Background Prior-Based Salient Object Detection via Deep Reconstruction Residual

Detection of salient objects from images is gaining increasing research interest in recent years as it can substantially facilitate a wide range of content-based multimedia applications. Based on the assumption that foreground salient regions are distinctive within a certain context, most convention...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems for video technology Ročník 25; číslo 8; s. 1309 - 1321
Hlavní autoři: Junwei Han, Dingwen Zhang, Xintao Hu, Lei Guo, Jinchang Ren, Feng Wu
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.08.2015
Témata:
ISSN:1051-8215, 1558-2205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Detection of salient objects from images is gaining increasing research interest in recent years as it can substantially facilitate a wide range of content-based multimedia applications. Based on the assumption that foreground salient regions are distinctive within a certain context, most conventional approaches rely on a number of hand-designed features and their distinctiveness is measured using local or global contrast. Although these approaches have been shown to be effective in dealing with simple images, their limited capability may cause difficulties when dealing with more complicated images. This paper proposes a novel framework for saliency detection by first modeling the background and then separating salient objects from the background. We develop stacked denoising autoencoders with deep learning architectures to model the background where latent patterns are explored and more powerful representations of data are learned in an unsupervised and bottom-up manner. Afterward, we formulate the separation of salient objects from the background as a problem of measuring reconstruction residuals of deep autoencoders. Comprehensive evaluations of three benchmark datasets and comparisons with nine state-of-the-art algorithms demonstrate the superiority of this paper.
AbstractList Detection of salient objects from images is gaining increasing research interest in recent years as it can substantially facilitate a wide range of content-based multimedia applications. Based on the assumption that foreground salient regions are distinctive within a certain context, most conventional approaches rely on a number of hand-designed features and their distinctiveness is measured using local or global contrast. Although these approaches have been shown to be effective in dealing with simple images, their limited capability may cause difficulties when dealing with more complicated images. This paper proposes a novel framework for saliency detection by first modeling the background and then separating salient objects from the background. We develop stacked denoising autoencoders with deep learning architectures to model the background where latent patterns are explored and more powerful representations of data are learned in an unsupervised and bottom-up manner. Afterward, we formulate the separation of salient objects from the background as a problem of measuring reconstruction residuals of deep autoencoders. Comprehensive evaluations of three benchmark datasets and comparisons with nine state-of-the-art algorithms demonstrate the superiority of this paper.
Author Dingwen Zhang
Jinchang Ren
Xintao Hu
Lei Guo
Junwei Han
Feng Wu
Author_xml – sequence: 1
  surname: Junwei Han
  fullname: Junwei Han
  email: junweihan2010@gmail.com
  organization: Sch. of Autom., Northwestern Polytech. Univ., Xi'an, China
– sequence: 2
  surname: Dingwen Zhang
  fullname: Dingwen Zhang
  organization: Sch. of Autom., Northwestern Polytech. Univ., Xi'an, China
– sequence: 3
  surname: Xintao Hu
  fullname: Xintao Hu
  organization: Sch. of Autom., Northwestern Polytech. Univ., Xi'an, China
– sequence: 4
  surname: Lei Guo
  fullname: Lei Guo
  organization: Sch. of Autom., Northwestern Polytech. Univ., Xi'an, China
– sequence: 5
  surname: Jinchang Ren
  fullname: Jinchang Ren
  organization: Dept. of Electron. & Electr. Eng., Univ. of Strathclyde, Glasgow, UK
– sequence: 6
  surname: Feng Wu
  fullname: Feng Wu
  organization: Sch. of Inf. Sci., Univ. of Sci. & Technol. of China, Hefei, China
BookMark eNp9kM1OwzAMgCMEEtvgBeDSF-iw0yZpj2z8SpM2bYNrlSYuyijtlHRIvD0dmzhwwBf_yJ9lfUN22rQNMXaFMEaE_GY9Xb2uxxwwHfMkw1ThCRugEFnMOYjTvgaBccZRnLNhCBvoN7NUDdhios37m293jY0W3rU-nuhANlrp2lHTRfNyQ6aL7qjrk2ub6NPpvqNttCTTNqHzu8N8ScHZna4v2Fml60CXxzxiLw_36-lTPJs_Pk9vZ7HhUnUxok60NdJCmivQUHHOM1DGgijBosi1ktJIxcuUjAS0iLkBaQSVicbKJiOWHe4a34bgqSqM6_T-lc5rVxcIxd5M8WOm2JspjmZ6lP9Bt959aP_1P3R9gBwR_QIyz1TSxzeObXH-
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2022_3183641
crossref_primary_10_1109_TCYB_2017_2761775
crossref_primary_10_1016_j_jvcir_2019_102717
crossref_primary_10_1016_j_jvcir_2019_102716
crossref_primary_10_1016_j_jvcir_2019_06_005
crossref_primary_10_1080_01431161_2023_2229494
crossref_primary_10_1109_TVLSI_2019_2961602
crossref_primary_10_1007_s13042_020_01207_2
crossref_primary_10_1109_TNNLS_2015_2461554
crossref_primary_10_1109_TGRS_2024_3421950
crossref_primary_10_1109_ACCESS_2020_2996022
crossref_primary_10_1016_j_patrec_2018_07_030
crossref_primary_10_1109_MNET_001_1900260
crossref_primary_10_1109_TCE_2024_3430354
crossref_primary_10_1007_s11042_017_4563_7
crossref_primary_10_1109_TMM_2022_3216476
crossref_primary_10_1109_ACCESS_2020_2966628
crossref_primary_10_1109_TCSVT_2019_2941017
crossref_primary_10_1109_ACCESS_2019_2902658
crossref_primary_10_1109_TCDS_2019_2963682
crossref_primary_10_1109_TIP_2020_3023774
crossref_primary_10_1016_j_jvcir_2019_102705
crossref_primary_10_1109_TCSVT_2016_2595321
crossref_primary_10_1016_j_jvcir_2019_102709
crossref_primary_10_1016_j_jvcir_2019_102708
crossref_primary_10_1109_ACCESS_2019_2932047
crossref_primary_10_1007_s11390_017_1737_8
crossref_primary_10_1109_TVT_2019_2894437
crossref_primary_10_1109_TCYB_2019_2932005
crossref_primary_10_1109_ACCESS_2019_2899940
crossref_primary_10_7717_peerj_6201
crossref_primary_10_1016_j_jvcir_2017_06_009
crossref_primary_10_1109_TIP_2020_3011554
crossref_primary_10_1109_ACCESS_2019_2904039
crossref_primary_10_1038_s41598_019_53460_3
crossref_primary_10_1016_j_jag_2023_103301
crossref_primary_10_1016_j_jvcir_2019_102610
crossref_primary_10_1109_TMM_2019_2907060
crossref_primary_10_1016_j_jvcir_2019_102613
crossref_primary_10_1109_TMM_2021_3138246
crossref_primary_10_1016_j_jvcir_2019_102612
crossref_primary_10_1016_j_neucom_2019_10_063
crossref_primary_10_1109_JSTARS_2017_2655112
crossref_primary_10_1016_j_jvcir_2019_02_001
crossref_primary_10_1007_s11045_016_0416_1
crossref_primary_10_1016_j_soildyn_2023_107834
crossref_primary_10_1109_TIP_2021_3106798
crossref_primary_10_1145_3158674
crossref_primary_10_1109_TCSVT_2022_3232487
crossref_primary_10_1007_s40747_020_00188_7
crossref_primary_10_1016_j_sigpro_2019_107331
crossref_primary_10_1007_s00607_019_00737_0
crossref_primary_10_1088_0967_3334_37_12_2214
crossref_primary_10_1109_TIP_2017_2700725
crossref_primary_10_1016_j_jvcir_2019_102720
crossref_primary_10_1109_JSTARS_2020_3019582
crossref_primary_10_1109_TNNLS_2017_2761401
crossref_primary_10_1016_j_jvcir_2019_102723
crossref_primary_10_1016_j_jvcir_2019_102600
crossref_primary_10_1016_j_jvcir_2019_102728
crossref_primary_10_1109_TII_2019_2913762
crossref_primary_10_1109_TVT_2019_2901284
crossref_primary_10_1109_TVT_2019_2907269
crossref_primary_10_1016_j_jvcir_2019_02_011
crossref_primary_10_1016_j_jvcir_2019_02_012
crossref_primary_10_1016_j_jvcir_2019_02_010
crossref_primary_10_1016_j_jvcir_2019_102609
crossref_primary_10_1016_j_jvcir_2019_102608
crossref_primary_10_1109_TCYB_2015_2404432
crossref_primary_10_1109_TCSVT_2019_2906226
crossref_primary_10_1109_TMM_2020_3038311
crossref_primary_10_1109_TCSVT_2024_3412093
crossref_primary_10_1016_j_jvcir_2019_102632
crossref_primary_10_1109_ACCESS_2019_2924238
crossref_primary_10_1016_j_jvcir_2019_102631
crossref_primary_10_1109_ACCESS_2019_2904749
crossref_primary_10_1016_j_jvcir_2019_102630
crossref_primary_10_1109_TGRS_2023_3295992
crossref_primary_10_1109_TPAMI_2016_2567393
crossref_primary_10_1016_j_jvcir_2019_102634
crossref_primary_10_1109_TGRS_2019_2893115
crossref_primary_10_1016_j_jvcir_2019_102633
crossref_primary_10_1109_TIP_2020_3014734
crossref_primary_10_1109_TNNLS_2016_2602855
crossref_primary_10_1109_TVT_2019_2905598
crossref_primary_10_3390_rs14040851
crossref_primary_10_1016_j_jvcir_2019_102637
crossref_primary_10_1109_ACCESS_2020_2982588
crossref_primary_10_1109_TMM_2020_3025166
crossref_primary_10_1016_j_engappai_2018_10_011
crossref_primary_10_1109_JSTARS_2020_3014784
crossref_primary_10_1109_TIP_2016_2617462
crossref_primary_10_1016_j_neucom_2021_07_088
crossref_primary_10_1109_LGRS_2020_2981507
crossref_primary_10_1016_j_asoc_2019_01_024
crossref_primary_10_1109_TIP_2016_2605920
crossref_primary_10_1155_2021_2472676
crossref_primary_10_3390_app10103350
crossref_primary_10_1016_j_jvcir_2019_102629
crossref_primary_10_1109_ACCESS_2019_2900719
crossref_primary_10_1016_j_ijleo_2020_165341
crossref_primary_10_1109_TIP_2017_2703081
crossref_primary_10_1007_s11432_015_5420_9
crossref_primary_10_1007_s11042_019_08211_x
crossref_primary_10_1109_TMM_2017_2763780
crossref_primary_10_1108_SR_05_2019_0124
crossref_primary_10_1109_TNNLS_2016_2582532
crossref_primary_10_1109_TCYB_2019_2934986
crossref_primary_10_1109_TIP_2017_2781424
crossref_primary_10_1109_TMM_2019_2900166
crossref_primary_10_1007_s11760_020_01737_w
crossref_primary_10_1016_j_dsp_2022_103827
crossref_primary_10_1016_j_neucom_2018_09_009
crossref_primary_10_1109_TNNLS_2020_3006467
crossref_primary_10_1016_j_jvcir_2017_11_006
crossref_primary_10_1109_TCSVT_2023_3325229
crossref_primary_10_1109_TCSVT_2023_3287684
crossref_primary_10_1109_TPAMI_2019_2900649
crossref_primary_10_1109_TIP_2021_3124668
crossref_primary_10_1016_j_comnet_2019_04_016
crossref_primary_10_1109_JPROC_2017_2675998
crossref_primary_10_1109_TNNLS_2020_3015965
crossref_primary_10_1016_j_jvcir_2019_03_014
crossref_primary_10_1109_TCSVT_2016_2564878
crossref_primary_10_1016_j_jvcir_2019_03_012
crossref_primary_10_1016_j_jvcir_2019_03_013
crossref_primary_10_1109_TIP_2016_2601784
crossref_primary_10_1109_TCSVT_2017_2710120
crossref_primary_10_1109_TCYB_2016_2524406
crossref_primary_10_1109_TCYB_2017_2761361
crossref_primary_10_1109_ACCESS_2019_2901943
crossref_primary_10_1109_TIP_2017_2762594
crossref_primary_10_1016_j_jvcir_2019_102647
crossref_primary_10_1109_TNNLS_2020_2986823
crossref_primary_10_1109_TCSVT_2020_2988768
crossref_primary_10_1016_j_jvcir_2019_102645
crossref_primary_10_1016_j_neucom_2017_10_052
crossref_primary_10_1016_j_neucom_2017_04_066
crossref_primary_10_1109_TPAMI_2018_2881114
crossref_primary_10_1016_j_neucom_2019_12_123
crossref_primary_10_1109_TVT_2019_2903144
crossref_primary_10_1007_s00371_022_02660_6
crossref_primary_10_1109_LSP_2016_2600592
crossref_primary_10_1016_j_jvcir_2019_03_005
crossref_primary_10_3390_electronics12132880
crossref_primary_10_3390_s17040905
crossref_primary_10_1109_ACCESS_2019_2934160
crossref_primary_10_1109_TGRS_2016_2601622
crossref_primary_10_1109_TIM_2021_3132082
crossref_primary_10_1109_TIP_2019_2922072
crossref_primary_10_1007_s41095_020_0172_x
crossref_primary_10_1016_j_jvcir_2019_01_020
crossref_primary_10_1016_j_jvcir_2019_01_021
crossref_primary_10_1109_ACCESS_2019_2946861
crossref_primary_10_1109_LSP_2016_2617340
crossref_primary_10_1145_3632181
crossref_primary_10_1007_s11042_017_5223_7
crossref_primary_10_1109_JBHI_2017_2734329
crossref_primary_10_1016_j_neucom_2016_05_017
crossref_primary_10_1109_TNNLS_2015_2488637
crossref_primary_10_1016_j_neucom_2020_12_067
crossref_primary_10_1109_TCSVT_2018_2823769
crossref_primary_10_1016_j_neucom_2019_12_057
crossref_primary_10_1049_iet_ipr_2018_5479
crossref_primary_10_1007_s11042_017_4616_y
crossref_primary_10_1109_TIP_2017_2658957
crossref_primary_10_3389_fnbot_2019_00073
crossref_primary_10_1109_TMM_2022_3167805
crossref_primary_10_1016_j_image_2019_115768
crossref_primary_10_1109_TIP_2017_2652730
crossref_primary_10_1109_TGRS_2016_2642125
crossref_primary_10_1109_TCSVT_2024_3486050
crossref_primary_10_1109_TPAMI_2018_2846598
crossref_primary_10_1109_TIP_2025_3572760
crossref_primary_10_1109_ACCESS_2019_2902121
crossref_primary_10_1109_ACCESS_2019_2943365
crossref_primary_10_1007_s11042_018_7106_y
crossref_primary_10_1016_j_jvcir_2019_01_035
crossref_primary_10_1016_j_neucom_2017_03_016
crossref_primary_10_1016_j_jvcir_2019_01_037
crossref_primary_10_1016_j_jvcir_2019_01_038
crossref_primary_10_1016_j_neunet_2020_04_012
crossref_primary_10_1016_j_jvcir_2017_12_006
crossref_primary_10_1016_j_ijepes_2019_105651
crossref_primary_10_1109_ACCESS_2019_2958058
crossref_primary_10_1109_TCSVT_2019_2904463
crossref_primary_10_1109_TNNLS_2015_2495161
crossref_primary_10_1016_j_patcog_2016_01_027
crossref_primary_10_1109_TBME_2019_2955722
crossref_primary_10_1109_TNNLS_2016_2628878
crossref_primary_10_1007_s10043_016_0219_5
crossref_primary_10_1007_s11042_016_3616_7
crossref_primary_10_1109_TGRS_2016_2523563
crossref_primary_10_3390_s18113774
crossref_primary_10_1109_TIP_2016_2627801
crossref_primary_10_1016_j_neucom_2020_11_041
crossref_primary_10_1007_s11045_015_0371_2
crossref_primary_10_1109_TMM_2018_2856126
crossref_primary_10_1162_neco_a_01038
crossref_primary_10_1016_j_patcog_2017_11_024
crossref_primary_10_1007_s40747_023_01072_w
crossref_primary_10_1109_TGRS_2024_3504845
crossref_primary_10_1109_ACCESS_2019_2910572
crossref_primary_10_1007_s11042_020_09458_5
crossref_primary_10_1016_j_patcog_2019_03_023
crossref_primary_10_1109_TNNLS_2020_3044176
crossref_primary_10_1109_TGRS_2023_3256373
crossref_primary_10_1007_s11042_021_11447_1
crossref_primary_10_1109_LGRS_2019_2945886
crossref_primary_10_1016_j_jvcir_2018_03_017
crossref_primary_10_1016_j_patcog_2018_08_007
crossref_primary_10_1016_j_jvcir_2019_01_040
crossref_primary_10_1109_TMM_2016_2568138
crossref_primary_10_1002_acs_2985
crossref_primary_10_1109_TCYB_2018_2881482
crossref_primary_10_1109_ACCESS_2020_2980290
crossref_primary_10_1109_TNNLS_2015_2464316
crossref_primary_10_1109_ACCESS_2020_2968744
crossref_primary_10_1109_TCSVT_2016_2642341
crossref_primary_10_1016_j_neucom_2019_04_062
crossref_primary_10_1109_TCYB_2025_3584808
crossref_primary_10_1109_TCSVT_2016_2515338
crossref_primary_10_1109_TIP_2018_2835143
crossref_primary_10_1109_ACCESS_2019_2918728
crossref_primary_10_1007_s11042_016_3615_8
crossref_primary_10_1109_ACCESS_2019_2903121
crossref_primary_10_3390_sym10120734
crossref_primary_10_1109_TNNLS_2015_2495148
crossref_primary_10_1109_LSP_2015_2413944
crossref_primary_10_1109_JSTARS_2022_3150843
crossref_primary_10_1007_s11045_015_0370_3
crossref_primary_10_1016_j_neucom_2018_02_004
crossref_primary_10_1016_j_jvcir_2019_02_029
crossref_primary_10_1016_j_neucom_2020_10_019
crossref_primary_10_1016_j_jvcir_2019_02_022
crossref_primary_10_1016_j_neucom_2017_01_039
crossref_primary_10_1002_acs_2991
crossref_primary_10_1109_ACCESS_2021_3132787
crossref_primary_10_1016_j_ijleo_2017_03_029
crossref_primary_10_1109_TIP_2019_2922818
crossref_primary_10_1109_TAMD_2015_2409835
crossref_primary_10_1007_s11042_023_17614_w
crossref_primary_10_1016_j_cogsys_2018_06_014
crossref_primary_10_1109_TCSVT_2023_3349209
crossref_primary_10_1109_TCSVT_2020_3013119
crossref_primary_10_1109_TMM_2020_2997192
crossref_primary_10_1109_LGRS_2018_2838151
crossref_primary_10_1049_iet_ipr_2017_1173
crossref_primary_10_1109_ACCESS_2019_2960162
crossref_primary_10_1109_TCSVT_2019_2958871
crossref_primary_10_1016_j_jvcir_2019_02_033
crossref_primary_10_1016_j_jvcir_2019_02_034
crossref_primary_10_1109_TVT_2018_2883046
crossref_primary_10_1007_s11045_016_0407_2
crossref_primary_10_1016_j_jvcir_2019_02_032
crossref_primary_10_1109_TCSVT_2021_3102268
crossref_primary_10_1080_09540091_2019_1650330
crossref_primary_10_1109_TIP_2019_2945679
crossref_primary_10_1007_s11042_021_10744_z
crossref_primary_10_3233_JIFS_191292
crossref_primary_10_1007_s11045_016_0396_1
crossref_primary_10_1007_s11042_019_08004_2
crossref_primary_10_1016_j_neucom_2017_02_064
crossref_primary_10_1109_TCSVT_2023_3268217
crossref_primary_10_3390_s23042005
crossref_primary_10_1016_j_neucom_2016_11_064
crossref_primary_10_1109_TVCG_2016_2600594
crossref_primary_10_1109_TCSVT_2017_2706264
crossref_primary_10_1109_TBDATA_2020_3009983
crossref_primary_10_1109_TMM_2017_2769801
crossref_primary_10_1109_TCSVT_2018_2804438
crossref_primary_10_1016_j_neucom_2016_04_036
crossref_primary_10_1109_TCSVT_2019_2896438
crossref_primary_10_1016_j_neucom_2017_05_032
crossref_primary_10_1109_TMM_2021_3129052
crossref_primary_10_1016_j_neucom_2021_03_056
crossref_primary_10_1007_s11045_016_0429_9
crossref_primary_10_1109_TGRS_2019_2900302
crossref_primary_10_1016_j_neucom_2016_09_062
crossref_primary_10_1016_j_jvcir_2019_01_013
crossref_primary_10_1016_j_jvcir_2019_01_014
crossref_primary_10_1016_j_jvcir_2019_01_015
crossref_primary_10_1016_j_jvcir_2019_01_016
crossref_primary_10_1016_j_jvcir_2019_01_017
crossref_primary_10_1016_j_jvcir_2019_01_018
crossref_primary_10_1007_s12559_017_9529_6
crossref_primary_10_1016_j_jvcir_2019_01_019
crossref_primary_10_1049_iet_ipr_2018_5722
crossref_primary_10_1109_TGRS_2017_2702596
crossref_primary_10_1007_s00500_021_06388_8
crossref_primary_10_1109_TCSVT_2020_3014663
crossref_primary_10_1016_j_neucom_2019_05_069
crossref_primary_10_1109_TNNLS_2015_2477537
crossref_primary_10_1016_j_artmed_2021_102155
Cites_doi 10.1109/CVPR.2013.151
10.1109/CVPR.2013.416
10.1109/TPAMI.2010.70
10.1109/CVPR.2011.5995344
10.1109/CVPR.2012.6247706
10.1016/j.ins.2014.05.021
10.1109/34.730558
10.5244/C.25.110
10.1109/TPAMI.2011.272
10.1109/TPAMI.2012.277
10.7551/mitpress/7496.003.0016
10.1167/9.12.15
10.1109/CVPR.2007.383267
10.1109/TCSVT.2013.2242594
10.1023/B:VISI.0000022288.19776.77
10.1109/ICCV.2013.221
10.1145/1618452.1618470
10.1109/TNNLS.2014.2308519
10.1109/ICCV.2009.5459462
10.1109/TPAMI.2013.50
10.1109/TIP.2012.2216276
10.1109/CVPR.2007.383017
10.1167/8.7.32
10.1109/TSMCB.2012.2214210
10.1109/CVPRW.2010.5543739
10.1109/CVPR.2013.407
10.1016/j.patrec.2013.04.009
10.1126/science.1127647
10.1109/TPAMI.2004.1273918
10.1109/TIP.2011.2169274
10.1145/2072298.2071952
10.1109/TCSVT.2013.2290579
10.1007/s11263-014-0703-y
10.1109/CVPR.2009.5206596
10.1109/TCSVT.2013.2290573
10.1109/CVPR.2014.39
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCSVT.2014.2381471
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1321
ExternalDocumentID 10_1109_TCSVT_2014_2381471
6987333
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 61103061; 91120005; 61473231
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c267t-11a3adc6d04970a0f222807cd05b0d159a766c672b4ec601d119c06c5eb3a1fd3
IEDL.DBID RIE
ISICitedReferencesCount 405
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359213400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Tue Nov 18 21:53:44 EST 2025
Sat Nov 29 01:44:07 EST 2025
Tue Aug 26 16:40:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords stacked denoising autoencoder (SDAE)
Background prior
deep reconstruction residual
salient object detection
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-11a3adc6d04970a0f222807cd05b0d159a766c672b4ec601d119c06c5eb3a1fd3
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2014_2381471
crossref_primary_10_1109_TCSVT_2014_2381471
ieee_primary_6987333
PublicationCentury 2000
PublicationDate 2015-Aug.
2015-8-00
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-Aug.
PublicationDecade 2010
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References shen (ref11) 2012
ref12
ref15
ref14
ref17
ref16
ref19
harel (ref42) 2006
ref51
ref50
ref46
ref45
ref48
ref44
hou (ref10) 2008
ref8
ref7
ng (ref26) 2011
ref9
ref4
ref3
ref6
ref5
sun (ref47) 2014; 24
ref40
wei (ref18) 2012
chang (ref37) 2011
sun (ref1) 2011
ref35
ref34
erhan (ref21) 2010; 11
ref36
li (ref49) 2009
ref33
ref39
ref38
bengio (ref20) 2007
bengio (ref30) 2013
liu (ref13) 2011; 33
chen (ref2) 2009; 28
ref24
ref23
vincent (ref25) 2010; 11
wang (ref32) 2012
ref22
borji (ref41) 2012
ref28
goodfellow (ref31) 2013
ref27
ref29
hou (ref43) 2008
References_xml – ident: ref34
  doi: 10.1109/CVPR.2013.151
– ident: ref35
  doi: 10.1109/CVPR.2013.416
– start-page: 681
  year: 2008
  ident: ref43
  article-title: Dynamic visual attention: Searching for coding length increments
  publication-title: Advances in neural information processing systems
– start-page: 681
  year: 2008
  ident: ref10
  article-title: Dynamic visual attention: Searching for coding length increments
  publication-title: Advances in neural information processing systems
– start-page: 1511
  year: 2011
  ident: ref1
  article-title: Scale and object aware image retargeting for thumbnail browsing
  publication-title: Proc IEEE Int Conf Comput Vis
– volume: 33
  start-page: 353
  year: 2011
  ident: ref13
  article-title: Learning to detect a salient object
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.70
– ident: ref17
  doi: 10.1109/CVPR.2011.5995344
– ident: ref7
  doi: 10.1109/CVPR.2012.6247706
– ident: ref3
  doi: 10.1016/j.ins.2014.05.021
– ident: ref5
  doi: 10.1109/34.730558
– ident: ref38
  doi: 10.5244/C.25.110
– volume: 11
  start-page: 625
  year: 2010
  ident: ref21
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J Mach Learn Res
– ident: ref33
  doi: 10.1109/TPAMI.2011.272
– ident: ref27
  doi: 10.1109/TPAMI.2012.277
– start-page: 29
  year: 2012
  ident: ref18
  article-title: Geodesic saliency using background priors
  publication-title: Proc 12th Eur Conf Comput Vis
– year: 2007
  ident: ref20
  article-title: Scaling learning algorithms towards AI
  publication-title: Large-Scale Kernel Machines
  doi: 10.7551/mitpress/7496.003.0016
– ident: ref14
  doi: 10.1167/9.12.15
– ident: ref15
  doi: 10.1109/CVPR.2007.383267
– ident: ref9
  doi: 10.1109/TCSVT.2013.2242594
– ident: ref36
  doi: 10.1023/B:VISI.0000022288.19776.77
– ident: ref44
  doi: 10.1109/ICCV.2013.221
– volume: 28
  year: 2009
  ident: ref2
  article-title: Sketch2Photo: Internet image montage
  publication-title: ACM Trans Graph
  doi: 10.1145/1618452.1618470
– ident: ref22
  doi: 10.1109/TNNLS.2014.2308519
– ident: ref6
  doi: 10.1109/ICCV.2009.5459462
– start-page: 3093
  year: 2009
  ident: ref49
  article-title: Incremental sparse saliency detection
  publication-title: Proc 16th IEEE Int Conf Image Process
– ident: ref24
  doi: 10.1109/TPAMI.2013.50
– start-page: 287
  year: 2012
  ident: ref32
  article-title: An analysis of Gaussian-binary restricted Boltzmann machines for natural images
  publication-title: Proc ESANN
– start-page: 1319
  year: 2013
  ident: ref31
  article-title: Maxout networks
  publication-title: Proc IEEE Int Conf Mach Learn
– year: 2013
  ident: ref30
  article-title: Practical recommendations for gradient-based training of deep architectures
  publication-title: Proc Neural Netw Tricks of the Trade
– ident: ref39
  doi: 10.1109/TIP.2012.2216276
– ident: ref50
  doi: 10.1109/CVPR.2007.383017
– ident: ref8
  doi: 10.1167/8.7.32
– ident: ref45
  doi: 10.1109/TSMCB.2012.2214210
– ident: ref40
  doi: 10.1109/CVPRW.2010.5543739
– ident: ref19
  doi: 10.1109/CVPR.2013.407
– start-page: 414
  year: 2012
  ident: ref41
  article-title: Salient object detection: A benchmark
  publication-title: Proc 12th Eur Conf Comput Vis
– ident: ref29
  doi: 10.1016/j.patrec.2013.04.009
– start-page: 853
  year: 2012
  ident: ref11
  article-title: A unified approach to salient object detection via low rank matrix recovery
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref23
  doi: 10.1126/science.1127647
– ident: ref46
  doi: 10.1109/TPAMI.2004.1273918
– ident: ref48
  doi: 10.1109/TIP.2011.2169274
– ident: ref12
  doi: 10.1145/2072298.2071952
– start-page: 545
  year: 2006
  ident: ref42
  article-title: Graph-based visual saliency
  publication-title: Advances in neural information processing systems
– ident: ref28
  doi: 10.1109/TCSVT.2013.2290579
– ident: ref4
  doi: 10.1007/s11263-014-0703-y
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref25
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref16
  doi: 10.1109/CVPR.2009.5206596
– volume: 24
  start-page: 780
  year: 2014
  ident: ref47
  article-title: Unsupervised object extraction by contour delineation and texture discrimination based on oriented edge features
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2013.2290573
– start-page: 72
  year: 2011
  ident: ref26
  article-title: Sparse autoencoder
– ident: ref51
  doi: 10.1109/CVPR.2014.39
– start-page: 914
  year: 2011
  ident: ref37
  article-title: Fusing generic objectness and visual saliency for salient object detection
  publication-title: Proc IEEE Int Conf Comput Vis
SSID ssj0014847
Score 2.6252105
Snippet Detection of salient objects from images is gaining increasing research interest in recent years as it can substantially facilitate a wide range of...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1309
SubjectTerms deep reconstruction residual
Encoding
Feature extraction
Image reconstruction
Noise reduction
Object detection
Robustness
salient object detection
stacked denoising autoencoder
Training
Title Background Prior-Based Salient Object Detection via Deep Reconstruction Residual
URI https://ieeexplore.ieee.org/document/6987333
Volume 25
WOSCitedRecordID wos000359213400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFL1B4oM--IVG_MoefNPCupaWPQpKfDBIAhLeln4tIZpBAPn9tt2YmBgT39alXZazJfec9t5zAW4FIxFnKUHUMIEokQpJEmvEI-Hcs7AWvk3n-IX3--3JJB5U4L6shTHG-OQz03CX_ixfz9Sn2yprMiuQCSE7sMM5z2u1yhMD2vbNxCxdwKht49imQCaMm6PucDxyWVy04QIU5fhHENrqquKDSu_wf69zBAcFeQwe8q99DBWTncD-lqVgDQYdod5dqUamg8FiOlugjo1TOhhavm2fFrxKt_ESPJqVz8HKgvVU2JGZB06IftvJ2uHS12mdwlvvadR9RkXXBKQixlcIY0GEVkxb7s9DEaaRd7xROmzJUFv2IjhjivFIUqOsHNMYxypkqmVltcCpJmdQzWaZOYdAMqfeqJbGWBnJqLT8wmWjUhPxlMm4DngDY6IKS3HX2eIj8dIijBMPfeKgTwro63BXrpnnhhp_zq453MuZBeQXv9--hD27uJXn511B1UJmrmFXrVfT5eLG_y9fa0K8YA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFL1BNFEf_EIjfu7BNy2ua2nZo6AEIyIJSHhb-kVCNMMA8vtty0BMjIlv69I1y9mSe05777kAV4KRiLMBQdQwgSiRCkkSa8Qj4dyzsBa-TWevyVutSr8ft3Nws6yFMcb45DNTcpf-LF-P1KfbKrtlViATQtZgvUxphOfVWsszA1rx7cQsYcCoYiPZokQmjG-7tU6v6_K4aMmFKMrxjzC00lfFh5X67v9eaA92MvoY3M2_9z7kTHoA2yumggVoV4V6c8UaqQ7a4-FojKo2UumgYxm3XS14kW7rJbg3U5-FlQazobAj8xE4KfptKGuHE1-pdQiv9YdurYGyvglIRYxPEcaCCK2YtuyfhyIcRN7zRumwLENt-YvgjCnGI0mNsoJMYxyrkKmyFdYCDzQ5gnw6Ss0xBJI5_Ua1NMYKSUalZRguH5WaiA-YjIuAFzAmKjMVd70t3hMvLsI48dAnDvokg74I18tnPuaWGn_OLjjclzMzyE9-v30Jm43uczNpPraeTmHLLlSeZ-udQd7CZ85hQ82mw8n4wv87X2V0v6c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Background+Prior-Based+Salient+Object+Detection+via+Deep+Reconstruction+Residual&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Junwei+Han&rft.au=Dingwen+Zhang&rft.au=Xintao+Hu&rft.au=Lei+Guo&rft.date=2015-08-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=25&rft.issue=8&rft.spage=1309&rft.epage=1321&rft_id=info:doi/10.1109%2FTCSVT.2014.2381471&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2014_2381471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon