Uncertainty-Aware Temporal Graph Convolutional Network for Traffic Speed Forecasting

Traffic speed forecasting has been a very active research area as it is essential for Intelligent Transportation Systems. Although a plethora of deep learning methods have been proposed for traffic speed forecasting, the majority of them can only make point-wise prediction, which may not provide eno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems Jg. 25; H. 8; S. 8578 - 8590
Hauptverfasser: Qian, Weizhu, Nielsen, Thomas Dyhre, Zhao, Yan, Larsen, Kim Guldstrand, Yu, James Jianqiao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2024
Schlagworte:
ISSN:1524-9050, 1558-0016
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Traffic speed forecasting has been a very active research area as it is essential for Intelligent Transportation Systems. Although a plethora of deep learning methods have been proposed for traffic speed forecasting, the majority of them can only make point-wise prediction, which may not provide enough information for critical real-world scenarios where prediction confidence also need to be estimated, e.g., route planning for ambulances and rescue vehicles. To address this issue, we propose a novel uncertainty-aware deep learning method coined Uncertainty-Aware Temporal Graph Convolutional Network (UAT-GCN). UAT-GCN employs a Graph Convolutional Network and Gated Recurrent Unit based architecture to capture spatio-temporal dependencies. In addition, UAT-GCN consists of a specialized regressor for estimating both epistemic (model-related) and aleatoric (data-related) uncertainty. In particular, UAT-GCN utilizes Monte Carlo dropout and predictive variances to estimate epistemic and aleatoric uncertainty, respectively. In addition, we also consider the recursive dependency between predictions to further improve the forecasting performance. An extensive empirical study with real datasets offers evidence that the proposed model is capable of advancing current state-of-the-arts in terms of point-wise forecasting and quantifying prediction uncertainty with high reliability. The obtained results suggest that, compared to existing methods, the RMSE and MAE of the proposed model on the SZ-taxi dataset are reduced by 2.15% and 7.23%, respectively; the RMSE and MAE of the proposed model on the Los-loop dataset are reduced by 4.17% and 8.53%, respectively.
AbstractList Traffic speed forecasting has been a very active research area as it is essential for Intelligent Transportation Systems. Although a plethora of deep learning methods have been proposed for traffic speed forecasting, the majority of them can only make point-wise prediction, which may not provide enough information for critical real-world scenarios where prediction confidence also need to be estimated, e.g., route planning for ambulances and rescue vehicles. To address this issue, we propose a novel uncertainty-aware deep learning method coined Uncertainty-Aware Temporal Graph Convolutional Network (UAT-GCN). UAT-GCN employs a Graph Convolutional Network and Gated Recurrent Unit based architecture to capture spatio-temporal dependencies. In addition, UAT-GCN consists of a specialized regressor for estimating both epistemic (model-related) and aleatoric (data-related) uncertainty. In particular, UAT-GCN utilizes Monte Carlo dropout and predictive variances to estimate epistemic and aleatoric uncertainty, respectively. In addition, we also consider the recursive dependency between predictions to further improve the forecasting performance. An extensive empirical study with real datasets offers evidence that the proposed model is capable of advancing current state-of-the-arts in terms of point-wise forecasting and quantifying prediction uncertainty with high reliability. The obtained results suggest that, compared to existing methods, the RMSE and MAE of the proposed model on the SZ-taxi dataset are reduced by 2.15% and 7.23%, respectively; the RMSE and MAE of the proposed model on the Los-loop dataset are reduced by 4.17% and 8.53%, respectively.
Author Nielsen, Thomas Dyhre
Larsen, Kim Guldstrand
Qian, Weizhu
Zhao, Yan
Yu, James Jianqiao
Author_xml – sequence: 1
  givenname: Weizhu
  orcidid: 0000-0002-2291-4028
  surname: Qian
  fullname: Qian, Weizhu
  email: wzqian@suda.edu.cn
  organization: School of Computer Science and Technology, Soochow University, Suzhou, China
– sequence: 2
  givenname: Thomas Dyhre
  surname: Nielsen
  fullname: Nielsen, Thomas Dyhre
  email: tdn@cs.aau.dk
  organization: Department of Computer Science, Aalborg University, Aalborg, Denmark
– sequence: 3
  givenname: Yan
  orcidid: 0000-0002-0242-3707
  surname: Zhao
  fullname: Zhao, Yan
  email: yanz@cs.aau.dk
  organization: Department of Computer Science, Aalborg University, Aalborg, Denmark
– sequence: 4
  givenname: Kim Guldstrand
  orcidid: 0000-0002-5953-3384
  surname: Larsen
  fullname: Larsen, Kim Guldstrand
  email: kgl@cs.aau.dk
  organization: Department of Computer Science, Aalborg University, Aalborg, Denmark
– sequence: 5
  givenname: James Jianqiao
  orcidid: 0000-0002-6392-6711
  surname: Yu
  fullname: Yu, James Jianqiao
  email: jqyu@ieee.org
  organization: Department of Computer Science, University of York, York, U.K
BookMark eNp9kMtKAzEUhoNUsK0-gOBiXmBq7plZlmIvUHTRcT2cpolGp8mQiZa-vR3ahbhwdQ4_fP_hfCM08MEbhO4JnhCCy8dqVW0mFFM-YUwKRckVGhIhihxjIgf9TnleYoFv0KjrPk4pF4QMUfXqtYkJnE_HfHqAaLLK7NsQockWEdr3bBb8d2i-kgv-lD2bdAjxM7MhZlUEa53ONq0xu2weotHQJeffbtG1haYzd5c5RtX8qZot8_XLYjWbrnNNpUy55QXIAqgpuOIYpAKBS1kKIMVOW2UJs7KEraZsp5QEBUC42m4pBiYlU2yMyLlWx9B10di6jW4P8VgTXPdW6t5K3VupL1ZOjPrDaJegfy5FcM2_5MOZdMaYX5e4KDCm7AeygnK4
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_aap_2025_108238
crossref_primary_10_1111_mice_70078
crossref_primary_10_1007_s12145_025_01964_0
crossref_primary_10_3390_math12213338
crossref_primary_10_1080_01441647_2024_2408840
crossref_primary_10_1109_TITS_2025_3551830
crossref_primary_10_1016_j_eswa_2025_129223
Cites_doi 10.1109/ACCESS.2021.3062114
10.1080/01621459.2017.1307116
10.1109/TKDE.2020.3025580
10.1257/jep.15.4.143
10.24963/ijcai.2019/264
10.1609/aaai.v33i01.3301922
10.5555/3045390.3045502
10.1109/TITS.2019.2935152
10.48550/ARXIV.1706.03762
10.1609/aaai.v34i01.5477
10.48550/arXiv.1609.03499
10.1609/aaai.v35i17.17761
10.1162/neco.1989.1.2.270
10.1145/3394486.3403118
10.24963/ijcai.2018/505
10.1109/TITS.2020.3008612
10.3115/v1/W14-4012
10.1109/TITS.2019.2929020
10.1016/j.inffus.2021.05.008
10.1109/ICNN.1994.374138
10.48550/ARXIV.1609.02907
10.1007/978-3-540-28650-9_4
10.1109/TKDE.2021.3117986
10.1145/3447548.3467325
10.1162/neco.1997.9.8.1735
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2024.3365721
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 8590
ExternalDocumentID 10_1109_TITS_2024_3365721
10458002
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-f48a68a2e84740a67a509695a18dcf7f13f69abc23d776a7aa147bb20a366373
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001181536200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Tue Nov 18 22:35:39 EST 2025
Sat Nov 29 06:35:06 EST 2025
Wed Aug 27 02:33:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-f48a68a2e84740a67a509695a18dcf7f13f69abc23d776a7aa147bb20a366373
ORCID 0000-0002-0242-3707
0000-0002-5953-3384
0000-0002-6392-6711
0000-0002-2291-4028
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TITS_2024_3365721
crossref_primary_10_1109_TITS_2024_3365721
ieee_primary_10458002
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref12
ref15
ref14
Stankeviciute (ref25); 34
ref36
Damianou (ref29)
ref11
ref10
Garipov (ref31); 31
ref1
Lakshminarayanan (ref30); 30
Jiang (ref2) 2021
ref17
ref39
ref16
ref19
ref18
Srivastava (ref38) 2014; 15
Izmailov (ref27)
Jospin (ref26) 2020
Izmailov (ref33); 2
Blundell (ref7)
Pearce (ref42)
Kendall (ref6) 2017
Wilson (ref34); 33
Fort (ref32) 2019
ref24
ref23
ref20
ref41
ref22
ref21
ref8
ref9
ref4
ref3
ref5
Welling (ref28)
ref40
Li (ref13)
Snelson (ref37)
References_xml – start-page: 524
  volume-title: Proc. Artif. Intell. Statist.
  ident: ref37
  article-title: Local and global sparse Gaussian process approximations
– ident: ref41
  doi: 10.1109/ACCESS.2021.3062114
– ident: ref24
  doi: 10.1080/01621459.2017.1307116
– volume: 2
  start-page: 876
  volume-title: Proc. 34th Conf. Uncertainty Artif. Intell.
  ident: ref33
  article-title: Averaging weights leads to wider optima and better generalization
– volume: 33
  start-page: 4697
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref34
  article-title: Bayesian deep learning and a probabilistic perspective of generalization
– ident: ref4
  doi: 10.1109/TKDE.2020.3025580
– ident: ref23
  doi: 10.1257/jep.15.4.143
– year: 2020
  ident: ref26
  article-title: Hands-on Bayesian neural networks—A tutorial for deep learning users
  publication-title: arXiv:2007.06823
– ident: ref15
  doi: 10.24963/ijcai.2019/264
– ident: ref18
  doi: 10.1609/aaai.v33i01.3301922
– ident: ref9
  doi: 10.5555/3045390.3045502
– ident: ref14
  doi: 10.1109/TITS.2019.2935152
– ident: ref17
  doi: 10.48550/ARXIV.1706.03762
– ident: ref19
  doi: 10.1609/aaai.v34i01.5477
– start-page: 4629
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref27
  article-title: What are Bayesian neural network posteriors really like?
– year: 2017
  ident: ref6
  article-title: What uncertainties do we need in Bayesian deep learning for computer vision?
  publication-title: arXiv:1703.04977
– ident: ref16
  doi: 10.48550/arXiv.1609.03499
– ident: ref21
  doi: 10.1609/aaai.v35i17.17761
– ident: ref39
  doi: 10.1162/neco.1989.1.2.270
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref38
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref40
  doi: 10.1145/3394486.3403118
– ident: ref20
  doi: 10.24963/ijcai.2018/505
– year: 2021
  ident: ref2
  article-title: Graph neural network for traffic forecasting: A survey
  publication-title: arXiv:2101.11174
– year: 2019
  ident: ref32
  article-title: Deep ensembles: A loss landscape perspective
  publication-title: arXiv:1912.02757
– ident: ref3
  doi: 10.1109/TITS.2020.3008612
– ident: ref12
  doi: 10.3115/v1/W14-4012
– ident: ref1
  doi: 10.1109/TITS.2019.2929020
– start-page: 4075
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref42
  article-title: High-quality prediction intervals for deep learning: A distribution-free, ensembled approach
– ident: ref5
  doi: 10.1016/j.inffus.2021.05.008
– ident: ref22
  doi: 10.1109/ICNN.1994.374138
– volume: 31
  start-page: 8803
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref31
  article-title: Loss surfaces, mode connectivity, and fast ensembling of DNNs
– volume: 34
  start-page: 6216
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Conformal time-series forecasting
– start-page: 207
  volume-title: Proc. Artif. Intell. Stat.
  ident: ref29
  article-title: Deep Gaussian processes
– ident: ref11
  doi: 10.48550/ARXIV.1609.02907
– ident: ref8
  doi: 10.1007/978-3-540-28650-9_4
– start-page: 681
  volume-title: Proc. 28th Int. Conf. Mach. Learn. (ICML)
  ident: ref28
  article-title: Bayesian learning via stochastic gradient Langevin dynamics
– ident: ref35
  doi: 10.1109/TKDE.2021.3117986
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref13
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
– volume: 30
  start-page: 6402
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref30
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles
– ident: ref10
  doi: 10.1145/3447548.3467325
– start-page: 1613
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref7
  article-title: Weight uncertainty in neural network
– ident: ref36
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0014511
Score 2.472464
Snippet Traffic speed forecasting has been a very active research area as it is essential for Intelligent Transportation Systems. Although a plethora of deep learning...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 8578
SubjectTerms Convolutional neural networks
Data models
Deep learning
Forecasting
gated recurrent unit
graph convolutional network
Predictive models
Roads
spatio-temporal model
Traffic speed forecasting
Uncertainty
uncertainty quantification
Title Uncertainty-Aware Temporal Graph Convolutional Network for Traffic Speed Forecasting
URI https://ieeexplore.ieee.org/document/10458002
Volume 25
WOSCitedRecordID wos001181536200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86fNAHPyfOL_Lgk9DZNGnSPo7hF8gQVmVv5ZqmIIxubN3E_95L2o35oOBLCSEh5ZeEu8vd_Y6QGy2j2Bi0TnLBtCfCWOCVAoYfZdCegEI7Jqb3FzUYRKNR_Nokq7tcGGOMCz4zXdt0vvx8ohf2qQxvuAgjRx25rZSsk7XWLgNLtOXIUQNczg9XLkzmx3fJczJEUzAQXc5lqAL2QwhtVFVxQuXh4J-_c0j2G-2R9urtPiJbpjwmexucgickecNtdG7-6svrfcLM0KSmnxrTR8tOTfuTctkcOOwb1HHgFJVXioLLMkrQ4RRlGrVVOzXMbVx0myQP90n_yWtKJ3gaJW7lFSICGUGAeCtEXCqwNC9xCCzKdaEKxgsZQ6YDniOSoACYUFkW-MBRBVH8lLTKSWnOCNWiCLkUfsa5FjmXoLngecR4HoBiBe8QfwVlqhtacVvdYpw688KPU4t-atFPG_Q75HY9ZVpzavw1uG2R3xhYg37-S_8F2bXT6xi9S9KqZgtzRXb0svqYz67dkfkGp6i9pA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBfXgz4nzZw6ehM6mSZP2OIZzw1mEVdmtZGkKwujG1k38731JuzEPCl5KCSktXxLee33vfR9Cd4oHodYQnaSMKIf5IYMjJQlchIZ4QmbKMjG990UUBcNh-Fo1q9teGK21LT7TTXNrc_npRC3MrzI44cwPLHXktpHOqtq11kkDQ7Vl6VE9eKHrr5KYxA0f4l48gGDQY01KuS888sMMbeiqWLPSOfznBx2hg8p_xK1ywY_Rls5P0P4Gq-Apit9gIW2iv_hyWp9ypnFcElCN8ZPhp8btSb6sthyMRWUlOAb3FYPpMpwSeDAFq4aNbqeSc1MZXUdx5zFud51KPMFRYHMLJ2OB5IH0AHEBmHMhDdFL6EsSpCoTGaEZD-VIeTQVgkshJWFiNPJcScEJEfQM1fJJrs8RVizzKWfuiFLFUsqlooymAaGpJwXJaAO5KygTVRGLG32LcWIDDDdMDPqJQT-p0G-g-_Uj05JV46_JdYP8xsQS9Itfxm_Rbjd-6Sf9XvR8ifa8VdEeuUK1YrbQ12hHLYuP-ezGbp9vtZrA4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty-Aware+Temporal+Graph+Convolutional+Network+for+Traffic+Speed+Forecasting&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Qian%2C+Weizhu&rft.au=Nielsen%2C+Thomas+Dyhre&rft.au=Zhao%2C+Yan&rft.au=Larsen%2C+Kim+Guldstrand&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=25&rft.issue=8&rft.spage=8578&rft.epage=8590&rft_id=info:doi/10.1109%2FTITS.2024.3365721&rft.externalDocID=10458002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon