cPCA++: An efficient method for contrastive feature learning

•In this work, we propose a new data visualization and clustering technique for discovering discriminative structures in high-dimensional data.•This technique, referred to as cPCA++, is motivated by the fact that the interesting features of a “target” dataset may be obscured by high variance compone...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 124; p. 108378
Main Authors: Salloum, Ronald, Kuo, C.-C. Jay
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2022
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •In this work, we propose a new data visualization and clustering technique for discovering discriminative structures in high-dimensional data.•This technique, referred to as cPCA++, is motivated by the fact that the interesting features of a “target” dataset may be obscured by high variance components during traditional PCA.•By analyzing what is referred to as a “background” dataset (i.e., one that exhibits the high variance principal components but not the interesting structures), our technique is capable of efficiently highlighting the structures that are unique to the “target” dataset.•Similar to another recently proposed algorithm called “contrastive PCA” (cPCA), the proposed cPCA++ method identifies important dataset-specific patterns that are not detected by traditional PCA in a wide variety of settings.•However, unlike cPCA, the proposed cPCA++ method does not require a parameter sweep, and as a result, it is significantly more efficient. In this work, we propose a new data visualization and clustering technique for discovering discriminative structures in high-dimensional data. This technique, referred to as cPCA++, is motivated by the fact that the interesting features of a “target” dataset may be obscured by high variance components during traditional PCA. By analyzing what is referred to as a “background” dataset (i.e., one that exhibits the high variance principal components but not the interesting structures), our technique is capable of efficiently highlighting the structures that are unique to the “target” dataset. Similar to another recently proposed algorithm called “contrastive PCA” (cPCA), the proposed cPCA++ method identifies important dataset-specific patterns that are not detected by traditional PCA in a wide variety of settings. However, unlike cPCA, the proposed cPCA++ method does not require a parameter sweep, and as a result, it is significantly more efficient. Several experiments were conducted in order to compare the proposed method to state-of-the-art methods. These experiments show that the proposed method achieves performance that is similar to or better than that of the other methods, while being more efficient.
AbstractList •In this work, we propose a new data visualization and clustering technique for discovering discriminative structures in high-dimensional data.•This technique, referred to as cPCA++, is motivated by the fact that the interesting features of a “target” dataset may be obscured by high variance components during traditional PCA.•By analyzing what is referred to as a “background” dataset (i.e., one that exhibits the high variance principal components but not the interesting structures), our technique is capable of efficiently highlighting the structures that are unique to the “target” dataset.•Similar to another recently proposed algorithm called “contrastive PCA” (cPCA), the proposed cPCA++ method identifies important dataset-specific patterns that are not detected by traditional PCA in a wide variety of settings.•However, unlike cPCA, the proposed cPCA++ method does not require a parameter sweep, and as a result, it is significantly more efficient. In this work, we propose a new data visualization and clustering technique for discovering discriminative structures in high-dimensional data. This technique, referred to as cPCA++, is motivated by the fact that the interesting features of a “target” dataset may be obscured by high variance components during traditional PCA. By analyzing what is referred to as a “background” dataset (i.e., one that exhibits the high variance principal components but not the interesting structures), our technique is capable of efficiently highlighting the structures that are unique to the “target” dataset. Similar to another recently proposed algorithm called “contrastive PCA” (cPCA), the proposed cPCA++ method identifies important dataset-specific patterns that are not detected by traditional PCA in a wide variety of settings. However, unlike cPCA, the proposed cPCA++ method does not require a parameter sweep, and as a result, it is significantly more efficient. Several experiments were conducted in order to compare the proposed method to state-of-the-art methods. These experiments show that the proposed method achieves performance that is similar to or better than that of the other methods, while being more efficient.
ArticleNumber 108378
Author Kuo, C.-C. Jay
Salloum, Ronald
Author_xml – sequence: 1
  givenname: Ronald
  surname: Salloum
  fullname: Salloum, Ronald
  email: Ronald.Salloum@csusb.edu
  organization: School of Computer Science and Engineering, California State University, San Bernardino, CA, 92407, United States
– sequence: 2
  givenname: C.-C. Jay
  surname: Kuo
  fullname: Kuo, C.-C. Jay
  email: jckuo@usc.edu
  organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, United States
BookMark eNqFkEtLAzEUhYNUsK3-AxezL1Pz6iRTRCilPqCgC12HzM1NTWlnSiYW_PdOHVcudHXhXL4D5xuRQd3USMg1o1NGWXGznR5sgmYz5ZSzLtJC6TMyZFqJfMYkH5AhpYLlglNxQUZtu6WUqe4xJLfwslxMJvNsUWfofYCAdcr2mN4bl_kmZtDUKdo2hSNmHm36iJjt0MY61JtLcu7trsWrnzsmb_er1-Vjvn5-eFou1jnwQulcorV8BpICta50CiVHWXpuhWBlJUVVWOUqqStQKBxY1J5rwLJA77QAJ8ZE9r0Qm7aN6M0hhr2Nn4ZRczJgtqY3YE4GTG-gw-a_MAjJpvC9KOz-g-96GLthx4DRtCc3gC5EhGRcE_4u-AKvo3vp
CitedBy_id crossref_primary_10_1016_j_patcog_2023_109342
crossref_primary_10_1080_10618600_2023_2289542
crossref_primary_10_1093_cercor_bhae393
crossref_primary_10_1016_j_patcog_2023_109739
crossref_primary_10_1016_j_patcog_2023_109692
Cites_doi 10.1007/s11042-016-3795-2
10.1038/s41467-018-04608-8
10.1186/s12864-019-6413-7
10.1186/1475-925X-14-S2-S6
10.1016/j.patcog.2015.01.024
10.1137/0707039
10.1007/s11263-013-0688-y
10.1109/5.726791
10.1038/ncomms14049
10.1111/1467-9868.00196
10.1016/j.jvcir.2018.01.010
10.21105/joss.00861
10.1016/j.patcog.2006.12.009
10.1016/j.patcog.2011.04.014
10.1007/s11263-015-0816-y
10.1016/j.imavis.2009.02.001
10.1016/j.patcog.2020.107346
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.patcog.2021.108378
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2021_108378
S0031320321005586
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c2678-4eaa25c40c0ad9d7e42e49f2a3319b43b6a7db48bc7e3dcae8f28ce96efd83cd3
ISSN 0031-3203
IngestDate Sat Nov 29 07:25:16 EST 2025
Tue Nov 18 22:15:41 EST 2025
Fri Feb 23 02:39:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Feature learning
Contrastive PCA
PCA
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2678-4eaa25c40c0ad9d7e42e49f2a3319b43b6a7db48bc7e3dcae8f28ce96efd83cd3
OpenAccessLink https://dx.doi.org/10.1016/j.patcog.2021.108378
ParticipantIDs crossref_primary_10_1016_j_patcog_2021_108378
crossref_citationtrail_10_1016_j_patcog_2021_108378
elsevier_sciencedirect_doi_10_1016_j_patcog_2021_108378
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Duda, Hart, Stork (bib0001) 2001
Lecun, Bottou, Bengio, Haffner (bib0007) 1998; 86
Tipping, Bishop (bib0010) 1999; 61
Laub (bib0014) 2004
Peters, Wilkinson (bib0015) 1970; 7
Dong, Wang, Tan (bib0027) 2013
Zheng, Terry, Belgrader, Ryvkin, Bent, Wilson, Ziraldo, Wheeler, McDermott, Zhu, Gregory, Shuga, Montesclaros, Underwood, Masquelier, Nishimura, Schnall-Levin, Wyatt, Hindson, Bharadwaj, Wong, Ness, Beppu, Deeg, McFarland, Loeb, Valente, Ericson, Stevens, Radich, Mikkelsen, Hindson, Bielas (bib0024) 2017; 8
Salloum, Ren, Kuo (bib0020) 2018; 51
Dollár, Zitnick (bib0026) 2013
Wang, Wang, Hu, Yan (bib0004) 2015; 48
Zampoglou, Papadopoulos, Kompatsiaris (bib0025) 2017; 76
Ye, Sun, Chang (bib0030) 2007
Tsang, Kwong, Wang (bib0009) 2007; 40
SNE, 2020, (accessed July 21, 2020).
Mahdian, Saic (bib0028) 2009; 27
Ronneberger, Fischer, Brox (bib0034) 2015
Dong, Moses, Li (bib0016) 2011
Banos, Villalonga, Garcia, Saez, Damas, Holgado-Terriza, Lee, Pomares, Rojas (bib0023) 2015; 14
Chicco, Jurman (bib0035) 2020; 21
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (bib0022) 2015; 115
Horn, Johnson (bib0037) 2012
van der Maaten, Hinton (bib0002) 2008; 9
L. van der Maaten
Wang, Yan, Xu, Tang, Huang (bib0013) 2007
Kay (bib0011) 1993; vol. 2
Passalis, Raitoharju, Tefas, Gabbouj (bib0033) 2020; 105
Yan, Yuan, Yan, Yang (bib0003) 2011; 44
Defense Advanced Research Projects Agency, Media Forensics (MediFor), 2020, (accessed July 21, 2020).
Parlett (bib0038) 1998
Forsythe (bib0012) 1997; 10
Hsu, Chang (bib0036) 2006
L. McInnes, UMAP, 2021, (accessed July 28, 2021).
L. McInnes, J. Healy, J. Melville, UMAP: uniform manifold approximation and projection for dimension reduction, arXiv preprint arXiv
J.D. Baron, R. Darling, K-nearest neighbor approximation via the friend-of-a-friend principle, arXiv preprint arXiv
Lyu, Pan, Zhang (bib0029) 2014; 110
(2019).
(2018).
Abid, Zhang, Bagaria, Zou (bib0005) 2018; 9
Krizhevsky, Sutskever, Hinton (bib0031) 2012
Fukunaga (bib0008) 1990
Long, Shelhamer, Darrell (bib0032) 2015
Kay (10.1016/j.patcog.2021.108378_bib0011) 1993; vol. 2
10.1016/j.patcog.2021.108378_bib0019
Abid (10.1016/j.patcog.2021.108378_bib0005) 2018; 9
Wang (10.1016/j.patcog.2021.108378_bib0013) 2007
10.1016/j.patcog.2021.108378_bib0018
10.1016/j.patcog.2021.108378_bib0017
Peters (10.1016/j.patcog.2021.108378_bib0015) 1970; 7
Krizhevsky (10.1016/j.patcog.2021.108378_bib0031) 2012
Hsu (10.1016/j.patcog.2021.108378_bib0036) 2006
Dong (10.1016/j.patcog.2021.108378_bib0016) 2011
Salloum (10.1016/j.patcog.2021.108378_bib0020) 2018; 51
Parlett (10.1016/j.patcog.2021.108378_bib0038) 1998
Zheng (10.1016/j.patcog.2021.108378_bib0024) 2017; 8
Mahdian (10.1016/j.patcog.2021.108378_bib0028) 2009; 27
van der Maaten (10.1016/j.patcog.2021.108378_bib0002) 2008; 9
Long (10.1016/j.patcog.2021.108378_bib0032) 2015
Lecun (10.1016/j.patcog.2021.108378_bib0007) 1998; 86
Dong (10.1016/j.patcog.2021.108378_bib0027) 2013
Wang (10.1016/j.patcog.2021.108378_bib0004) 2015; 48
Russakovsky (10.1016/j.patcog.2021.108378_bib0022) 2015; 115
Passalis (10.1016/j.patcog.2021.108378_bib0033) 2020; 105
10.1016/j.patcog.2021.108378_bib0006
Dollár (10.1016/j.patcog.2021.108378_sbref0026) 2013
Yan (10.1016/j.patcog.2021.108378_bib0003) 2011; 44
Tsang (10.1016/j.patcog.2021.108378_bib0009) 2007; 40
Forsythe (10.1016/j.patcog.2021.108378_bib0012) 1997; 10
Ye (10.1016/j.patcog.2021.108378_bib0030) 2007
Banos (10.1016/j.patcog.2021.108378_bib0023) 2015; 14
10.1016/j.patcog.2021.108378_bib0021
Ronneberger (10.1016/j.patcog.2021.108378_bib0034) 2015
Zampoglou (10.1016/j.patcog.2021.108378_bib0025) 2017; 76
Tipping (10.1016/j.patcog.2021.108378_bib0010) 1999; 61
Laub (10.1016/j.patcog.2021.108378_bib0014) 2004
Chicco (10.1016/j.patcog.2021.108378_bib0035) 2020; 21
Lyu (10.1016/j.patcog.2021.108378_bib0029) 2014; 110
Horn (10.1016/j.patcog.2021.108378_bib0037) 2012
Fukunaga (10.1016/j.patcog.2021.108378_bib0008) 1990
Duda (10.1016/j.patcog.2021.108378_bib0001) 2001
References_xml – reference: (2018).
– volume: 10
  start-page: 99
  year: 1997
  end-page: 126
  ident: bib0012
  article-title: Utilizing waveform features for adaptive beamforming and direction finding with narrowband signals
  publication-title: Lincoln Lab. J.
– volume: 27
  start-page: 1497
  year: 2009
  end-page: 1503
  ident: bib0028
  article-title: Using noise inconsistencies for blind image forensics
  publication-title: Image Vis. Comput.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0007
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– year: 1990
  ident: bib0008
  article-title: Introduction to Statistical Pattern Recognition
– start-page: 1841
  year: 2013
  end-page: 1848
  ident: bib0026
  article-title: Structured forests for fast edge detection
  publication-title: Proceedings of the 2013 IEEE International Conference on Computer Vision
– reference: (2019).
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0022
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0034
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 61
  start-page: 611
  year: 1999
  end-page: 622
  ident: bib0010
  article-title: Probabilistic principal component analysis
  publication-title: J. R. Stat. Soc.
– reference: L. van der Maaten,
– start-page: 422
  year: 2013
  end-page: 426
  ident: bib0027
  article-title: CASIA image tampering detection evaluation database
  publication-title: 2013 IEEE China Summit and International Conference on Signal and Information Processing
– volume: 51
  start-page: 201
  year: 2018
  end-page: 209
  ident: bib0020
  article-title: Image splicing localization using a multi-task fully convolutional network (MFCN)
  publication-title: J. Vis. Commun. Image Represent.
– year: 2006
  ident: bib0036
  article-title: Detecting image splicing using geometry invariants and camera characteristics consistency
  publication-title: International Conference on Multimedia and Expo
– volume: 105
  start-page: 107346
  year: 2020
  ident: bib0033
  article-title: Efficient adaptive inference for deep convolutional neural networks using hierarchical early exits
  publication-title: Pattern Recognit.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0031
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2012
  ident: bib0037
  article-title: Matrix Analysis
– reference: J.D. Baron, R. Darling, K-nearest neighbor approximation via the friend-of-a-friend principle, arXiv preprint arXiv:
– volume: 76
  start-page: 4801
  year: 2017
  end-page: 4834
  ident: bib0025
  article-title: Large-scale evaluation of splicing localization algorithms for web images
  publication-title: Multimed. Tools Appl.
– volume: 40
  start-page: 2373
  year: 2007
  end-page: 2391
  ident: bib0009
  article-title: Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection
  publication-title: Pattern Recognit.
– reference: -SNE, 2020, (accessed July 21, 2020).
– start-page: 577
  year: 2011
  end-page: 586
  ident: bib0016
  article-title: Efficient k-nearest neighbor graph construction for generic similarity measures
  publication-title: Proceedings of the 20th International conference on World Wide Web
– volume: 21
  year: 2020
  ident: bib0035
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
– year: 2001
  ident: bib0001
  article-title: Pattern Classification
– start-page: 1
  year: 2007
  end-page: 8
  ident: bib0013
  article-title: Trace ratio vs. ratio trace for dimensionality reduction
  publication-title: 2007 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 48
  start-page: 3135
  year: 2015
  end-page: 3144
  ident: bib0004
  article-title: Visual data denoising with a unified Schatten-p norm and
  publication-title: Pattern Recognit.
– start-page: 12
  year: 2007
  end-page: 15
  ident: bib0030
  article-title: Detecting digital image forgeries by measuring inconsistencies of blocking artifact
  publication-title: 2007 IEEE International Conference on Multimedia and Expo
– year: 2004
  ident: bib0014
  article-title: Matrix Analysis For Scientists And Engineers
– volume: 8
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib0024
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
– volume: 7
  start-page: 479
  year: 1970
  end-page: 492
  ident: bib0015
  article-title: Ax=
  publication-title: SIAM J. Numer. Anal.
– volume: 110
  start-page: 202
  year: 2014
  end-page: 221
  ident: bib0029
  article-title: Exposing region splicing forgeries with blind local noise estimation
  publication-title: Int. J. Comput. Vis.
– year: 1998
  ident: bib0038
  article-title: The Symmetric Eigenvalue Problem
– volume: 44
  start-page: 2834
  year: 2011
  end-page: 2842
  ident: bib0003
  article-title: Correntropy based feature selection using binary projection
  publication-title: Pattern Recognit.
– volume: vol. 2
  year: 1993
  ident: bib0011
  article-title: Fundamentals of statistical signal processing: detection theory
  publication-title: Fundamentals of Statistical Signal Processing
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib0002
  article-title: Visualizing high-dimensional data using
  publication-title: J. Mach. Learn. Res.
– reference: L. McInnes, UMAP, 2021, (accessed July 28, 2021).
– reference: L. McInnes, J. Healy, J. Melville, UMAP: uniform manifold approximation and projection for dimension reduction, arXiv preprint arXiv:
– reference: Defense Advanced Research Projects Agency, Media Forensics (MediFor), 2020, (accessed July 21, 2020).
– volume: 9
  start-page: 7
  year: 2018
  ident: bib0005
  article-title: Exploring patterns enriched in a dataset with contrastive principal component analysis
  publication-title: Nat. Commun.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib0032
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 14
  year: 2015
  ident: bib0023
  article-title: Design, implementation and validation of a novel open framework for agile development of mobile health applications
  publication-title: Biomed. Eng. Online
– year: 1990
  ident: 10.1016/j.patcog.2021.108378_bib0008
– year: 2001
  ident: 10.1016/j.patcog.2021.108378_bib0001
– start-page: 1097
  year: 2012
  ident: 10.1016/j.patcog.2021.108378_bib0031
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 76
  start-page: 4801
  issue: 4
  year: 2017
  ident: 10.1016/j.patcog.2021.108378_bib0025
  article-title: Large-scale evaluation of splicing localization algorithms for web images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-3795-2
– year: 2006
  ident: 10.1016/j.patcog.2021.108378_bib0036
  article-title: Detecting image splicing using geometry invariants and camera characteristics consistency
– volume: 9
  start-page: 7
  issue: 1
  year: 2018
  ident: 10.1016/j.patcog.2021.108378_bib0005
  article-title: Exploring patterns enriched in a dataset with contrastive principal component analysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04608-8
– volume: 21
  issue: 1
  year: 2020
  ident: 10.1016/j.patcog.2021.108378_bib0035
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6413-7
– year: 2004
  ident: 10.1016/j.patcog.2021.108378_bib0014
– year: 1998
  ident: 10.1016/j.patcog.2021.108378_bib0038
– volume: 10
  start-page: 99
  issue: 2
  year: 1997
  ident: 10.1016/j.patcog.2021.108378_bib0012
  article-title: Utilizing waveform features for adaptive beamforming and direction finding with narrowband signals
  publication-title: Lincoln Lab. J.
– start-page: 422
  year: 2013
  ident: 10.1016/j.patcog.2021.108378_bib0027
  article-title: CASIA image tampering detection evaluation database
– volume: 14
  issue: Suppl 2
  year: 2015
  ident: 10.1016/j.patcog.2021.108378_bib0023
  article-title: Design, implementation and validation of a novel open framework for agile development of mobile health applications
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-14-S2-S6
– volume: 48
  start-page: 3135
  issue: 10
  year: 2015
  ident: 10.1016/j.patcog.2021.108378_bib0004
  article-title: Visual data denoising with a unified Schatten-p norm and ℓq norm regularized principal component pursuit
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.01.024
– volume: 7
  start-page: 479
  issue: 4
  year: 1970
  ident: 10.1016/j.patcog.2021.108378_bib0015
  article-title: Ax=λBx and the generalized eigenproblem
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0707039
– ident: 10.1016/j.patcog.2021.108378_bib0018
– start-page: 1841
  year: 2013
  ident: 10.1016/j.patcog.2021.108378_sbref0026
  article-title: Structured forests for fast edge detection
– volume: vol. 2
  year: 1993
  ident: 10.1016/j.patcog.2021.108378_bib0011
  article-title: Fundamentals of statistical signal processing: detection theory
– volume: 110
  start-page: 202
  issue: 2
  year: 2014
  ident: 10.1016/j.patcog.2021.108378_bib0029
  article-title: Exposing region splicing forgeries with blind local noise estimation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0688-y
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.patcog.2021.108378_bib0007
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– start-page: 12
  year: 2007
  ident: 10.1016/j.patcog.2021.108378_bib0030
  article-title: Detecting digital image forgeries by measuring inconsistencies of blocking artifact
– ident: 10.1016/j.patcog.2021.108378_bib0021
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.patcog.2021.108378_bib0024
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– volume: 61
  start-page: 611
  issue: 3
  year: 1999
  ident: 10.1016/j.patcog.2021.108378_bib0010
  article-title: Probabilistic principal component analysis
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/1467-9868.00196
– volume: 51
  start-page: 201
  year: 2018
  ident: 10.1016/j.patcog.2021.108378_bib0020
  article-title: Image splicing localization using a multi-task fully convolutional network (MFCN)
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2018.01.010
– year: 2012
  ident: 10.1016/j.patcog.2021.108378_bib0037
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.patcog.2021.108378_bib0002
  article-title: Visualizing high-dimensional data using t-SNE
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2007
  ident: 10.1016/j.patcog.2021.108378_bib0013
  article-title: Trace ratio vs. ratio trace for dimensionality reduction
– ident: 10.1016/j.patcog.2021.108378_bib0006
  doi: 10.21105/joss.00861
– volume: 40
  start-page: 2373
  issue: 9
  year: 2007
  ident: 10.1016/j.patcog.2021.108378_bib0009
  article-title: Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.12.009
– start-page: 577
  year: 2011
  ident: 10.1016/j.patcog.2021.108378_bib0016
  article-title: Efficient k-nearest neighbor graph construction for generic similarity measures
– ident: 10.1016/j.patcog.2021.108378_bib0019
– volume: 44
  start-page: 2834
  issue: 12
  year: 2011
  ident: 10.1016/j.patcog.2021.108378_bib0003
  article-title: Correntropy based feature selection using binary projection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.04.014
– start-page: 234
  year: 2015
  ident: 10.1016/j.patcog.2021.108378_bib0034
  article-title: U-Net: convolutional networks for biomedical image segmentation
– ident: 10.1016/j.patcog.2021.108378_bib0017
– start-page: 3431
  year: 2015
  ident: 10.1016/j.patcog.2021.108378_bib0032
  article-title: Fully convolutional networks for semantic segmentation
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2021.108378_bib0022
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 27
  start-page: 1497
  issue: 10
  year: 2009
  ident: 10.1016/j.patcog.2021.108378_bib0028
  article-title: Using noise inconsistencies for blind image forensics
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2009.02.001
– volume: 105
  start-page: 107346
  year: 2020
  ident: 10.1016/j.patcog.2021.108378_bib0033
  article-title: Efficient adaptive inference for deep convolutional neural networks using hierarchical early exits
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107346
SSID ssj0017142
Score 2.4015682
Snippet •In this work, we propose a new data visualization and clustering technique for discovering discriminative structures in high-dimensional data.•This technique,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108378
SubjectTerms Contrastive PCA
Dimensionality reduction
Feature learning
PCA
Title cPCA++: An efficient method for contrastive feature learning
URI https://dx.doi.org/10.1016/j.patcog.2021.108378
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS-QwFA_r6MGLuh_i55LD7mnI0CbppBEvs4OL60EG1oW5lTRJRZE6OCr--b58tB13RdeDUEIpbVryC68v7738fgh9y2xmEkkFUZIpwoXOiGTGEDXMeJUKK63QXmxCnJ7m06mcROG_uZcTEHWdPzzI2btCDdcAbLd19g1wt53CBTgH0KEF2KH9L-D1ZDz6Tn-4IwT9rGeJcDn_IBftKwt9ibqaB9Zv69k9GwWJ80WHdeL5N92el1ho1KXtf7ucfZRJ9hHmLi0U4q8DMh70T2KVTowswKK0K0iJ1pKlhNGEPbGWlC_YuzRxhPTPmuIQFbgczOCXcn0OK3GaDrrbnzJf__VHausEmxK0yyL0UrheitDLElqmIpN5Dy2Pfh1NT9rckUh54IiPX99smPRVff9-zfMOyYKTcbaB1uLqAI8Cqh_RB1t_QuuN8gaOhvgzOnQg9_sHeFTjFl4c4MUAL16AF0d4cQPvF_Tn59HZ-JhEHQyiKfgShFulaKZ5ohNlpBGWU8tlRRUD-1lyVg6VMCXPSy0sM1rZvKK5tnJoK5Mzbdgm6tXXtd1CeMgqm0gFXlnJeCXTMpOmSkshFDjKFZXbiDWDUehIEu-0Sq6Kl6DYRqR9ahZIUl65XzTjXERHLzhwBUyeF5_ceeObdtFqN7P3UO_25s7uoxV9f3sxv_kaZ84jY5tyrg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=cPCA%2B%2B%3A+An+efficient+method+for+contrastive+feature+learning&rft.jtitle=Pattern+recognition&rft.au=Salloum%2C+Ronald&rft.au=Kuo%2C+C.-C.+Jay&rft.date=2022-04-01&rft.issn=0031-3203&rft.volume=124&rft.spage=108378&rft_id=info:doi/10.1016%2Fj.patcog.2021.108378&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2021_108378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon