Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders

Invoice document digitization is crucial for efficient management in industries. The scanned invoice image is often noisy due to various reasons. This affects the OCR (optical character recognition) detection accuracy. In this paper, letter data obtained from images of invoices are denoised using a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers, materials & continua Ročník 71; číslo 1; s. 1371 - 1386
Hlavní autoři: Ibrahim, Muhammad, Hanif, Muhammad, Ahmad, Shabir, Jamil, Faisal, Sehar, Tayyaba, Lee, YunJung, Kim, DoHyeun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Henderson Tech Science Press 2022
Témata:
ISSN:1546-2226, 1546-2218, 1546-2226
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Invoice document digitization is crucial for efficient management in industries. The scanned invoice image is often noisy due to various reasons. This affects the OCR (optical character recognition) detection accuracy. In this paper, letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method. A stacked denoising autoencoder (SDAE) is implemented with two hidden layers each in encoder network and decoder network. In order to capture the most salient features of training samples, a undercomplete autoencoder is designed with non-linear encoder and decoder function. This autoencoder is regularized for denoising application using a combined loss function which considers both mean square error and binary cross entropy. A dataset consisting of 59,119 letter images, which contains both English alphabets (upper and lower case) and numbers (0 to 9) is prepared from many scanned invoices images and windows true type (.ttf) files, are used for training the neural network. Performance is analyzed in terms of Signal to Noise Ratio (SNR), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and Universal Image Quality Index (UQI) and compared with other filtering techniques like Nonlocal Means filter, Anisotropic diffusion filter, Gaussian filters and Mean filters. Denoising performance of proposed SDAE is compared with existing SDAE with single loss function in terms of SNR and PSNR values. Results show the superior performance of proposed SDAE method.
AbstractList Invoice document digitization is crucial for efficient management in industries. The scanned invoice image is often noisy due to various reasons. This affects the OCR (optical character recognition) detection accuracy. In this paper, letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method. A stacked denoising autoencoder (SDAE) is implemented with two hidden layers each in encoder network and decoder network. In order to capture the most salient features of training samples, a undercomplete autoencoder is designed with non-linear encoder and decoder function. This autoencoder is regularized for denoising application using a combined loss function which considers both mean square error and binary cross entropy. A dataset consisting of 59,119 letter images, which contains both English alphabets (upper and lower case) and numbers (0 to 9) is prepared from many scanned invoices images and windows true type (.ttf) files, are used for training the neural network. Performance is analyzed in terms of Signal to Noise Ratio (SNR), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and Universal Image Quality Index (UQI) and compared with other filtering techniques like Nonlocal Means filter, Anisotropic diffusion filter, Gaussian filters and Mean filters. Denoising performance of proposed SDAE is compared with existing SDAE with single loss function in terms of SNR and PSNR values. Results show the superior performance of proposed SDAE method.
Author Hanif, Muhammad
Sehar, Tayyaba
Kim, DoHyeun
Jamil, Faisal
Lee, YunJung
Ibrahim, Muhammad
Ahmad, Shabir
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Ibrahim
  fullname: Ibrahim, Muhammad
– sequence: 2
  givenname: Muhammad
  surname: Hanif
  fullname: Hanif, Muhammad
– sequence: 3
  givenname: Shabir
  surname: Ahmad
  fullname: Ahmad, Shabir
– sequence: 4
  givenname: Faisal
  surname: Jamil
  fullname: Jamil, Faisal
– sequence: 5
  givenname: Tayyaba
  surname: Sehar
  fullname: Sehar, Tayyaba
– sequence: 6
  givenname: YunJung
  surname: Lee
  fullname: Lee, YunJung
– sequence: 7
  givenname: DoHyeun
  surname: Kim
  fullname: Kim, DoHyeun
BookMark eNpNkD1rwzAQhkVJoUnavaOhs1N9WbbGkH4kEOiQZhaydApOaymV7EL_fZ24Q4fjPV4e7uCZoYkPHhC6J3jBqMD80bRmQTGli2F4UV2hKSm4yCmlYvJvv0GzlI4YM8EknqL1E_jQpMYfsi10HcRs0-oDpMzF0GY7o70Hm238d2jM0O4v5K7T5mOol30XwJtgIaZbdO30Z4K7v5yj_cvz-2qdb99eN6vlNjdUiC631gFnIHntSopLQYg1mmpeCW0NwbZ2hlYCitIxXhDrSEVlrR2A1KR0jrM5ehjvnmL46iF16hj66IeX6qxBSomxHCg8UiaGlCI4dYpNq-OPIlhdfKnBlzr7UqMv9gsCGmBr
Cites_doi 10.1007/s10796-014-9527-0
10.1089/big.2020.0284
10.1109/97.995823
10.1109/TIP.2018.2811546
10.1109/TIP.2007.901238
10.1109/MSP.2011.2179329
10.1109/TASSP.1986.1164857
10.1007/s11276-021-02554-w
10.1109/82.749102
10.1080/08839514.2014.954344
10.1137/040605412
10.1016/j.neunet.2020.07.025
10.1109/TCS.1987.1086066
10.1016/j.imavis.2008.06.006
10.1109/TPAMI.2016.2596743
10.2166/wst.2020.369
10.1016/S0262-8856(99)00020-7
10.1137/040616024
10.1109/83.869182
10.1109/TIP.2014.2316423
10.1109/83.503916
10.1186/s42492-019-0016-7
10.1109/TIP.2006.881969
10.1109/JSAIT.2020.2991563
10.1109/TIP.2003.819861
10.1016/j.patcog.2013.05.014
10.1109/ACCESS.2020.3011705
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2022.022458
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 1386
ExternalDocumentID 10_32604_cmc_2022_022458
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
COVID
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c266t-ddfe43e94bf7207611dca2a486adc10dbfc286e57f3451df1829bafee9a17ff43
IEDL.DBID BENPR
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000717553300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Sun Jun 29 16:33:04 EDT 2025
Sat Nov 29 03:13:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-ddfe43e94bf7207611dca2a486adc10dbfc286e57f3451df1829bafee9a17ff43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2604999009?pq-origsite=%requestingapplication%
PQID 2604999009
PQPubID 2048737
PageCount 16
ParticipantIDs proquest_journals_2604999009
crossref_primary_10_32604_cmc_2022_022458
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Jain (ref5) 2016; 18
Liang (ref39) 2015
Bernstein (ref13) 1987; 34
Sit (ref32) 2020; 82
Fan (ref2) 2019; 2
Fan (ref6) 2001
Gu (ref24) 2014
Wang (ref12) 1999; 46
Elad (ref21) 2006; 15
Zuo (ref27) 2014; 23
Dabov (ref20) 2007; 16
Hong (ref15) 2000; 18
Wang (ref43) 2002; 9
Osher (ref22) 2005; 4
Khayyat (ref29) 2020; 8
Xu (ref36) 2015
Buades (ref16) 2005; 4
Shoren (ref30) 2021; 8
Vincent (ref41) 2010; 11
Barni (ref10) 2000; 9
Li (ref18) 2009; 27
Elgendy (ref33) 2021; 9
Krizhevsky (ref34) 2012; 25
Buades (ref19) 2005; 2
Al-Khaffaf (ref9) 2008
Goodfellow (ref40) 2016; 1
Tian (ref35) 2020; 131
Farahanirad (ref8) 2011
Hari (ref14) 2013; 46
Saba (ref17) 2014; 28
Mairal (ref25) 2009
Pitas (ref7) 1986; 34
Milanfar (ref3) 2012; 30
Abreu (ref11) 1996; 5
Elgendy (ref31) 2021; 27
Jain (ref37) 2008; 21
Wang (ref42) 2004; 13
Ongie (ref28) 2020; 1
Xu (ref1) 2018; 27
Schmidt (ref23) 2014
Chen (ref26) 2016; 39
Motwani (ref4) 2004
Vincent (ref38) 2008
References_xml – volume: 18
  start-page: 159
  year: 2016
  ident: ref5
  article-title: A survey of edge-preserving image denoising methods
  publication-title: Information Systems Frontiers
  doi: 10.1007/s10796-014-9527-0
– volume: 9
  start-page: 265
  year: 2021
  ident: ref33
  article-title: Advanced deep learning for resource allocation and security aware data offloading in industrial mobile edge computing
  publication-title: Journal of Big Data
  doi: 10.1089/big.2020.0284
– start-page: 1184
  year: 2015
  ident: ref36
  article-title: Denoising convolutional neural network
– volume: 9
  start-page: 81
  year: 2002
  ident: ref43
  article-title: A universal image quality index
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/97.995823
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref41
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– volume: 27
  start-page: 2996
  year: 2018
  ident: ref1
  article-title: External prior guided internal prior learning for real-world noisy image denoising
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2018.2811546
– volume: 16
  start-page: 2080
  year: 2007
  ident: ref20
  article-title: Image denoising by sparse 3-d transform-domain collaborative filtering
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2007.901238
– volume: 30
  start-page: 106
  year: 2012
  ident: ref3
  article-title: A tour of modern image filtering: New insights and methods, both practical and theoretical
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2011.2179329
– volume: 34
  start-page: 573
  year: 1986
  ident: ref7
  article-title: Nonlinear mean filters in image processing
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
  doi: 10.1109/TASSP.1986.1164857
– volume: 2
  start-page: 60
  year: 2005
  ident: ref19
  article-title: A non-local algorithm for image denoising
– volume: 27
  start-page: 2023
  year: 2021
  ident: ref31
  article-title: Joint computation offloading and task caching for multi-user and multi-task MEC systems: Reinforcement learning-based algorithms
  publication-title: Wireless Networks
  doi: 10.1007/s11276-021-02554-w
– start-page: 34
  year: 2001
  ident: ref6
  article-title: Binarizing document image using coplanar prefilter
– volume: 46
  start-page: 78
  year: 1999
  ident: ref12
  article-title: Progressive switching median filter for the removal of impulse noise from highly corrupted images
  publication-title: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processin
  doi: 10.1109/82.749102
– volume: 1
  start-page: 496
  year: 2016
  ident: ref40
  article-title: Autoencoders
  publication-title: Deep Learning
– volume: 28
  start-page: 879
  year: 2014
  ident: ref17
  article-title: Evaluation of current documents image denoising techniques: A comparative study
  publication-title: Applied Artificial Intelligence
  doi: 10.1080/08839514.2014.954344
– volume: 4
  start-page: 460
  year: 2005
  ident: ref22
  article-title: An iterative regularization method for total variation-based image restoration
  publication-title: Multiscale Modeling & Simulation
  doi: 10.1137/040605412
– volume: 131
  start-page: 251
  year: 2020
  ident: ref35
  article-title: Deep learning on image denoising: An overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.07.025
– volume: 34
  start-page: 1275
  year: 1987
  ident: ref13
  article-title: Adaptive nonlinear filters for simultaneous removal of different kinds of noise in images
  publication-title: IEEE Transactions on Circuits and Systems
  doi: 10.1109/TCS.1987.1086066
– start-page: 697
  year: 2015
  ident: ref39
  article-title: Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network
– volume: 27
  start-page: 623
  year: 2009
  ident: ref18
  article-title: Support vector regression based image denoising
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2008.06.006
– volume: 39
  start-page: 1256
  year: 2016
  ident: ref26
  article-title: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2596743
– volume: 82
  start-page: 2635
  year: 2020
  ident: ref32
  article-title: A comprehensive review of deep learning applications in hydrology and water resources
  publication-title: Water Science Technology
  doi: 10.2166/wst.2020.369
– volume: 18
  start-page: 573
  year: 2000
  ident: ref15
  article-title: An edge-preserving sub-band coding model based on non-adaptive and adaptive regularization
  publication-title: Image and Vision Computing
  doi: 10.1016/S0262-8856(99)00020-7
– volume: 4
  start-page: 490
  year: 2005
  ident: ref16
  article-title: A review of image denoising algorithms, with a new one
  publication-title: Multiscale Modeling & Simulation
  doi: 10.1137/040616024
– start-page: 1096
  year: 2008
  ident: ref38
  article-title: Extracting and composing robust features with denoising autoencoders
– start-page: 2862
  year: 2014
  ident: ref24
  article-title: Weighted nuclear norm minimization with application to image denoising
– volume: 21
  start-page: 769
  year: 2008
  ident: ref37
  article-title: Natural image denoising with convolutional networks
  publication-title: Advances in Neural Information Processing System
– volume: 9
  start-page: 1704
  year: 2000
  ident: ref10
  article-title: A quasi-euclidean norm to speed up vector median filtering
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.869182
– volume: 23
  start-page: 2459
  year: 2014
  ident: ref27
  article-title: Gradient histogram estimation and preservation for texture enhanced image denoising
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2014.2316423
– volume: 5
  start-page: 1012
  year: 1996
  ident: ref11
  article-title: A new efficient approach for the removal of impulse noise from highly corrupted images
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.503916
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref34
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2272
  year: 2009
  ident: ref25
  article-title: Non-local sparse models for image restoration
– volume: 8
  start-page: 1
  year: 2021
  ident: ref30
  article-title: Deep learning applications for COVID-19
  publication-title: Journal of Big Data
– volume: 2
  start-page: 1
  year: 2019
  ident: ref2
  article-title: Brief review of image denoising techniques
  publication-title: Visual Computing for Industry, Biomedicine, and Art
  doi: 10.1186/s42492-019-0016-7
– volume: 15
  start-page: 3736
  year: 2006
  ident: ref21
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2006.881969
– volume: 1
  start-page: 39
  year: 2020
  ident: ref28
  article-title: Deep learning techniques for inverse problems in imaging
  publication-title: IEEE Journal on Selected Areas in Information Theory
  doi: 10.1109/JSAIT.2020.2991563
– volume: 13
  start-page: 600
  year: 2004
  ident: ref42
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– start-page: 475
  year: 2011
  ident: ref8
  article-title: A hybrid edge detection algorithm for salt-and-pepper noise
– volume: 46
  start-page: 3198
  year: 2013
  ident: ref14
  article-title: Unsharp masking using quadratic filter for the enhancement of fingerprints in noisy background
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2013.05.014
– volume: 8
  start-page: 137052
  year: 2020
  ident: ref29
  article-title: Advanced deep learning-based computational offloading for multilevel vehicular edge-cloud computing networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011705
– start-page: 27
  year: 2004
  ident: ref4
  article-title: Survey of image denoising techniques
– start-page: 1
  year: 2008
  ident: ref9
  article-title: Removing salt-and-pepper noise from binary images of engineering drawings
– start-page: 2774
  year: 2014
  ident: ref23
  article-title: Shrinkage fields for effective image restoration
SSID ssj0036390
Score 2.2604685
Snippet Invoice document digitization is crucial for efficient management in industries. The scanned invoice image is often noisy due to various reasons. This affects...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1371
SubjectTerms Coders
Image quality
Machine learning
Neural networks
Noise reduction
Object recognition
Optical character recognition
Signal to noise ratio
Training
Title Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders
URI https://www.proquest.com/docview/2604999009
Volume 71
WOSCitedRecordID wos000717553300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWChPEWhIA8sDKF14uYxoQKt2oEqQiCVKXL8kBialCbt7-cucQQsLEwZElmR7-67z2f7PkJuBFBYzQD9fKWEw2XKnTASviNcoU3kM18NRSU2Eczn4WIRxbbgVthjlQ0mVkCtcok18j7wbiTnQAnuV58Oqkbh7qqV0NglbexUBn7efhjP45cGiz3Iv9WVyCH3HReyWb1R6eFgfbnEFoaue4dpDCXffyam37hcJZtJ57-_eUgOLM2ko9ovjsiOzo5Jp5FwoDaiT8j0SWf5B9YLaH2xh86WgDAFxWsn8JlAGKazbJsjoNDqgAEFggqxr-hoU-bYBxPPQp-St8n49XHqWHEFR0JOLh2ljOaejnhqAheLGUxJMBAPfaEkG6jUSDf09TAwHh8yZWAdEqXCaB0JFhjDvTPSyvJMnxPqaVhmSqY8bOYu3YFIAyZdmfoSyIc0gy65bWY2WdU9NBJYe1RWSMAKCVohqa3QJb1mXhMbTUXyPakXf7--JPs4Vl0i6ZFWud7oK7Int-VHsb62zgHPePYcv38B0tPFRA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsNAEB1BQIKGGxHOLaCgMMTrjR0XCCEgihWIUoAElVnvIaWIDTlA_BTfyIwPAQ0dBbWt1dpv9N6bPWYADiVaWOMi-_laS0eoRDitUPqO5NLY0Hd93ZR5s4mg12s9PIT9Gfio7sLQscqKE3Oi1pmiNfJT9N1kztESnD-_ONQ1inZXqxYaRVh0zfsbpmzjs-gK8T3ivH19d9lxyq4CjkIxmjhaWyM8E4rEBpyyeFcrnJlo-VIrt6ETq3jLN83AeqLpaosGPEykNSaUbmCt8HDcWZgTFOw1mOtHt_3Hivs91Pv8CmZT-A5H9Sw2Rj2a_KkaUslEzk9INqnF_Hch_KkDubi1l__bb1mBpdJGs4si7ldhxqRrsFy1qGAlY61D58qk2YDWQ1hxcYlFQ2TQMaNrNfiaJJlhUfqaEWGy_AAFQwOO3KbZxXSSUZ1POuu9Afd_8j2bUEuz1GwB8wym0crVHhWrV7whk8BVXCW-QnOlbKMOxxWS8XNRIyTG3CpHPUbUY0I9LlCvw26FY1yyxTj-AnH798cHsNC5u72Jb6JedwcWadxiOWgXapPR1OzBvHqdDMaj_TIwGTz9NeifHyUj3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Denoising+Letter+Images+from+Scanned+Invoices+Using+Stacked+Autoencoders&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Ibrahim%2C+Muhammad&rft.au=Hanif%2C+Muhammad&rft.au=Ahmad%2C+Shabir&rft.au=Jamil%2C+Faisal&rft.date=2022&rft.issn=1546-2226&rft.volume=71&rft.issue=1&rft.spage=1371&rft.epage=1386&rft_id=info:doi/10.32604%2Fcmc.2022.022458&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_022458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon