Using a Hybrid Genetic-Algorithm/Branch and Bound Approach to Solve Feasibility and Optimization Integer Programming Problems

The satisfiability problem in forms such as maximum satisfiability (MAX-SAT) remains a hard problem. The most successful approaches for solving such problems use a form of systematic tree search. This paper describes the use of a hybrid algorithm, combining genetic algorithms and integer programming...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of heuristics Ročník 7; číslo 6; s. 551 - 564
Hlavní autoři: French, Alan P., Robinson, Andrew C., Wilson, John M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer Nature B.V 01.11.2001
Témata:
ISSN:1381-1231, 1572-9397
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The satisfiability problem in forms such as maximum satisfiability (MAX-SAT) remains a hard problem. The most successful approaches for solving such problems use a form of systematic tree search. This paper describes the use of a hybrid algorithm, combining genetic algorithms and integer programming branch and bound approaches, to solve MAX-SAT problems. Such problems are formulated as integer programs and solved by a hybrid algorithm implemented within standard mathematical programming software. Computational testing of the algorithm, which mixes heuristic and exact approaches, is described. [PUBLICATION ABSTRACT]
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1381-1231
1572-9397
DOI:10.1023/A:1011921025322