Competitive Multitasking for Computational Resource Allocation in Evolutionary-Constrained Multiobjective Optimization
Constrained multiobjective optimization problems (CMOPs) have multiple objective functions that need to be optimized and constraints need to be satisfied, making them difficult to solve. Based on the multitasking optimization, the optimization of the original CMOP can be transformed into multiple re...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 29; H. 3; S. 809 - 821 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2025
|
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Constrained multiobjective optimization problems (CMOPs) have multiple objective functions that need to be optimized and constraints need to be satisfied, making them difficult to solve. Based on the multitasking optimization, the optimization of the original CMOP can be transformed into multiple related subtasks. Existing multitasking-based constrained multiobjective optimization evolutionary algorithms assist the evolution of the original problem by adopting auxiliary tasks. However, this approach may waste computational resources on tasks that are unsuitable for evolutionary states and dynamics. In this article, a new competitive multitasking-based framework is proposed for CMOPs. We maintain an archive for the constrained Pareto front (CPF) and multiple subtasks as auxiliaries. In each iteration, one of the subtasks is selected as the main task, and offspring are generated from its evolution. The offspring are viewed as knowledge and fed back to auxiliary tasks. The reward is mapped to a selection probability to control the main task selection in each iteration. Computational resources are saved by allocating only to the main task that is better suited for different evolutionary stages of different problems. The effectiveness of our approach is validated through experiments on four CMOP benchmark suites compared to 11 state-of-the-art methods. |
|---|---|
| AbstractList | Constrained multiobjective optimization problems (CMOPs) have multiple objective functions that need to be optimized and constraints need to be satisfied, making them difficult to solve. Based on the multitasking optimization, the optimization of the original CMOP can be transformed into multiple related subtasks. Existing multitasking-based constrained multiobjective optimization evolutionary algorithms assist the evolution of the original problem by adopting auxiliary tasks. However, this approach may waste computational resources on tasks that are unsuitable for evolutionary states and dynamics. In this article, a new competitive multitasking-based framework is proposed for CMOPs. We maintain an archive for the constrained Pareto front (CPF) and multiple subtasks as auxiliaries. In each iteration, one of the subtasks is selected as the main task, and offspring are generated from its evolution. The offspring are viewed as knowledge and fed back to auxiliary tasks. The reward is mapped to a selection probability to control the main task selection in each iteration. Computational resources are saved by allocating only to the main task that is better suited for different evolutionary stages of different problems. The effectiveness of our approach is validated through experiments on four CMOP benchmark suites compared to 11 state-of-the-art methods. |
| Author | Chu, Xiaoliang Ming, Fei Gong, Wenyin |
| Author_xml | – sequence: 1 givenname: Xiaoliang orcidid: 0009-0000-3331-8638 surname: Chu fullname: Chu, Xiaoliang organization: School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 2 givenname: Fei orcidid: 0000-0003-1042-8206 surname: Ming fullname: Ming, Fei organization: School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 3 givenname: Wenyin orcidid: 0000-0003-1610-6865 surname: Gong fullname: Gong, Wenyin email: wygong@cug.edu.cn organization: School of Computer Science, China University of Geosciences, Wuhan, China |
| BookMark | eNp9kF1LwzAUhoNMcJv-AMGL_oHOfHRJcznKdMJkIFO8K2l2IplZM5p2oL_efuxCvPDqHE7yvCd5JmhU-hIQuiV4RgiW99vlWzajmCYzxgQXVF6gMZEJiTGmfNT2OJWxEOn7FZqEsMeYJHMix-iU-cMRalvbE0TPjWs7FT5t-REZX0XdYVOr2vpSuegFgm8qDdHCOa_7aWTLaHnyrumvVF9x5stQV8qWsBvifLEH3advjrU92O-eu0aXRrkAN-c6Ra8Py222itebx6dssY415byOgaTYKKHAJFTIOdYF01rAXGNqCqCggSVMSAkyLQjRPOGKE13suCmI4dKwKSJDrq58CBWY_FjZQ_vQnOC8E5d34vJOXH4W1zLiD6Pt4KD7mPuXvBtICwC_NiWCMizZD1CVgtU |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_127768 crossref_primary_10_1016_j_ins_2024_121836 crossref_primary_10_1109_TSMC_2025_3577732 crossref_primary_10_1007_s10586_025_05223_1 crossref_primary_10_1016_j_eswa_2024_125618 crossref_primary_10_1016_j_eswa_2025_126908 crossref_primary_10_1016_j_swevo_2024_101817 crossref_primary_10_1016_j_swevo_2024_101823 crossref_primary_10_3390_machines13080705 crossref_primary_10_1016_j_asoc_2024_112428 crossref_primary_10_1016_j_swevo_2025_101904 crossref_primary_10_3390_pr12050869 crossref_primary_10_3390_math13071191 crossref_primary_10_1016_j_ins_2024_121648 |
| Cites_doi | 10.1109/TSMC.2023.3299570 10.1109/TEVC.2022.3230822 10.1080/03052150210915 10.1109/CEC.2009.4982949 10.1109/TETCI.2022.3146882 10.1016/j.swevo.2018.08.017 10.1007/s00500-019-03794-x 10.1007/978-3-030-12598-1_27 10.1016/j.swevo.2022.101055 10.1109/TEVC.2007.892759 10.1109/TCYB.2021.3056176 10.1016/j.ins.2021.01.029 10.1109/MCI.2023.3245719 10.1109/MCI.2017.2742868 10.1109/TEVC.2022.3175065 10.1016/0098-1354(89)85053-7 10.1109/TCYB.2022.3178132 10.1109/TSC.2018.2793266 10.1016/j.eswa.2023.119550 10.1109/TEVC.2022.3141819 10.1162/evco_a_00259 10.1109/TEVC.2022.3155533 10.1109/TEVC.2021.3089155 10.1109/4235.996017 10.1109/TEVC.2018.2855411 10.1007/s12293-021-00349-2 10.1109/JAS.2023.123336 10.1109/TEVC.2013.2281534 10.1109/TCYB.2022.3151974 10.1007/s00500-021-05880-5 10.1109/MCI.2020.3039066 10.1109/TSMC.2021.3069986 10.1016/j.ins.2022.03.030 10.1109/TEVC.2021.3066301 10.1109/TETCI.2023.3236633 10.3934/math.2021365 10.1109/TEVC.2008.925798 10.1016/j.swevo.2021.101020 10.1109/SSCI.2016.7850038 10.1080/03052159908941390 10.1109/TEVC.2019.2894743 10.1109/TSMC.2019.2943973 10.1109/TCYB.2015.2409837 10.1109/TEVC.2020.3004012 10.1109/TEVC.2022.3145582 10.1109/TEVC.2015.2458037 10.1109/4235.797969 10.1049/cth2.12399 10.1109/TETCI.2017.2769104 10.1109/tevc.2023.3270483 10.1109/TCYB.2020.3021138 10.1109/TEVC.2020.2981949 10.1155/2018/5316379 10.1109/TEVC.2021.3055538 10.5957/jsr.2004.48.1.61 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2024.3376729 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 821 |
| ExternalDocumentID | 10_1109_TEVC_2024_3376729 10472309 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62076225 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c266t-e180fa7aef427950cb3cc7e5c02fbe2ece343799e98b11c646a61cbd6fb1f69f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499693300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sat Nov 29 07:52:58 EST 2025 Tue Nov 18 21:32:53 EST 2025 Wed Aug 27 01:50:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c266t-e180fa7aef427950cb3cc7e5c02fbe2ece343799e98b11c646a61cbd6fb1f69f3 |
| ORCID | 0000-0003-1042-8206 0000-0003-1610-6865 0009-0000-3331-8638 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2024_3376729 crossref_citationtrail_10_1109_TEVC_2024_3376729 ieee_primary_10472309 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 Zitzler (ref35) 2001 ref46 ref45 ref48 ref47 ref42 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Deb (ref41) 1995; 9 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Coello (ref55) 2007; 5 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref52 doi: 10.1109/TSMC.2023.3299570 – ident: ref10 doi: 10.1109/TEVC.2022.3230822 – ident: ref53 doi: 10.1080/03052150210915 – ident: ref32 doi: 10.1109/CEC.2009.4982949 – ident: ref33 doi: 10.1109/TETCI.2022.3146882 – ident: ref14 doi: 10.1016/j.swevo.2018.08.017 – ident: ref45 doi: 10.1007/s00500-019-03794-x – ident: ref49 doi: 10.1007/978-3-030-12598-1_27 – ident: ref23 doi: 10.1016/j.swevo.2022.101055 – ident: ref40 doi: 10.1109/TEVC.2007.892759 – ident: ref18 doi: 10.1109/TCYB.2021.3056176 – ident: ref21 doi: 10.1016/j.ins.2021.01.029 – ident: ref29 doi: 10.1109/MCI.2023.3245719 – ident: ref38 doi: 10.1109/MCI.2017.2742868 – ident: ref9 doi: 10.1109/TEVC.2022.3175065 – ident: ref58 doi: 10.1016/0098-1354(89)85053-7 – ident: ref30 doi: 10.1109/TCYB.2022.3178132 – ident: ref3 doi: 10.1109/TSC.2018.2793266 – ident: ref31 doi: 10.1016/j.eswa.2023.119550 – ident: ref11 doi: 10.1109/TEVC.2022.3141819 – volume: 9 start-page: 115 issue: 2 year: 1995 ident: ref41 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst. – ident: ref44 doi: 10.1162/evco_a_00259 – year: 2001 ident: ref35 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm – ident: ref12 doi: 10.1109/TEVC.2022.3155533 – ident: ref24 doi: 10.1109/TEVC.2021.3089155 – ident: ref42 doi: 10.1109/4235.996017 – ident: ref15 doi: 10.1109/TEVC.2018.2855411 – ident: ref27 doi: 10.1007/s12293-021-00349-2 – ident: ref37 doi: 10.1109/JAS.2023.123336 – ident: ref43 doi: 10.1109/TEVC.2013.2281534 – ident: ref22 doi: 10.1109/TCYB.2022.3151974 – ident: ref25 doi: 10.1007/s00500-021-05880-5 – ident: ref7 doi: 10.1109/MCI.2020.3039066 – ident: ref17 doi: 10.1109/TSMC.2021.3069986 – ident: ref39 doi: 10.1016/j.ins.2022.03.030 – ident: ref19 doi: 10.1109/TEVC.2021.3066301 – ident: ref36 doi: 10.1109/TETCI.2023.3236633 – ident: ref28 doi: 10.3934/math.2021365 – ident: ref34 doi: 10.1109/TEVC.2008.925798 – ident: ref26 doi: 10.1016/j.swevo.2021.101020 – ident: ref5 doi: 10.1109/SSCI.2016.7850038 – ident: ref54 doi: 10.1080/03052159908941390 – ident: ref46 doi: 10.1109/TEVC.2019.2894743 – ident: ref47 doi: 10.1109/TSMC.2019.2943973 – ident: ref1 doi: 10.1109/TCYB.2015.2409837 – ident: ref13 doi: 10.1109/TEVC.2020.3004012 – ident: ref8 doi: 10.1109/TEVC.2022.3145582 – ident: ref4 doi: 10.1109/TEVC.2015.2458037 – ident: ref50 doi: 10.1109/4235.797969 – ident: ref51 doi: 10.1049/cth2.12399 – ident: ref6 doi: 10.1109/TETCI.2017.2769104 – ident: ref48 doi: 10.1109/tevc.2023.3270483 – ident: ref16 doi: 10.1109/TCYB.2020.3021138 – volume: 5 volume-title: Evolutionary Algorithms for Solving Multi-Objective Problems year: 2007 ident: ref55 – ident: ref20 doi: 10.1109/TEVC.2020.2981949 – ident: ref57 doi: 10.1155/2018/5316379 – ident: ref2 doi: 10.1109/TEVC.2021.3055538 – ident: ref56 doi: 10.5957/jsr.2004.48.1.61 |
| SSID | ssj0014519 |
| Score | 2.53289 |
| Snippet | Constrained multiobjective optimization problems (CMOPs) have multiple objective functions that need to be optimized and constraints need to be satisfied,... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 809 |
| SubjectTerms | Competitive multitasking computational resource allocation constrained multiobjective optimization evolutionary algorithms evolutionary transfer optimization Linear programming Multitasking Optimization Resource management Sociology Statistics Task analysis |
| Title | Competitive Multitasking for Computational Resource Allocation in Evolutionary-Constrained Multiobjective Optimization |
| URI | https://ieeexplore.ieee.org/document/10472309 |
| Volume | 29 |
| WOSCitedRecordID | wos001499693300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0BYigDHwXEtzwwIaXEdkjisaqKmApDQd2inHORQNCiUirx78nZbukCEltkJZal5_iez773AC4NJlIp1FGVxxglmOZRnmoZVahZHkrnZEpnNpENBvloZB5CsbqrhSEid_mMOvzozvKrif3kVNk1ywo0lNmsw3qWpb5Ya3lkwDop_ja9aShjPgpHmDI218P-U6_ZCqqko1m8xNHJnyC04qrigsrtzj-HswvbgT2Krod7D9Zo3IadhTODCD9qG7ZWZAbb0GJG6QWZ92Hec0zZXRkSvvy2_OB8uWjoq_BdhQShWOT2RfeVYx63iuex6M_DfC2nXxE7fjqfCap8dxN88YuouG-Wo7dQ53kAj7f9Ye8uCuYLkW1i9iwimcd1mZVUJyozN7FFbW1GNzZWNZIiS5qlDA2ZHKW0aZKWqbRYpTXKOjW1PoSN8WRMRyB4i0KJrRquUicGLaJWpUFlUGKdZOUxxAs0ChuUyXngr4XbocSmYAALBrAIAB7D1fKTdy_L8dfLBwzeyoset5Nf2k-hpdjl1-VazmBjNv2kc9i08waq6YWbdd_KH9it |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RQCo98LFQ8Vl84IQUiD82iY9otQgEXTgsaG9RxplIrehutYWV-PfN2F7YC5V6i6zEsvQcz_PY8x7AiUUjlUKd1EWKicGsSIpMy6RGzfJQuiBbebOJfDAoRiN7H4vVfS0MEfnLZ3TGj_4sv564F06VnbOsQEuZ7SdY6Rqj0lCu9XZowEop4T69bUljMYqHmDK158P-Y6_dDCpzplm-xBPK9zC04Kviw8rlxn8OaBPWI38UFwHwLViicQc25t4MIv6qHfiyIDTYgTXmlEGSeRtmPc-V_aUhEQpwqz-cMRctgRWhq5giFPPsvrh44qjHreLHWPRnccZW09eEPT-90wTVobsJ_gzLqLhrF6RfsdJzBx4u-8PeVRLtFxLXRu3nhGSRNlVeUWNUbrupQ-1cTl2XqgZJkSPNYoaWbIFSusxkVSYd1lmDsslso7_C8ngypl0QvEkh4-qWrTTGokPUqrKoLEpsTF7tQTpHo3RRm5wH_lT6PUpqSwawZADLCOAenL598jsIc_zr5R0Gb-HFgNv-B-3H8Plq-P22vL0e3BzAmmLPX595OYTl5-kLHcGqm7WwTb_5GfgXMRHb9A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competitive+Multitasking+for+Computational+Resource+Allocation+in+Evolutionary-Constrained+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Chu%2C+Xiaoliang&rft.au=Ming%2C+Fei&rft.au=Gong%2C+Wenyin&rft.date=2025-06-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=29&rft.issue=3&rft.spage=809&rft.epage=821&rft_id=info:doi/10.1109%2FTEVC.2024.3376729&rft.externalDocID=10472309 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |