Learning-Based Risk-Bounded Path Planning Under Environmental Uncertainty

Building a general and efficient path planning framework in uncertain nonconvex environments is challenging due to the safety constraints and complex configuration. Traditional avenues usually involve convexifying obstacles and presume Gaussian distribution, which are not universal. Meanwhile, the f...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 21; no. 3; pp. 4460 - 4470
Main Authors: Meng, Fei, Chen, Liangliang, Ma, Han, Wang, Jiankun, Meng, Max Q.-H.
Format: Journal Article
Language:English
Published: IEEE 01.07.2024
Subjects:
ISSN:1545-5955, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Building a general and efficient path planning framework in uncertain nonconvex environments is challenging due to the safety constraints and complex configuration. Traditional avenues usually involve convexifying obstacles and presume Gaussian distribution, which are not universal. Meanwhile, the fast convergence of high-quality solutions is not guaranteed. Therefore, we develop a novel neural risk-bounded path planner to quickly find near-optimal solutions that have an acceptable collision probability in the complex environments. Firstly, we retrieve the nonconvex obstacles with arbitrary probabilistic uncertainties in the form of a deterministic point cloud map. A neural network sampler encodes it into a latent embedding and is trained with sufficient expert demonstrations, predicting states in the potential subspace. We construct a neural cost estimator to select the best informed state from those samples. Then, we recursively use the simple yet effective neural networks to march toward the start and goal bidirectionally. The collision risk of the intermediate connections is verified based on sum-of-squares optimization. Simulation results show that our approach significantly saves time and resources in finding comparable solutions over the state-of-the-art methods in the seen and unseen challenging environments. Note to Practitioners-More and more robots are deployed in unstructured environments, such as forests and subterranean caves. However, uncertainty in the environment situational awareness usually causes accidents. To quickly generate safe paths without over-conservation in uncertain complex environments, we propose a neural risk-bounded sampling-based path planner. Conventional methods consume lots of computation time and resources to generate satisfactory results. Our learning-based risk-bounded path planning framework can efficiently find paths with a guaranteed risk tolerance avoiding uncertain nonconvex static obstacles. It imitates the expert to generate informed states in a subspace that potentially contains the optimal solution. In practice, we need to formulate the observed uncertain obstacle at a grid map into the polynomial containing random variables and determine their probability distributions.
AbstractList Building a general and efficient path planning framework in uncertain nonconvex environments is challenging due to the safety constraints and complex configuration. Traditional avenues usually involve convexifying obstacles and presume Gaussian distribution, which are not universal. Meanwhile, the fast convergence of high-quality solutions is not guaranteed. Therefore, we develop a novel neural risk-bounded path planner to quickly find near-optimal solutions that have an acceptable collision probability in the complex environments. Firstly, we retrieve the nonconvex obstacles with arbitrary probabilistic uncertainties in the form of a deterministic point cloud map. A neural network sampler encodes it into a latent embedding and is trained with sufficient expert demonstrations, predicting states in the potential subspace. We construct a neural cost estimator to select the best informed state from those samples. Then, we recursively use the simple yet effective neural networks to march toward the start and goal bidirectionally. The collision risk of the intermediate connections is verified based on sum-of-squares optimization. Simulation results show that our approach significantly saves time and resources in finding comparable solutions over the state-of-the-art methods in the seen and unseen challenging environments. Note to Practitioners-More and more robots are deployed in unstructured environments, such as forests and subterranean caves. However, uncertainty in the environment situational awareness usually causes accidents. To quickly generate safe paths without over-conservation in uncertain complex environments, we propose a neural risk-bounded sampling-based path planner. Conventional methods consume lots of computation time and resources to generate satisfactory results. Our learning-based risk-bounded path planning framework can efficiently find paths with a guaranteed risk tolerance avoiding uncertain nonconvex static obstacles. It imitates the expert to generate informed states in a subspace that potentially contains the optimal solution. In practice, we need to formulate the observed uncertain obstacle at a grid map into the polynomial containing random variables and determine their probability distributions.
Author Chen, Liangliang
Wang, Jiankun
Ma, Han
Meng, Fei
Meng, Max Q.-H.
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0001-9225-040X
  surname: Meng
  fullname: Meng, Fei
  email: feimeng@link.cuhk.edu.hk
  organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
– sequence: 2
  givenname: Liangliang
  orcidid: 0000-0002-9594-640X
  surname: Chen
  fullname: Chen, Liangliang
  email: liangliang.chen@gatech.edu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 3
  givenname: Han
  orcidid: 0000-0003-1960-5432
  surname: Ma
  fullname: Ma, Han
  email: hanma@link.cuhk.edu.hk
  organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
– sequence: 4
  givenname: Jiankun
  orcidid: 0000-0001-9139-0291
  surname: Wang
  fullname: Wang, Jiankun
  email: wangjk@sustech.edu.cn
  organization: Department of Electronic and Electrical Engineering, Shenzhen Key Laboratory of Robotics Perception and Intelligence, Southern University of Science and Technology, Shenzhen, China
– sequence: 5
  givenname: Max Q.-H.
  orcidid: 0000-0002-5255-5898
  surname: Meng
  fullname: Meng, Max Q.-H.
  email: max.meng@ieee.org
  organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
BookMark eNp9kMtOwzAQRS0EEm3hA5BY5AdS_IgTe9lWBSpVooJ2HU38AEPqINsg9e9J1C4QC1Yzc3XPLM4YnfvOG4RuCJ4SguXddvaynFJM2ZRRWZGqPEMjwrnIWSXY-bAXPOeS80s0jvEdY1oIiUdotTYQvPOv-Ryi0dmzix_5vPvyuj82kN6yTQt-KGS7PgvZ0n-70Pm98QnaPlMmJHA-Ha7QhYU2muvTnKDd_XK7eMzXTw-rxWydK1qWKTdCaWYlLzXFRaEIkdRIIWSjtMBGgGRAQHEhiSWFYY2gpdJgpbVaN5g1bIKq418VuhiDsbVyCZLrfArg2prgejBSD0bqwUh9MtKT5A_5GdwewuFf5vbIOGPMrz7FFWaU_QCsWG-O
CODEN ITASC7
CitedBy_id crossref_primary_10_3390_s24248177
crossref_primary_10_1109_TASE_2024_3363624
crossref_primary_10_1109_ACCESS_2025_3600283
crossref_primary_10_1109_LRA_2024_3463332
Cites_doi 10.1049/csy2.12020
10.1109/tase.2022.3215562
10.1177/0278364912456319
10.1109/CDC.2018.8618744
10.1109/ICRA.2018.8461096
10.1109/ICRA.2012.6225337
10.1109/TASE.2021.3121408
10.1109/IROS45743.2020.9341193
10.1109/70.508439
10.1177/0278364913501564
10.1016/j.isatra.2020.10.044
10.1109/ICRA40945.2020.9196785
10.1109/IROS.2018.8593893
10.1109/TAC.2020.3008126
10.1109/TRO.2018.2878996
10.1177/0278364918778338
10.1109/TASE.2021.3118737
10.1177/0278364911406761
10.1017/cbo9780511546877
10.15607/RSS.2019.XV.056
10.1109/ICRA46639.2022.9811363
10.1109/LRA.2019.2901898
10.1109/TRO.2018.2830331
10.1109/IROS.2015.7353740
10.1007/s11071-019-04879-w
10.1109/TASE.2020.2976560
10.1109/MED.2018.8442967
10.1109/TIV.2022.3152740
10.1109/MCS.2016.2602087
10.15607/rss.2021.xvii.069
10.2514/6.2010-8160
10.1007/978-3-319-60916-4_20
10.1109/TRO.2020.3006716
10.1016/j.apm.2022.08.009
10.1109/LRA.2022.3156654
10.15607/RSS.2021.XVII.021
10.1109/LRA.2020.2975759
10.1109/ROBOT.2010.5509683
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2023.3297176
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 4470
ExternalDocumentID 10_1109_TASE_2023_3297176
10207032
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62103181
  funderid: 10.13039/501100001809
– fundername: Hong Kong Research Grants Council (RGC)’s Collaborative Research Fund (CRF)
  grantid: C4063-18G
– fundername: Shenzhen Outstanding Scientific and Technological Innovation Talents Training Project
  grantid: RCBS20221008093305007
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-e8cd3f956d2044c1192e9889bcd80e8a93a1ac5891f14e3b826cdaf9ffddb03b3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001043270300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sat Nov 29 04:12:49 EST 2025
Tue Nov 18 19:41:25 EST 2025
Wed Aug 27 02:15:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-e8cd3f956d2044c1192e9889bcd80e8a93a1ac5891f14e3b826cdaf9ffddb03b3
ORCID 0000-0002-5255-5898
0000-0001-9225-040X
0000-0002-9594-640X
0000-0003-1960-5432
0000-0001-9139-0291
PageCount 11
ParticipantIDs crossref_primary_10_1109_TASE_2023_3297176
ieee_primary_10207032
crossref_citationtrail_10_1109_TASE_2023_3297176
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
LaValle (ref10) 1998
ref12
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
Qi (ref40)
ref18
ApS (ref45) 2019; 4
Srivastava (ref42) 2014; 15
Dixit (ref26) 2022
ref24
ref46
ref23
ref25
ref20
ref41
ref22
ref21
ref43
ref28
Tobenkin (ref44) 2013
ref27
ref29
ref8
Flaspohler (ref36); 33
ref7
ref9
ref4
ref3
ref6
ref5
Kingma (ref47) 2014
Ding (ref34) 2022
References_xml – ident: ref35
  doi: 10.1049/csy2.12020
– ident: ref23
  doi: 10.1109/tase.2022.3215562
– ident: ref25
  doi: 10.1177/0278364912456319
– ident: ref8
  doi: 10.1109/CDC.2018.8618744
– ident: ref37
  doi: 10.1109/ICRA.2018.8461096
– year: 2013
  ident: ref44
  article-title: Spotless polynomial and conic optimization
– year: 1998
  ident: ref10
  article-title: Rapidly-exploring random trees: A new tool for path planning
– ident: ref41
  doi: 10.1109/ICRA.2012.6225337
– ident: ref14
  doi: 10.1109/TASE.2021.3121408
– ident: ref17
  doi: 10.1109/IROS45743.2020.9341193
– year: 2022
  ident: ref34
  article-title: Safety-aware optimal control for motion planning with low computing complexity
  publication-title: arXiv:2204.13380
– ident: ref9
  doi: 10.1109/70.508439
– ident: ref19
  doi: 10.1177/0278364913501564
– ident: ref6
  doi: 10.1016/j.isatra.2020.10.044
– ident: ref24
  doi: 10.1109/ICRA40945.2020.9196785
– ident: ref20
  doi: 10.1109/IROS.2018.8593893
– volume: 15
  start-page: 1929
  issue: 56
  year: 2014
  ident: ref42
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref29
  doi: 10.1109/TAC.2020.3008126
– ident: ref5
  doi: 10.1109/TRO.2018.2878996
– ident: ref16
  doi: 10.1177/0278364918778338
– ident: ref30
  doi: 10.1109/TASE.2021.3118737
– ident: ref46
  doi: 10.1177/0278364911406761
– start-page: 652
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  ident: ref40
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
– ident: ref11
  doi: 10.1017/cbo9780511546877
– ident: ref21
  doi: 10.15607/RSS.2019.XV.056
– ident: ref22
  doi: 10.1109/ICRA46639.2022.9811363
– ident: ref38
  doi: 10.1109/LRA.2019.2901898
– volume: 33
  start-page: 11108
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref36
  article-title: Belief-dependent macro-action discovery in POMDPs using the value of information
– ident: ref12
  doi: 10.1109/TRO.2018.2830331
– ident: ref28
  doi: 10.1109/IROS.2015.7353740
– ident: ref27
  doi: 10.1007/s11071-019-04879-w
– ident: ref39
  doi: 10.1109/TASE.2020.2976560
– ident: ref32
  doi: 10.1109/MED.2018.8442967
– year: 2014
  ident: ref47
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref3
  doi: 10.1109/TIV.2022.3152740
– ident: ref4
  doi: 10.1109/MCS.2016.2602087
– ident: ref15
  doi: 10.15607/rss.2021.xvii.069
– ident: ref18
  doi: 10.2514/6.2010-8160
– ident: ref7
  doi: 10.1007/978-3-319-60916-4_20
– ident: ref13
  doi: 10.1109/TRO.2020.3006716
– year: 2022
  ident: ref26
  article-title: Risk-averse receding horizon motion planning
  publication-title: arXiv:2204.09596
– ident: ref31
  doi: 10.1016/j.apm.2022.08.009
– ident: ref2
  doi: 10.1109/LRA.2022.3156654
– ident: ref1
  doi: 10.15607/RSS.2021.XVII.021
– ident: ref33
  doi: 10.1109/LRA.2020.2975759
– volume: 4
  start-page: 1
  year: 2019
  ident: ref45
  article-title: Mosek optimization toolbox for MATLAB
  publication-title: User’s Guide Reference Manual
– ident: ref43
  doi: 10.1109/ROBOT.2010.5509683
SSID ssj0024890
Score 2.4250276
Snippet Building a general and efficient path planning framework in uncertain nonconvex environments is challenging due to the safety constraints and complex...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 4460
SubjectTerms Collision avoidance
deep learning methods
Environmental factors
Path planning
Planning
Probabilistic logic
risk-bounded path planning
Robots
Sampling-based algorithm
Three-dimensional displays
Uncertainty
Title Learning-Based Risk-Bounded Path Planning Under Environmental Uncertainty
URI https://ieeexplore.ieee.org/document/10207032
Volume 21
WOSCitedRecordID wos001043270300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46POjBnxPnL3rwJGS2TZomx002FGQM3WS30iavMpRNtk7wv_cl7dw8KHhrS1LK19e-973kvY-Qq0wg6TLAqOSGUw4RpzIVIRXaNq8CbZRLZT8_xL2eHI1UvypWd7UwAOA2n0HTHrq1fDPVC5sqwy88tBaKf9zNOBZlsdaqsZ50CRUbEtBIRVG1hBn46mbQeuo0rU54k4UK-Yv44YTWVFWcU-nu_fNx9sluFT16rfJ1H5ANmBySnbWegkfkvuqY-kLb6KCM9ziev9K2FU_Ckz7Ge95Sp8hzmkdeZ1XqhrceohG4TQLFZ50Mu53B7R2t9BKoRjdbUJDasBwJjwl9znWAwRsoKVWmjfRBpoqlQaqtjGAecGAZMgtt0lzluTGZzzJ2TGqT6QROiCcxrGAGMgXIz2IlU5bHPBUZM0YFWogG8ZcAJrpqJm41Ld4SRyp8lVjME4t5UmHeINffU97LThp_Da5bvNcGllCf_nL9jGzjdF7uoz0ntWK2gAuypT-K8Xx26QzlC0PIunI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA4yBfXBnxPnzz74JGS2Tdolj5tsbDjH0E32VtrkKkPZZOsE_3svaXXzQcG3tqShfL327kvu7iPkKgmRdGlgVHDNKYeAUxGHPg2VaV4FSku7lP3UrfV6YjSS_aJY3dbCAIBNPoOqObR7-XqqFmapDL9w31go_nHXA859Ny_XWrbWE3ZJxQQFNJBBUGxieq68GdQfm1WjFF5lvkQGE_5wQyu6KtattHb_-UB7ZKeIH516_sL3yRpMDsj2SlfBQ9IpeqY-0wa6KO08jOcvtGHkk_CkjxGf86VU5FjVI6e5LHbDqYdoBjZNIPsok2GrObht00IxgSp0tBkFoTRLkfJo3-VceRi-gRRCJkoLF0QsWezFyggJph4HliC3UDpOZZpqnbgsYUekNJlO4Jg4AgMLpiGRgAytJkXM0hqPw4RpLT0VhhXifgEYqaKduFG1eI0srXBlZDCPDOZRgXmFXH_f8pb30vhrcNngvTIwh_rkl-uXZLM9uO9G3U7v7pRs4VQ8z6o9I6VstoBzsqHes_F8dmGN5hMkP725
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Based+Risk-Bounded+Path+Planning+Under+Environmental+Uncertainty&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Meng%2C+Fei&rft.au=Chen%2C+Liangliang&rft.au=Ma%2C+Han&rft.au=Wang%2C+Jiankun&rft.date=2024-07-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=21&rft.issue=3&rft.spage=4460&rft.epage=4470&rft_id=info:doi/10.1109%2FTASE.2023.3297176&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2023_3297176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon