Competitive Multitasking for Computational Resource Allocation in Evolutionary-Constrained Multiobjective Optimization

Constrained multiobjective optimization problems (CMOPs) have multiple objective functions that need to be optimized and constraints need to be satisfied, making them difficult to solve. Based on the multitasking optimization, the optimization of the original CMOP can be transformed into multiple re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 29; H. 3; S. 809 - 821
Hauptverfasser: Chu, Xiaoliang, Ming, Fei, Gong, Wenyin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2025
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Constrained multiobjective optimization problems (CMOPs) have multiple objective functions that need to be optimized and constraints need to be satisfied, making them difficult to solve. Based on the multitasking optimization, the optimization of the original CMOP can be transformed into multiple related subtasks. Existing multitasking-based constrained multiobjective optimization evolutionary algorithms assist the evolution of the original problem by adopting auxiliary tasks. However, this approach may waste computational resources on tasks that are unsuitable for evolutionary states and dynamics. In this article, a new competitive multitasking-based framework is proposed for CMOPs. We maintain an archive for the constrained Pareto front (CPF) and multiple subtasks as auxiliaries. In each iteration, one of the subtasks is selected as the main task, and offspring are generated from its evolution. The offspring are viewed as knowledge and fed back to auxiliary tasks. The reward is mapped to a selection probability to control the main task selection in each iteration. Computational resources are saved by allocating only to the main task that is better suited for different evolutionary stages of different problems. The effectiveness of our approach is validated through experiments on four CMOP benchmark suites compared to 11 state-of-the-art methods.
AbstractList Constrained multiobjective optimization problems (CMOPs) have multiple objective functions that need to be optimized and constraints need to be satisfied, making them difficult to solve. Based on the multitasking optimization, the optimization of the original CMOP can be transformed into multiple related subtasks. Existing multitasking-based constrained multiobjective optimization evolutionary algorithms assist the evolution of the original problem by adopting auxiliary tasks. However, this approach may waste computational resources on tasks that are unsuitable for evolutionary states and dynamics. In this article, a new competitive multitasking-based framework is proposed for CMOPs. We maintain an archive for the constrained Pareto front (CPF) and multiple subtasks as auxiliaries. In each iteration, one of the subtasks is selected as the main task, and offspring are generated from its evolution. The offspring are viewed as knowledge and fed back to auxiliary tasks. The reward is mapped to a selection probability to control the main task selection in each iteration. Computational resources are saved by allocating only to the main task that is better suited for different evolutionary stages of different problems. The effectiveness of our approach is validated through experiments on four CMOP benchmark suites compared to 11 state-of-the-art methods.
Author Chu, Xiaoliang
Ming, Fei
Gong, Wenyin
Author_xml – sequence: 1
  givenname: Xiaoliang
  orcidid: 0009-0000-3331-8638
  surname: Chu
  fullname: Chu, Xiaoliang
  organization: School of Computer Science, China University of Geosciences, Wuhan, China
– sequence: 2
  givenname: Fei
  orcidid: 0000-0003-1042-8206
  surname: Ming
  fullname: Ming, Fei
  organization: School of Computer Science, China University of Geosciences, Wuhan, China
– sequence: 3
  givenname: Wenyin
  orcidid: 0000-0003-1610-6865
  surname: Gong
  fullname: Gong, Wenyin
  email: wygong@cug.edu.cn
  organization: School of Computer Science, China University of Geosciences, Wuhan, China
BookMark eNp9kF1LwzAUhoNMcJv-AMGL_oHOfHRJcznKdMJkIFO8K2l2IplZM5p2oL_efuxCvPDqHE7yvCd5JmhU-hIQuiV4RgiW99vlWzajmCYzxgQXVF6gMZEJiTGmfNT2OJWxEOn7FZqEsMeYJHMix-iU-cMRalvbE0TPjWs7FT5t-REZX0XdYVOr2vpSuegFgm8qDdHCOa_7aWTLaHnyrumvVF9x5stQV8qWsBvifLEH3advjrU92O-eu0aXRrkAN-c6Ra8Py222itebx6dssY415byOgaTYKKHAJFTIOdYF01rAXGNqCqCggSVMSAkyLQjRPOGKE13suCmI4dKwKSJDrq58CBWY_FjZQ_vQnOC8E5d34vJOXH4W1zLiD6Pt4KD7mPuXvBtICwC_NiWCMizZD1CVgtU
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_eswa_2025_127768
crossref_primary_10_1016_j_ins_2024_121836
crossref_primary_10_1109_TSMC_2025_3577732
crossref_primary_10_1007_s10586_025_05223_1
crossref_primary_10_1016_j_eswa_2024_125618
crossref_primary_10_1016_j_eswa_2025_126908
crossref_primary_10_1016_j_swevo_2024_101817
crossref_primary_10_1016_j_swevo_2024_101823
crossref_primary_10_3390_machines13080705
crossref_primary_10_1016_j_asoc_2024_112428
crossref_primary_10_1016_j_swevo_2025_101904
crossref_primary_10_3390_pr12050869
crossref_primary_10_3390_math13071191
crossref_primary_10_1016_j_ins_2024_121648
Cites_doi 10.1109/TSMC.2023.3299570
10.1109/TEVC.2022.3230822
10.1080/03052150210915
10.1109/CEC.2009.4982949
10.1109/TETCI.2022.3146882
10.1016/j.swevo.2018.08.017
10.1007/s00500-019-03794-x
10.1007/978-3-030-12598-1_27
10.1016/j.swevo.2022.101055
10.1109/TEVC.2007.892759
10.1109/TCYB.2021.3056176
10.1016/j.ins.2021.01.029
10.1109/MCI.2023.3245719
10.1109/MCI.2017.2742868
10.1109/TEVC.2022.3175065
10.1016/0098-1354(89)85053-7
10.1109/TCYB.2022.3178132
10.1109/TSC.2018.2793266
10.1016/j.eswa.2023.119550
10.1109/TEVC.2022.3141819
10.1162/evco_a_00259
10.1109/TEVC.2022.3155533
10.1109/TEVC.2021.3089155
10.1109/4235.996017
10.1109/TEVC.2018.2855411
10.1007/s12293-021-00349-2
10.1109/JAS.2023.123336
10.1109/TEVC.2013.2281534
10.1109/TCYB.2022.3151974
10.1007/s00500-021-05880-5
10.1109/MCI.2020.3039066
10.1109/TSMC.2021.3069986
10.1016/j.ins.2022.03.030
10.1109/TEVC.2021.3066301
10.1109/TETCI.2023.3236633
10.3934/math.2021365
10.1109/TEVC.2008.925798
10.1016/j.swevo.2021.101020
10.1109/SSCI.2016.7850038
10.1080/03052159908941390
10.1109/TEVC.2019.2894743
10.1109/TSMC.2019.2943973
10.1109/TCYB.2015.2409837
10.1109/TEVC.2020.3004012
10.1109/TEVC.2022.3145582
10.1109/TEVC.2015.2458037
10.1109/4235.797969
10.1049/cth2.12399
10.1109/TETCI.2017.2769104
10.1109/tevc.2023.3270483
10.1109/TCYB.2020.3021138
10.1109/TEVC.2020.2981949
10.1155/2018/5316379
10.1109/TEVC.2021.3055538
10.5957/jsr.2004.48.1.61
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2024.3376729
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 821
ExternalDocumentID 10_1109_TEVC_2024_3376729
10472309
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62076225
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-e180fa7aef427950cb3cc7e5c02fbe2ece343799e98b11c646a61cbd6fb1f69f3
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499693300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Nov 29 07:52:58 EST 2025
Tue Nov 18 21:32:53 EST 2025
Wed Aug 27 01:50:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-e180fa7aef427950cb3cc7e5c02fbe2ece343799e98b11c646a61cbd6fb1f69f3
ORCID 0000-0003-1042-8206
0000-0003-1610-6865
0009-0000-3331-8638
PageCount 13
ParticipantIDs crossref_primary_10_1109_TEVC_2024_3376729
crossref_citationtrail_10_1109_TEVC_2024_3376729
ieee_primary_10472309
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
Zitzler (ref35) 2001
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Deb (ref41) 1995; 9
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Coello (ref55) 2007; 5
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref52
  doi: 10.1109/TSMC.2023.3299570
– ident: ref10
  doi: 10.1109/TEVC.2022.3230822
– ident: ref53
  doi: 10.1080/03052150210915
– ident: ref32
  doi: 10.1109/CEC.2009.4982949
– ident: ref33
  doi: 10.1109/TETCI.2022.3146882
– ident: ref14
  doi: 10.1016/j.swevo.2018.08.017
– ident: ref45
  doi: 10.1007/s00500-019-03794-x
– ident: ref49
  doi: 10.1007/978-3-030-12598-1_27
– ident: ref23
  doi: 10.1016/j.swevo.2022.101055
– ident: ref40
  doi: 10.1109/TEVC.2007.892759
– ident: ref18
  doi: 10.1109/TCYB.2021.3056176
– ident: ref21
  doi: 10.1016/j.ins.2021.01.029
– ident: ref29
  doi: 10.1109/MCI.2023.3245719
– ident: ref38
  doi: 10.1109/MCI.2017.2742868
– ident: ref9
  doi: 10.1109/TEVC.2022.3175065
– ident: ref58
  doi: 10.1016/0098-1354(89)85053-7
– ident: ref30
  doi: 10.1109/TCYB.2022.3178132
– ident: ref3
  doi: 10.1109/TSC.2018.2793266
– ident: ref31
  doi: 10.1016/j.eswa.2023.119550
– ident: ref11
  doi: 10.1109/TEVC.2022.3141819
– volume: 9
  start-page: 115
  issue: 2
  year: 1995
  ident: ref41
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– ident: ref44
  doi: 10.1162/evco_a_00259
– year: 2001
  ident: ref35
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref12
  doi: 10.1109/TEVC.2022.3155533
– ident: ref24
  doi: 10.1109/TEVC.2021.3089155
– ident: ref42
  doi: 10.1109/4235.996017
– ident: ref15
  doi: 10.1109/TEVC.2018.2855411
– ident: ref27
  doi: 10.1007/s12293-021-00349-2
– ident: ref37
  doi: 10.1109/JAS.2023.123336
– ident: ref43
  doi: 10.1109/TEVC.2013.2281534
– ident: ref22
  doi: 10.1109/TCYB.2022.3151974
– ident: ref25
  doi: 10.1007/s00500-021-05880-5
– ident: ref7
  doi: 10.1109/MCI.2020.3039066
– ident: ref17
  doi: 10.1109/TSMC.2021.3069986
– ident: ref39
  doi: 10.1016/j.ins.2022.03.030
– ident: ref19
  doi: 10.1109/TEVC.2021.3066301
– ident: ref36
  doi: 10.1109/TETCI.2023.3236633
– ident: ref28
  doi: 10.3934/math.2021365
– ident: ref34
  doi: 10.1109/TEVC.2008.925798
– ident: ref26
  doi: 10.1016/j.swevo.2021.101020
– ident: ref5
  doi: 10.1109/SSCI.2016.7850038
– ident: ref54
  doi: 10.1080/03052159908941390
– ident: ref46
  doi: 10.1109/TEVC.2019.2894743
– ident: ref47
  doi: 10.1109/TSMC.2019.2943973
– ident: ref1
  doi: 10.1109/TCYB.2015.2409837
– ident: ref13
  doi: 10.1109/TEVC.2020.3004012
– ident: ref8
  doi: 10.1109/TEVC.2022.3145582
– ident: ref4
  doi: 10.1109/TEVC.2015.2458037
– ident: ref50
  doi: 10.1109/4235.797969
– ident: ref51
  doi: 10.1049/cth2.12399
– ident: ref6
  doi: 10.1109/TETCI.2017.2769104
– ident: ref48
  doi: 10.1109/tevc.2023.3270483
– ident: ref16
  doi: 10.1109/TCYB.2020.3021138
– volume: 5
  volume-title: Evolutionary Algorithms for Solving Multi-Objective Problems
  year: 2007
  ident: ref55
– ident: ref20
  doi: 10.1109/TEVC.2020.2981949
– ident: ref57
  doi: 10.1155/2018/5316379
– ident: ref2
  doi: 10.1109/TEVC.2021.3055538
– ident: ref56
  doi: 10.5957/jsr.2004.48.1.61
SSID ssj0014519
Score 2.53289
Snippet Constrained multiobjective optimization problems (CMOPs) have multiple objective functions that need to be optimized and constraints need to be satisfied,...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 809
SubjectTerms Competitive multitasking
computational resource allocation
constrained multiobjective optimization
evolutionary algorithms
evolutionary transfer optimization
Linear programming
Multitasking
Optimization
Resource management
Sociology
Statistics
Task analysis
Title Competitive Multitasking for Computational Resource Allocation in Evolutionary-Constrained Multiobjective Optimization
URI https://ieeexplore.ieee.org/document/10472309
Volume 29
WOSCitedRecordID wos001499693300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0BYigDHwXEtzwwIaXEdkjisaqKmApDQd2inHORQNCiUirx78nZbukCEltkJZal5_iez773AC4NJlIp1FGVxxglmOZRnmoZVahZHkrnZEpnNpENBvloZB5CsbqrhSEid_mMOvzozvKrif3kVNk1ywo0lNmsw3qWpb5Ya3lkwDop_ja9aShjPgpHmDI218P-U6_ZCqqko1m8xNHJnyC04qrigsrtzj-HswvbgT2Krod7D9Zo3IadhTODCD9qG7ZWZAbb0GJG6QWZ92Hec0zZXRkSvvy2_OB8uWjoq_BdhQShWOT2RfeVYx63iuex6M_DfC2nXxE7fjqfCap8dxN88YuouG-Wo7dQ53kAj7f9Ye8uCuYLkW1i9iwimcd1mZVUJyozN7FFbW1GNzZWNZIiS5qlDA2ZHKW0aZKWqbRYpTXKOjW1PoSN8WRMRyB4i0KJrRquUicGLaJWpUFlUGKdZOUxxAs0ChuUyXngr4XbocSmYAALBrAIAB7D1fKTdy_L8dfLBwzeyoset5Nf2k-hpdjl1-VazmBjNv2kc9i08waq6YWbdd_KH9it
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RQCo98LFQ8Vl84IQUiD82iY9otQgEXTgsaG9RxplIrehutYWV-PfN2F7YC5V6i6zEsvQcz_PY8x7AiUUjlUKd1EWKicGsSIpMy6RGzfJQuiBbebOJfDAoRiN7H4vVfS0MEfnLZ3TGj_4sv564F06VnbOsQEuZ7SdY6Rqj0lCu9XZowEop4T69bUljMYqHmDK158P-Y6_dDCpzplm-xBPK9zC04Kviw8rlxn8OaBPWI38UFwHwLViicQc25t4MIv6qHfiyIDTYgTXmlEGSeRtmPc-V_aUhEQpwqz-cMRctgRWhq5giFPPsvrh44qjHreLHWPRnccZW09eEPT-90wTVobsJ_gzLqLhrF6RfsdJzBx4u-8PeVRLtFxLXRu3nhGSRNlVeUWNUbrupQ-1cTl2XqgZJkSPNYoaWbIFSusxkVSYd1lmDsslso7_C8ngypl0QvEkh4-qWrTTGokPUqrKoLEpsTF7tQTpHo3RRm5wH_lT6PUpqSwawZADLCOAenL598jsIc_zr5R0Gb-HFgNv-B-3H8Plq-P22vL0e3BzAmmLPX595OYTl5-kLHcGqm7WwTb_5GfgXMRHb9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competitive+Multitasking+for+Computational+Resource+Allocation+in+Evolutionary-Constrained+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Chu%2C+Xiaoliang&rft.au=Ming%2C+Fei&rft.au=Gong%2C+Wenyin&rft.date=2025-06-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=29&rft.issue=3&rft.spage=809&rft.epage=821&rft_id=info:doi/10.1109%2FTEVC.2024.3376729&rft.externalDocID=10472309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon