A motor fault diagnosis using hybrid binary differential evolution algorithm and whale optimization algorithm with storage space

The most common cause of mechanical failure is bearing failure, and the characteristics of each failure correspond to a certain degree of severity. This paper proposes a fault diagnosis model for detecting motor bearings. The model uses three steps: feature extraction, feature selection, and classif...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET control theory & applications Ročník 19; číslo 1
Hlavní autoři: Lee, Chun‐Yao, Le, Truong‐An, Chu, Tzu‐Hao, Hsu, Shih‐Che
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.01.2025
ISSN:1751-8644, 1751-8652
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The most common cause of mechanical failure is bearing failure, and the characteristics of each failure correspond to a certain degree of severity. This paper proposes a fault diagnosis model for detecting motor bearings. The model uses three steps: feature extraction, feature selection, and classification. In feature extraction, empirical mode decomposition, fast Fourier transform, and envelope analysis extract important features from the signals measuring the motor. In feature selection, a binary differential evolution and binary whale algorithm are developed and the storage space is increased to eliminate irrelevant features again. Finally, KNN and SVM are used to determine the stability of the bearing fault diagnosis model.
ISSN:1751-8644
1751-8652
DOI:10.1049/cth2.12783