino-2-methyl-1-propanol (AMP)/piperazine (PZ) blends using differential reaction calorimeter publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.05.175 – year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0045 article-title: The comparative kinetics study of CO2 absorption into non-aqueous DEEA/MEA and DMEA/MEA blended systems solution by using stopped-flow technique publication-title: Chemical Engineering Journal – volume: 56 start-page: 4691 year: 2011 ident: 10.1016/j.ijggc.2022.103715_bib0023 article-title: Solubility of CO2 in an aqueous blend of diethanolamine and trisodium phosphate publication-title: Journal of Chemical & Engineering Data doi: 10.1021/je2006677 – volume: 13 start-page: 72 year: 2021 ident: 10.1016/j.ijggc.2022.103715_bib0077 article-title: Improving the carbon capture efficiency for gas power plants through amine-based absorbents publication-title: Sustainability doi: 10.3390/su13010072 – year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0073 article-title: Enhanced CO2 absorption and desorption efficiency using DETA functionalized nanomagnetite/water nano-fluid publication-title: Journal of Environmental Chemical Engineering doi: 10.1016/j.jece.2020.103845 – volume: 235 start-page: 311 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0166 article-title: CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.10.103 – volume: 126 start-page: 446 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0050 article-title: CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N, N-dimethylethanolamine (DMEA), N, N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2014.12.053 – volume: 165 start-page: 164 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0078 article-title: Application of aqueous blends of AMP and piperazine to the low CO2 partial pressure capturing: New experimental and theoretical analysis publication-title: Energy doi: 10.1016/j.energy.2018.09.160 – volume: 37 start-page: 635 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0185 article-title: Absorption of carbon dioxide from flue gas using blended amine solutions publication-title: Chemical Engineering & Technology doi: 10.1002/ceat.201300240 – volume: 33 start-page: 1311 year: 2008 ident: 10.1016/j.ijggc.2022.103715_bib0114 article-title: Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine publication-title: Energy doi: 10.1016/j.energy.2008.02.013 – volume: 129 start-page: 145 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0116 article-title: Kinetics of CO2 absorption in aqueous blends of N, N-diethylethanolamine (DEEA) and N-methyl-1, 3-propane-diamine (MAPA) publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2015.02.001 – volume: 2 start-page: 563 year: 2008 ident: 10.1016/j.ijggc.2022.103715_bib0138 article-title: Designing a supercritical steam cycle to integrate the energy requirements of CO2 amine scrubbing publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2008.03.002 – volume: 272 start-page: 135 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0172 article-title: Reaction sensitivity analysis of regeneration process of CO2 capture using aqueous ammonia publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2015.03.030 – volume: 53 start-page: 292 year: 2016 ident: 10.1016/j.ijggc.2022.103715_bib0122 article-title: Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA) publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2016.08.012 – volume: 79 start-page: 212 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0140 article-title: Opportunities and challenges in the development of monoethanolamine and its blends for post-combustion CO2 capture publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2018.11.002 – volume: 54 start-page: 3865 year: 2015 ident: 10.1016/j.ijggc.2022.103715_bib0082 article-title: New configuration of the CO2 capture process using aqueous monoethanolamine for coal-fired power plants publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie504784p – volume: 5 start-page: 6668 year: 2012 ident: 10.1016/j.ijggc.2022.103715_bib0179 article-title: Carbon capture with ionic liquids: overview and progress publication-title: Energy & Environmental Science doi: 10.1039/c2ee21152a – volume: 123 start-page: 179 year: 2014 ident: 10.1016/j.ijggc.2022.103715_bib0181 article-title: A novel method for the preparation of CO2 sorption sorbents with high performance publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.02.012 – volume: 56 start-page: 4691 year: 2011 ident: 10.1016/j.ijggc.2022.103715_bib0022 article-title: Solubility of CO2 in an aqueous blend of diethanolamine and trisodium phosphate publication-title: Journal of Chemical & Engineering Data doi: 10.1021/je2006677 – volume: 7 start-page: 25 year: 2021 ident: 10.1016/j.ijggc.2022.103715_bib0042 article-title: Selection of Mixed Amines in the CO2 Capture Process publication-title: C (Basel) – volume: 89 start-page: 1237 year: 2011 ident: 10.1016/j.ijggc.2022.103715_bib0051 article-title: Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption publication-title: Chemical Engineering Research and Design doi: 10.1016/j.cherd.2011.02.008 – volume: 37 start-page: 1648 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0060 article-title: Postcombustion CO2 capture by chemical absorption: screening of aqueous amine (s)-based solvents publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.06.040 – volume: 216 start-page: 311 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0131 article-title: Process integration and design for maximizing energy efficiency of a coal-fired power plant integrated with amine-based CO2 capture process publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.02.100 – ident: 10.1016/j.ijggc.2022.103715_bib0013 – volume: 37 start-page: 211 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0001 article-title: Evaluation of amine-blend solvent systems for CO2 post-combustion capture applications publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.05.104 – volume: 197 year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0100 article-title: Structure-activity relationship for CO2 absorbent publication-title: Energy doi: 10.1016/j.energy.2020.117166 – volume: 331 start-page: 870 year: 2018 ident: 10.1016/j.ijggc.2022.103715_bib0118 article-title: Optimization of the design, operating conditions, and coupling configuration of combined cycle power plants and CO2 capture processes by minimizing the mitigation cost publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2017.08.111 – year: 2020 ident: 10.1016/j.ijggc.2022.103715_bib0010 article-title: Comparison of aqueous and non-aqueous alkanolamines solutions for carbon dioxide desorption in a microreactor publication-title: Energy doi: 10.1016/j.energy.2020.117618 – volume: 170 start-page: 574 year: 2017 ident: 10.1016/j.ijggc.2022.103715_bib0119 article-title: Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO2 capture publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2017.02.031 – volume: 242 start-page: 302 year: 2019 ident: 10.1016/j.ijggc.2022.103715_bib0159 article-title: Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.138 – volume: 16 start-page: 342 year: 2013 ident: 10.1016/j.ijggc.2022.103715_bib0162 article-title: Influence of stripper operating parameters on the performance of amine absorption systems for post-combustion carbon capture: Part I. High pressure strippers publication-title: International Journal of Greenhouse Gas Control doi: 10.1016/j.ijggc.2013.01.050 |
| SSID | ssj0061148 |
| Score | 2.6800084 |
| SecondaryResourceType | review_article |
| Snippet | •The role of blended solvents, their advantages, and disadvantages in the CO2 capture•Investigation of the chemical adsorption process of CO2 in different... The procedure of CO2 removal through the absorption/desorption system based on chemical amine solvents offers an interesting commercial technology to absorb... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 103715 |
| SubjectTerms | CO2 absorption Engineering Sciences Fluids mechanics Mechanics Mixed amines Process optimization Regeneration energy consumption Solvent |
| Title | Review on CO2 capture by blended amine solutions |
| URI | https://dx.doi.org/10.1016/j.ijggc.2022.103715 https://hal.science/hal-03824986 |
| Volume | 119 |
| WOSCitedRecordID | wos000826461600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-0148 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061148 issn: 1750-5836 databaseCode: AIEXJ dateStart: 20070401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoywEOiKcoL0WI2xKUtTeOfVxVRaWCgtQi7S1y_Eh2tU1WzbaUf8_4EXehogIkLlFkxXY082kyM5n5jNCbTFCtWC5TpXIIULTgKTfEpDjHts2SFGYs3WETxdERm834l1AS1LvjBIq2ZZeXfPVfVQ1joGzbOvsX6o6LwgDcg9LhCmqH6x8pPlDlg1b3PuORFCv3jwC8zGrp0t0jcWo9y_gSm-7pz_nBDVaJ2pbnNN15r0e16IcC94iWutHh70UlYuvPobArDWnnaP27tv427711Ou5OZSPmMc3TCLXsXPL2UwduqxEw1SgI5zeTExDXDtVXIWM2dM1clShZIwteiu32ChTYfoxZpt-xZ92Mltlb02tW3iccFu_mi7q2NJQYO-4A3xf6C332sd3NboZt9Rgh-RbawUXOwQLuTD_szw6H7za1kaFrnw1vN3BUuWrAa1v9zo_ZaoaMvPNQTu6jeyG0SKYeEg_QLd0-RHc3CCcfocyDI-naBMCRBHAk1fckgCNx4EgiOB6jr-_3T_YO0nBmRioxLdYpk2OdV8QwpQtmuMAyzwXOZUY0JlziiaZFJjNVZQIrk3HLvyaoGlcQ51cGU_IEbbddq5-ihJOKKio0rySbKCNEAfabEqUkLajOJ7sIDxIoZSCUt-eaLMuhcnBROrGVVmylF9suehsnrTyfys2P00G0ZXAJvatXAhZunvgaFBG3sCTqB9OPpR3LCMMTzujF-Nm_rv4c3blC-wu0vT471y_RbXmxnvdnrwKwfgD1a5DG |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+CO2+capture+by+blended+amine+solutions&rft.jtitle=International+journal+of+greenhouse+gas+control&rft.au=Aghel%2C+Babak&rft.au=Janati%2C+Sara&rft.au=Wongwises%2C+Somchai&rft.au=Shadloo%2C+Mostafa+Safdari&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=1750-5836&rft.eissn=1878-0148&rft.volume=119&rft_id=info:doi/10.1016%2Fj.ijggc.2022.103715&rft.externalDocID=S1750583622001335 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-5836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-5836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-5836&client=summon |