Noisy Depth Maps Fusion for Multiview Stereo Via Matrix Completion
This paper introduces a general framework to fuse noisy point clouds from multiview images of the same object. We solve this classical vision problem using a newly emerging signal processing technique known as matrix completion. With this framework, we construct the initial incomplete matrix from th...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in signal processing Jg. 6; H. 5; S. 566 - 582 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.09.2012
|
| Schlagworte: | |
| ISSN: | 1932-4553, 1941-0484 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper introduces a general framework to fuse noisy point clouds from multiview images of the same object. We solve this classical vision problem using a newly emerging signal processing technique known as matrix completion. With this framework, we construct the initial incomplete matrix from the observed point clouds by all the cameras, with the invisible points by any camera denoted as unknown entries. The observed points corresponding to the same object point are put into the same row. When properly completed, the recovered matrix should have rank one, since all the columns describe the same object. Therefore, an intuitive approach to complete the matrix is by minimizing its rank subject to consistency with observed entries. In order to improve the fusion accuracy, we propose a general noisy matrix completion method called log-sum penalty completion (LPC), which is particularly effective in removing outliers. Based on the majorization-minimization algorithm (MM), the non-convex LPC problem is effectively solved by a sequence of convex optimizations. Experimental results on both point cloud fusion and MVS reconstructions verify the effectiveness of the proposed framework and the LPC algorithm. |
|---|---|
| AbstractList | This paper introduces a general framework to fuse noisy point clouds from multiview images of the same object. We solve this classical vision problem using a newly emerging signal processing technique known as matrix completion. With this framework, we construct the initial incomplete matrix from the observed point clouds by all the cameras, with the invisible points by any camera denoted as unknown entries. The observed points corresponding to the same object point are put into the same row. When properly completed, the recovered matrix should have rank one, since all the columns describe the same object. Therefore, an intuitive approach to complete the matrix is by minimizing its rank subject to consistency with observed entries. In order to improve the fusion accuracy, we propose a general noisy matrix completion method called log-sum penalty completion (LPC), which is particularly effective in removing outliers. Based on the majorization-minimization algorithm (MM), the non-convex LPC problem is effectively solved by a sequence of convex optimizations. Experimental results on both point cloud fusion and MVS reconstructions verify the effectiveness of the proposed framework and the LPC algorithm. |
| Author | Wang, Yao Zhang, Zengke Deng, Yue Liu, Yebin Dai, Qionghai |
| Author_xml | – sequence: 1 givenname: Yue surname: Deng fullname: Deng, Yue organization: Automation department, Tsinghua National Laboratory for information science and technology (TNList), Tsinghua University, Beijing, China – sequence: 2 givenname: Yebin surname: Liu fullname: Liu, Yebin organization: Automation department, Tsinghua National Laboratory for information science and technology (TNList), Tsinghua University, Beijing, China – sequence: 3 givenname: Qionghai surname: Dai fullname: Dai, Qionghai organization: Automation department, Tsinghua National Laboratory for information science and technology (TNList), Tsinghua University, Beijing, China – sequence: 4 givenname: Zengke surname: Zhang fullname: Zhang, Zengke organization: Automation department, Tsinghua National Laboratory for information science and technology (TNList), Tsinghua University, Beijing, China – sequence: 5 givenname: Yao surname: Wang fullname: Wang, Yao organization: Dept. of Electrical and Computer Engineering, Polytechnic Institute of NYU, Brooklyn |
| BookMark | eNp9kMtOwzAQRS1UJNrCD8DGP5DicWzHXkKhPNQCUgvbKHEcYZTWke0C_XsSiliwYDWzuGfm6ozQYOM2BqFTIBMAos7vl6vl04QSoBMKirOMHqAhKAYJYZIN-j2lCeM8PUKjEN4I4ZkANkSXD86GHb4ybXzFi6INeLYN1m1w7TxebJto3635wMtovHH4xRZdKHr7iadu3TYmdtFjdFgXTTAnP3OMnmfXq-ltMn-8uZtezBNNRRYTzgWtNa9AyVIYWkJZ6bTUkimZGlaVjJZdPTCaGMIEVJIQWivgWtSgVQHpGNH9Xe1dCN7UeevtuvC7HEjeW8i_LeS9hfzHQgfJP5C2sehrR1_Y5n_0bI9aY8zvLwEyE1KlXx-5bMc |
| CODEN | IJSTGY |
| CitedBy_id | crossref_primary_10_1109_TCYB_2016_2547941 crossref_primary_10_1007_s13042_017_0665_9 crossref_primary_10_1016_j_neucom_2016_11_068 crossref_primary_10_1109_TMM_2018_2839911 crossref_primary_10_1186_s12938_015_0116_3 crossref_primary_10_3389_feart_2023_1285622 crossref_primary_10_1109_ACCESS_2019_2894533 crossref_primary_10_1016_j_neucom_2015_08_032 crossref_primary_10_1109_TCSVT_2024_3385360 crossref_primary_10_1109_TNNLS_2016_2522401 crossref_primary_10_1109_TIP_2014_2298976 crossref_primary_10_1016_j_jvcir_2016_01_009 crossref_primary_10_1109_TII_2015_2404299 crossref_primary_10_1109_TIP_2017_2781425 crossref_primary_10_1049_iet_ipr_2013_0098 crossref_primary_10_1109_LSP_2014_2364612 crossref_primary_10_1007_s11042_016_3621_x crossref_primary_10_1016_j_neucom_2015_09_109 crossref_primary_10_1016_j_jvcir_2016_11_005 crossref_primary_10_1109_TCYB_2013_2272321 crossref_primary_10_1109_TIP_2016_2588330 crossref_primary_10_1109_TNNLS_2012_2235082 crossref_primary_10_1371_journal_pone_0092069 crossref_primary_10_1109_TCYB_2014_2300192 |
| Cites_doi | 10.1109/CVPR.2008.4587792 10.1109/ICCV.2007.4408933 10.1007/s10107-009-0306-5 10.1561/2200000016 10.1109/TPAMI.2009.161 10.1109/CVPR.2005.227 10.1145/138859.138867 10.1109/CVPR.2010.5540138 10.1109/CVPR.2007.383195 10.1145/1970392.1970395 10.1109/CVPR.2006.199 10.1109/ICCV.2009.5459424 10.2307/1390605 10.1109/ACC.2010.5531594 10.1109/ISIT.2010.5513535 10.1109/CVPR.2005.238 10.1109/TVCG.2009.88 10.1109/TIP.2011.2109729 10.1007/s10208-009-9045-5 10.1090/S0025-5718-1962-0136527-4 10.1109/CVPR.2008.4587706 10.1109/CVPR.2010.5540004 10.1111/j.1467-9868.2005.00503.x 10.1109/ICCV.2007.4408984 10.1145/1531326.1531335 10.1109/CVPR.2005.84 10.1109/ICCV.2007.4409000 10.1090/S0025-5718-2012-02598-1 10.1145/1149283.1149286 10.1109/JPROC.2009.2035722 10.1109/TPAMI.2010.116 10.1007/s00041-008-9045-x 10.1137/080716542 10.1145/1102351.1102441 10.1109/CVPR.2006.19 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/JSTSP.2012.2195472 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0484 |
| EndPage | 582 |
| ExternalDocumentID | 10_1109_JSTSP_2012_2195472 6187689 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c267t-5562fc5d198b6e2b1bdc3bc84983e4db42b5531ec0e0461d8002f915c6f1c9a13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307842100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-4553 |
| IngestDate | Sat Nov 29 03:55:51 EST 2025 Tue Nov 18 22:18:55 EST 2025 Tue Aug 26 17:19:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c267t-5562fc5d198b6e2b1bdc3bc84983e4db42b5531ec0e0461d8002f915c6f1c9a13 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_JSTSP_2012_2195472 crossref_citationtrail_10_1109_JSTSP_2012_2195472 ieee_primary_6187689 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-09-01 |
| PublicationDateYYYYMMDD | 2012-09-01 |
| PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE journal of selected topics in signal processing |
| PublicationTitleAbbrev | JSTSP |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref10 brox (ref39) 2004 ref17 ref16 (ref51) 0 ref19 ref18 toh (ref29) 2010; 6 fazel (ref4) 2002 (ref45) 0 ref46 zach (ref26) 2008 ref48 ref42 ref41 ref44 ref43 kazhdan (ref50) 2006 ref7 lin (ref8) 2011 ref3 ref6 fu (ref38) 2011; 21 ref5 ref40 kolmogorov (ref11) 2002 liu (ref24) 2009 ref35 liu (ref49) 2012 ref34 ref37 ref36 lin (ref47) 2011 ref31 ref30 ref33 ref32 campbell (ref22) 2008; 1 ref2 ref1 ref23 ref25 ref20 ref21 ref28 ref27 deng (ref9) 2012 |
| References_xml | – ident: ref25 doi: 10.1109/CVPR.2008.4587792 – start-page: 82 year: 2002 ident: ref11 article-title: Multi-camera scene reconstruction via graph cuts publication-title: Eur Conf Comput Vis – ident: ref14 doi: 10.1109/ICCV.2007.4408933 – year: 2008 ident: ref26 article-title: Fast and high quality fusion of depth maps publication-title: Proc Int Symp 3D Data Process Visualiz Transmiss (3DPVT) – ident: ref1 doi: 10.1007/s10107-009-0306-5 – ident: ref7 doi: 10.1561/2200000016 – ident: ref13 doi: 10.1109/TPAMI.2009.161 – ident: ref44 doi: 10.1007/s10107-009-0306-5 – ident: ref16 doi: 10.1109/CVPR.2005.227 – ident: ref31 doi: 10.1145/138859.138867 – ident: ref37 doi: 10.1109/CVPR.2010.5540138 – year: 2002 ident: ref4 publication-title: Matrix Rank Minimization With Applications – volume: 1 start-page: 766 year: 2008 ident: ref22 article-title: Using multiple hypotheses to improve depth-maps for multi-view stereo publication-title: Proc Eur Conf Comput Vis – year: 0 ident: ref51 – start-page: 2121 year: 2009 ident: ref24 article-title: Continuous depth estimation for multi-view stereo publication-title: Proc IEEE Conf Comput Vis Pattern Recogn CVPR '09 – ident: ref15 doi: 10.1109/CVPR.2007.383195 – ident: ref3 doi: 10.1145/1970392.1970395 – ident: ref20 doi: 10.1109/CVPR.2006.199 – year: 2012 ident: ref49 article-title: Robust recovery of subspace structures by low-rank representation publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref35 doi: 10.1109/ICCV.2009.5459424 – ident: ref6 doi: 10.2307/1390605 – ident: ref33 doi: 10.1109/ACC.2010.5531594 – ident: ref30 doi: 10.1109/ISIT.2010.5513535 – ident: ref12 doi: 10.1109/CVPR.2005.238 – ident: ref18 doi: 10.1109/TVCG.2009.88 – ident: ref36 doi: 10.1109/TIP.2011.2109729 – ident: ref28 doi: 10.1007/s10208-009-9045-5 – ident: ref43 doi: 10.1090/S0025-5718-1962-0136527-4 – ident: ref46 doi: 10.1109/CVPR.2008.4587706 – ident: ref21 doi: 10.1109/CVPR.2010.5540004 – ident: ref41 doi: 10.1111/j.1467-9868.2005.00503.x – ident: ref19 doi: 10.1109/ICCV.2007.4408984 – ident: ref34 doi: 10.1145/1531326.1531335 – ident: ref23 doi: 10.1109/CVPR.2005.84 – ident: ref40 doi: 10.1109/ICCV.2007.4409000 – year: 0 ident: ref45 – ident: ref48 doi: 10.1090/S0025-5718-2012-02598-1 – ident: ref32 doi: 10.1145/1149283.1149286 – volume: 21 start-page: 2369 year: 2011 ident: ref38 article-title: Adaptive compressed sensing recovery utilizing the property of signals autocorrelations publication-title: IEEE Trans Image Process – year: 2011 ident: ref8 publication-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices – ident: ref2 doi: 10.1109/JPROC.2009.2035722 – volume: 6 start-page: 15 year: 2010 ident: ref29 article-title: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems publication-title: Pac J Optimiz – ident: ref17 doi: 10.1109/TPAMI.2010.116 – ident: ref5 doi: 10.1007/s00041-008-9045-x – ident: ref42 doi: 10.1137/080716542 – year: 2011 ident: ref47 article-title: Linearized alternating direction method with adaptive penalty for low-rank representation publication-title: Proc Adv Neural Inf Process Syst – start-page: 61 year: 2006 ident: ref50 article-title: Poisson surface reconstruction publication-title: Proc 4th Eurographics Symp Geometry Process Ser SGP'06 – start-page: 25 year: 2004 ident: ref39 publication-title: High Accuracy Optical Flow Estimation Based on A Theory For Warping – ident: ref27 doi: 10.1145/1102351.1102441 – ident: ref10 doi: 10.1109/CVPR.2006.19 – year: 2012 ident: ref9 article-title: Low-rank structure learning via log-sum heuristic recovery |
| SSID | ssj0057614 |
| Score | 2.1793826 |
| Snippet | This paper introduces a general framework to fuse noisy point clouds from multiview images of the same object. We solve this classical vision problem using a... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 566 |
| SubjectTerms | Cameras Compressive sensing Estimation fusion matrix completion multiview stereo (MVS) Noise Noise measurement point cloud Robustness Three dimensional displays Vectors |
| Title | Noisy Depth Maps Fusion for Multiview Stereo Via Matrix Completion |
| URI | https://ieeexplore.ieee.org/document/6187689 |
| Volume | 6 |
| WOSCitedRecordID | wos000307842100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1941-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057614 issn: 1932-4553 databaseCode: RIE dateStart: 20070101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCDryrWFzl4022TTfaRo6_iQUuhWnpbNsksLshuabei_94k3ZYKInhblgks3yaZL5mZbxC6NHxNQkC4FyvO7dUNeEIT7ZnThdaaRZl0Skyjp6jfj8djMWig61UtDAC45DPo2EcXy9elmtursm5IzdqNxQbaiKJwUau13HUNbaZ1BNn3eBCwZYEMEV0zxYcDm8Xld3wrcBb5P5zQWlcV51R6u__7nD20U5NHfLP42_uoAcUB2l6TFGyh236Zz77wPUyqN_ycTma4N7cXYtiQU-yqbW0sAA8NnFDiUZ4ao2qaf2K7MVgh7rI4RK-9h5e7R6_uk-ApP4wqLzAcJlOBpiKWIfiSSq2YVDEXMQOuJfelAYSCImDl1bXliJmggQozqkRK2RFqFmUBxwhz46w4y4hiLOUpSaXx_xSItG2n0hhEG9ElcImqRcRtL4v3xB0miEgc2IkFO6nBbqOr1ZjJQkLjT-uWRXplWYN88vvrU7RlBy-Svs5Qs5rO4Rxtqo8qn00v3Az5BksLt-Y |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDb7E-9-BNY7PJps0efZWKtQitxVvI7k6wIE1pU9F_706algoieAthEsK3m51vZ3a-ATi3fE1h4Aon1EJQ6AYdaVzj2N2FMcavJypXYuq16u12-Poqn0twOa-FQcT88Ble0WWeyzepnlCorFrj9t8N5RIsU-esolprtu5a4syLHLLniCDwZyUyrqzaSd55pnNc3pVHEmd174cbWuirkruVxub_PmgLNgr6yK6n470NJRzswPqCqOAu3LTT_viL3eEwe2NP8XDMGhMKiTFLT1leb0vZANaxgGLKev3YGmWj_iejpYGkuNPBHrw07ru3TafolOBor1bPnMCymEQHhstQ1dBTXBntKx0KGfoojBKesoBw1C6SwLohlphIHuhawrWMub8P5UE6wANgwror4Seu9v1YxG6sLAPg6CpqPBWHKCvAZ8BFupARp24W71G-nXBllIMdEdhRAXYFLubPDKciGn9a7xLSc8sC5MPfb5_BarP71IpaD-3HI1ijF02PgB1DORtN8ARW9EfWH49O89nyDQ8euy8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noisy+Depth+Maps+Fusion+for+Multiview+Stereo+Via+Matrix+Completion&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Deng%2C+Yue&rft.au=Liu%2C+Yebin&rft.au=Dai%2C+Qionghai&rft.au=Zhang%2C+Zengke&rft.date=2012-09-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=6&rft.issue=5&rft.spage=566&rft.epage=582&rft_id=info:doi/10.1109%2FJSTSP.2012.2195472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2012_2195472 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon |