A Difference Picard Theorem for Meromorphic Functions of Several Variables

It is shown that if n ∈ ℕ, c ∈ ℂ n , and three distinct values of a meromorphic function f : ℂ n sr 1 of hyper-order gV( f ) strictly less than 2/3 have forward invariant pre-images with respect to a translation τ: ℂ n sr ℂ n , τ ( z ) = z + c , then f is a periodic function with period c. This resu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational methods and function theory Ročník 12; číslo 1; s. 343 - 361
Hlavní autor: Korhonen, Risto
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.06.2012
Témata:
ISSN:1617-9447, 2195-3724
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is shown that if n ∈ ℕ, c ∈ ℂ n , and three distinct values of a meromorphic function f : ℂ n sr 1 of hyper-order gV( f ) strictly less than 2/3 have forward invariant pre-images with respect to a translation τ: ℂ n sr ℂ n , τ ( z ) = z + c , then f is a periodic function with period c. This result can be seen as a generalization of M. Green’s Picard-Type Theorem in the special case where gV( f ) < 2/3, since the empty pre-images of the usual Picard exceptional values are by definition always forward invariant. In addition, difference analogues of the Lemma on the Logarithmic Derivative and of the Second Main Theorem of Nevanlinna theory for meromorphic functions ℂ n → ℙ P 1 are given, and their applications to partial difference equations are discussed.
ISSN:1617-9447
2195-3724
DOI:10.1007/BF03321831