YOLACT++ Better Real-Time Instance Segmentation
We present a simple, fully-convolutional model for real-time (<inline-formula><tex-math notation="LaTeX">>30</tex-math> <mml:math><mml:mrow><mml:mo>></mml:mo><mml:mn>30</mml:mn></mml:mrow></mml:math><inline-graphic...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 44; číslo 2; s. 1108 - 1121 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present a simple, fully-convolutional model for real-time (<inline-formula><tex-math notation="LaTeX">>30</tex-math> <mml:math><mml:mrow><mml:mo>></mml:mo><mml:mn>30</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="zhou-ieq1-3014297.gif"/> </inline-formula> fps) instance segmentation that achieves competitive results on MS COCO evaluated on a single Titan Xp, which is significantly faster than any previous state-of-the-art approach. Moreover, we obtain this result after training on only one GPU . We accomplish this by breaking instance segmentation into two parallel subtasks: (1) generating a set of prototype masks and (2) predicting per-instance mask coefficients. Then we produce instance masks by linearly combining the prototypes with the mask coefficients. We find that because this process doesn't depend on repooling, this approach produces very high-quality masks and exhibits temporal stability for free. Furthermore, we analyze the emergent behavior of our prototypes and show they learn to localize instances on their own in a translation variant manner, despite being fully-convolutional. We also propose Fast NMS, a drop-in 12 ms faster replacement for standard NMS that only has a marginal performance penalty. Finally, by incorporating deformable convolutions into the backbone network, optimizing the prediction head with better anchor scales and aspect ratios, and adding a novel fast mask re-scoring branch, our YOLACT++ model can achieve 34.1 mAP on MS COCO at 33.5 fps, which is fairly close to the state-of-the-art approaches while still running at real-time. |
|---|---|
| AbstractList | We present a simple, fully-convolutional model for real-time (<inline-formula><tex-math notation="LaTeX">>30</tex-math> <mml:math><mml:mrow><mml:mo>></mml:mo><mml:mn>30</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="zhou-ieq1-3014297.gif"/> </inline-formula> fps) instance segmentation that achieves competitive results on MS COCO evaluated on a single Titan Xp, which is significantly faster than any previous state-of-the-art approach. Moreover, we obtain this result after training on only one GPU . We accomplish this by breaking instance segmentation into two parallel subtasks: (1) generating a set of prototype masks and (2) predicting per-instance mask coefficients. Then we produce instance masks by linearly combining the prototypes with the mask coefficients. We find that because this process doesn't depend on repooling, this approach produces very high-quality masks and exhibits temporal stability for free. Furthermore, we analyze the emergent behavior of our prototypes and show they learn to localize instances on their own in a translation variant manner, despite being fully-convolutional. We also propose Fast NMS, a drop-in 12 ms faster replacement for standard NMS that only has a marginal performance penalty. Finally, by incorporating deformable convolutions into the backbone network, optimizing the prediction head with better anchor scales and aspect ratios, and adding a novel fast mask re-scoring branch, our YOLACT++ model can achieve 34.1 mAP on MS COCO at 33.5 fps, which is fairly close to the state-of-the-art approaches while still running at real-time. We present a simple, fully-convolutional model for real-time ( fps) instance segmentation that achieves competitive results on MS COCO evaluated on a single Titan Xp, which is significantly faster than any previous state-of-the-art approach. Moreover, we obtain this result after training on only one GPU. We accomplish this by breaking instance segmentation into two parallel subtasks: (1) generating a set of prototype masks and (2) predicting per-instance mask coefficients. Then we produce instance masks by linearly combining the prototypes with the mask coefficients. We find that because this process doesn't depend on repooling, this approach produces very high-quality masks and exhibits temporal stability for free. Furthermore, we analyze the emergent behavior of our prototypes and show they learn to localize instances on their own in a translation variant manner, despite being fully-convolutional. We also propose Fast NMS, a drop-in 12 ms faster replacement for standard NMS that only has a marginal performance penalty. Finally, by incorporating deformable convolutions into the backbone network, optimizing the prediction head with better anchor scales and aspect ratios, and adding a novel fast mask re-scoring branch, our YOLACT++ model can achieve 34.1 mAP on MS COCO at 33.5 fps, which is fairly close to the state-of-the-art approaches while still running at real-time. We present a simple, fully-convolutional model for real-time ( fps) instance segmentation that achieves competitive results on MS COCO evaluated on a single Titan Xp, which is significantly faster than any previous state-of-the-art approach. Moreover, we obtain this result after training on only one GPU. We accomplish this by breaking instance segmentation into two parallel subtasks: (1) generating a set of prototype masks and (2) predicting per-instance mask coefficients. Then we produce instance masks by linearly combining the prototypes with the mask coefficients. We find that because this process doesn't depend on repooling, this approach produces very high-quality masks and exhibits temporal stability for free. Furthermore, we analyze the emergent behavior of our prototypes and show they learn to localize instances on their own in a translation variant manner, despite being fully-convolutional. We also propose Fast NMS, a drop-in 12 ms faster replacement for standard NMS that only has a marginal performance penalty. Finally, by incorporating deformable convolutions into the backbone network, optimizing the prediction head with better anchor scales and aspect ratios, and adding a novel fast mask re-scoring branch, our YOLACT++ model can achieve 34.1 mAP on MS COCO at 33.5 fps, which is fairly close to the state-of-the-art approaches while still running at real-time.We present a simple, fully-convolutional model for real-time ( fps) instance segmentation that achieves competitive results on MS COCO evaluated on a single Titan Xp, which is significantly faster than any previous state-of-the-art approach. Moreover, we obtain this result after training on only one GPU. We accomplish this by breaking instance segmentation into two parallel subtasks: (1) generating a set of prototype masks and (2) predicting per-instance mask coefficients. Then we produce instance masks by linearly combining the prototypes with the mask coefficients. We find that because this process doesn't depend on repooling, this approach produces very high-quality masks and exhibits temporal stability for free. Furthermore, we analyze the emergent behavior of our prototypes and show they learn to localize instances on their own in a translation variant manner, despite being fully-convolutional. We also propose Fast NMS, a drop-in 12 ms faster replacement for standard NMS that only has a marginal performance penalty. Finally, by incorporating deformable convolutions into the backbone network, optimizing the prediction head with better anchor scales and aspect ratios, and adding a novel fast mask re-scoring branch, our YOLACT++ model can achieve 34.1 mAP on MS COCO at 33.5 fps, which is fairly close to the state-of-the-art approaches while still running at real-time. We present a simple, fully-convolutional model for real-time ([Formula Omitted] fps) instance segmentation that achieves competitive results on MS COCO evaluated on a single Titan Xp, which is significantly faster than any previous state-of-the-art approach. Moreover, we obtain this result after training on only one GPU . We accomplish this by breaking instance segmentation into two parallel subtasks: (1) generating a set of prototype masks and (2) predicting per-instance mask coefficients. Then we produce instance masks by linearly combining the prototypes with the mask coefficients. We find that because this process doesn’t depend on repooling, this approach produces very high-quality masks and exhibits temporal stability for free. Furthermore, we analyze the emergent behavior of our prototypes and show they learn to localize instances on their own in a translation variant manner, despite being fully-convolutional. We also propose Fast NMS, a drop-in 12 ms faster replacement for standard NMS that only has a marginal performance penalty. Finally, by incorporating deformable convolutions into the backbone network, optimizing the prediction head with better anchor scales and aspect ratios, and adding a novel fast mask re-scoring branch, our YOLACT++ model can achieve 34.1 mAP on MS COCO at 33.5 fps, which is fairly close to the state-of-the-art approaches while still running at real-time. |
| Author | Xiao, Fanyi Zhou, Chong Lee, Yong Jae Bolya, Daniel |
| Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0003-0223-3599 surname: Bolya fullname: Bolya, Daniel email: dbolya3@gatech.edu organization: College of Computing, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 2 givenname: Chong orcidid: 0000-0002-9776-7739 surname: Zhou fullname: Zhou, Chong email: cczhou@ucdavis.edu organization: Department of Computer Science, University of California, Davis, Davis, CA, USA – sequence: 3 givenname: Fanyi orcidid: 0000-0002-9839-1139 surname: Xiao fullname: Xiao, Fanyi email: fyxiao@ucdavis.edu organization: Department of Computer Science, University of California, Davis, Davis, CA, USA – sequence: 4 givenname: Yong Jae orcidid: 0000-0001-9863-1270 surname: Lee fullname: Lee, Yong Jae email: yongjaelee@ucdavis.edu organization: Department of Computer Science, University of California, Davis, Davis, CA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32755851$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kDtPwzAURi1URB_wB0BClViQqrR-xI49lopHpaIiCAOT5SQ3KFUeJU4G_j0uaRk6MHk555PvGaJeWZWA0CXBU0KwmoUv8-fllGKKpwwTn6rgBA0oEdhTVNEeGmAiqCcllX00tHaDHcQxO0N9RgPOJScDNPtYr-aLcDIZ30HTQD1-BZN7YVbAeFnaxpQxjN_gs4CyMU1WlefoNDW5hYv9O0LvD_fh4slbrR-Xi_nKi6kQjZcIhmPiR1QRBhHjDCssIhnTKFCSGxMLnEg_5YkiivtKcFCQ-BFwIVLFmWQjdNvtbuvqqwXb6CKzMeS5KaFqraa-m5SYuekRujlCN1Vbl-53mgoS-Mqx1FHXe6qNCkj0ts4KU3_rQwoHyA6I68raGlIdZ93NTW2yXBOsd9X1b3W9q6731Z1Kj9TD-r_SVSdlAPAnKMKVckf9AKmKiLg |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_3390_s22197131 crossref_primary_10_3390_s22176431 crossref_primary_10_1109_ACCESS_2021_3133276 crossref_primary_10_1007_s00530_023_01088_9 crossref_primary_10_1016_j_patcog_2023_110017 crossref_primary_10_1061_JCCEE5_CPENG_6768 crossref_primary_10_1016_j_actaastro_2023_01_007 crossref_primary_10_1109_TIM_2023_3298396 crossref_primary_10_3390_app131810018 crossref_primary_10_1109_LRA_2022_3188436 crossref_primary_10_3390_s23146543 crossref_primary_10_3390_en17112535 crossref_primary_10_3390_rs17010141 crossref_primary_10_1016_j_sigpro_2025_110143 crossref_primary_10_1109_LRA_2023_3290419 crossref_primary_10_24818_EA_2024_67_957 crossref_primary_10_32604_cmc_2023_041900 crossref_primary_10_1109_TCSVT_2023_3306400 crossref_primary_10_1145_3715851 crossref_primary_10_1016_j_gie_2022_12_003 crossref_primary_10_1557_s43577_024_00814_6 crossref_primary_10_1049_ipr2_12853 crossref_primary_10_3390_rs15102533 crossref_primary_10_3390_agronomy13082144 crossref_primary_10_1109_JIOT_2022_3199921 crossref_primary_10_1088_1742_6596_2868_1_012021 crossref_primary_10_3390_s22239080 crossref_primary_10_1109_TPAMI_2024_3419548 crossref_primary_10_1155_2021_9566628 crossref_primary_10_1109_JSEN_2022_3190999 crossref_primary_10_1007_s12539_025_00711_9 crossref_primary_10_3233_JIFS_237263 crossref_primary_10_3390_info14020125 crossref_primary_10_1016_j_engappai_2023_105822 crossref_primary_10_1109_TCSVT_2024_3405563 crossref_primary_10_1007_s10044_023_01171_x crossref_primary_10_1016_j_polymer_2023_126597 crossref_primary_10_3390_rs15102663 crossref_primary_10_1016_j_sigpro_2024_109448 crossref_primary_10_1109_TITS_2023_3323210 crossref_primary_10_3390_app14093623 crossref_primary_10_3389_fphy_2023_1277710 crossref_primary_10_1016_j_engappai_2025_112156 crossref_primary_10_1111_2041_210X_13900 crossref_primary_10_1007_s11042_020_10275_z crossref_primary_10_1038_s41598_025_95957_0 crossref_primary_10_1016_j_eswa_2023_120730 crossref_primary_10_1016_j_eswa_2024_123775 crossref_primary_10_1007_s11063_024_11564_6 crossref_primary_10_3390_s23020752 crossref_primary_10_3390_app13053213 crossref_primary_10_1109_LRA_2022_3189791 crossref_primary_10_1186_s40494_024_01345_8 crossref_primary_10_3233_ICA_230700 crossref_primary_10_1016_j_oceaneng_2022_111735 crossref_primary_10_1007_s40747_024_01522_z crossref_primary_10_1016_j_compositesa_2024_108337 crossref_primary_10_1016_j_neucom_2025_130371 crossref_primary_10_3390_jmse11081532 crossref_primary_10_1109_JSEN_2023_3298576 crossref_primary_10_1016_j_engappai_2024_109547 crossref_primary_10_3390_agriculture13112097 crossref_primary_10_1109_ACCESS_2022_3162827 crossref_primary_10_1109_TIM_2025_3604122 crossref_primary_10_3390_a15090313 crossref_primary_10_1016_j_aei_2025_103823 crossref_primary_10_3390_app14156836 crossref_primary_10_1109_TITS_2022_3208372 crossref_primary_10_1109_ACCESS_2021_3108776 crossref_primary_10_3390_s22218090 crossref_primary_10_3390_s24051473 crossref_primary_10_1109_TPAMI_2024_3361472 crossref_primary_10_1016_j_compag_2023_108531 crossref_primary_10_1016_j_engappai_2025_110958 crossref_primary_10_1016_j_compag_2024_109445 crossref_primary_10_3390_recycling10050179 crossref_primary_10_1016_j_eswa_2025_128275 crossref_primary_10_3390_app12115309 crossref_primary_10_1111_mice_13464 crossref_primary_10_1109_TIM_2025_3583292 crossref_primary_10_1109_TPAMI_2025_3576857 crossref_primary_10_1109_ACCESS_2024_3496511 crossref_primary_10_3390_s25051546 crossref_primary_10_1109_TII_2022_3154477 crossref_primary_10_3390_app12031354 crossref_primary_10_1109_TIM_2021_3086913 crossref_primary_10_1109_ACCESS_2024_3397195 crossref_primary_10_3389_frai_2020_593622 crossref_primary_10_1109_TPAMI_2022_3145407 crossref_primary_10_1007_s10489_023_04586_5 crossref_primary_10_3390_rs16122161 crossref_primary_10_1007_s43465_024_01134_2 crossref_primary_10_1016_j_compag_2025_110637 crossref_primary_10_1109_TII_2022_3147814 crossref_primary_10_3390_rs15061530 crossref_primary_10_1109_JSEN_2024_3456093 crossref_primary_10_1088_1742_6596_2010_1_012076 crossref_primary_10_1016_j_cell_2025_07_028 crossref_primary_10_1088_1361_6501_adb771 crossref_primary_10_1016_j_dental_2025_09_004 crossref_primary_10_1109_TIM_2025_3595259 crossref_primary_10_1007_s00521_023_09263_9 crossref_primary_10_1109_TIM_2024_3428639 crossref_primary_10_34133_plantphenomics_0172 crossref_primary_10_1007_s11548_023_02955_6 crossref_primary_10_1109_ACCESS_2022_3207282 crossref_primary_10_1080_14942119_2024_2336856 crossref_primary_10_1109_LRA_2023_3234799 crossref_primary_10_1016_j_compag_2024_108683 crossref_primary_10_1186_s12911_025_03047_y crossref_primary_10_1016_j_neucom_2024_129196 crossref_primary_10_1016_j_modpat_2023_100196 crossref_primary_10_1109_TIM_2021_3109718 crossref_primary_10_3390_diagnostics13091525 crossref_primary_10_1177_14759217221122316 crossref_primary_10_1016_j_anbehav_2024_04_010 crossref_primary_10_1016_j_jdent_2024_104871 crossref_primary_10_1109_TMM_2022_3215306 crossref_primary_10_3390_pr11030775 crossref_primary_10_1016_j_engappai_2023_107621 crossref_primary_10_1055_a_1956_0569 crossref_primary_10_1051_e3sconf_202339003010 crossref_primary_10_1007_s11042_023_15624_2 crossref_primary_10_1109_ACCESS_2023_3283458 crossref_primary_10_1109_TIM_2023_3348903 crossref_primary_10_1088_1361_6501_acf94f crossref_primary_10_1080_09720529_2021_2011109 crossref_primary_10_1109_TIM_2025_3544329 crossref_primary_10_1016_j_knosys_2023_110754 crossref_primary_10_1016_j_patcog_2025_111763 crossref_primary_10_1109_ACCESS_2023_3275739 crossref_primary_10_1109_TIM_2025_3583378 crossref_primary_10_1016_j_powtec_2024_120366 crossref_primary_10_1109_TII_2024_3353841 crossref_primary_10_1109_TASE_2025_3584816 crossref_primary_10_1016_j_eswa_2022_118403 crossref_primary_10_1109_TITS_2023_3258683 crossref_primary_10_1016_j_aei_2025_103713 crossref_primary_10_1007_s00202_025_02992_1 crossref_primary_10_1061_JCEMD4_COENG_15115 crossref_primary_10_20965_jrm_2023_p1281 crossref_primary_10_1177_14759217241242428 crossref_primary_10_1145_3674150 crossref_primary_10_7717_peerj_cs_1770 crossref_primary_10_1109_TII_2023_3245641 crossref_primary_10_1016_j_compag_2024_109316 crossref_primary_10_3390_drones7060393 crossref_primary_10_1016_j_compind_2025_104305 crossref_primary_10_3390_ani15172611 crossref_primary_10_1007_s10846_023_01930_2 crossref_primary_10_1080_0951192X_2021_1946853 crossref_primary_10_1016_j_patrec_2022_09_003 crossref_primary_10_1061_JCEMD4_COENG_13196 crossref_primary_10_1016_j_biosystemseng_2023_06_003 crossref_primary_10_1016_j_compag_2023_108390 crossref_primary_10_1109_OJCS_2025_3592291 crossref_primary_10_1016_j_enggeo_2024_107874 crossref_primary_10_1038_s41598_025_05113_x crossref_primary_10_1016_j_compag_2023_108274 crossref_primary_10_1088_1361_6501_ade321 crossref_primary_10_1007_s00371_024_03451_x crossref_primary_10_1016_j_atech_2025_101321 crossref_primary_10_1109_ACCESS_2024_3412780 crossref_primary_10_1117_1_JRS_17_016503 crossref_primary_10_1109_JSTARS_2021_3104726 crossref_primary_10_1007_s11760_025_03890_6 crossref_primary_10_1109_TGRS_2023_3240481 crossref_primary_10_3390_jcm11030852 crossref_primary_10_1007_s10661_023_11366_8 crossref_primary_10_1109_TPAMI_2022_3180564 crossref_primary_10_1016_j_engappai_2025_111993 crossref_primary_10_3390_app14051999 crossref_primary_10_1016_j_engappai_2025_111516 crossref_primary_10_1109_TPWRD_2025_3578274 crossref_primary_10_1016_j_eswa_2024_125790 crossref_primary_10_1109_TNNLS_2023_3310985 crossref_primary_10_1142_S0218126625502214 crossref_primary_10_1016_j_oret_2022_10_002 crossref_primary_10_3390_pr13020316 crossref_primary_10_1016_j_ecoinf_2022_101906 crossref_primary_10_1109_JIOT_2023_3311950 crossref_primary_10_1109_TCSVT_2024_3383829 crossref_primary_10_1007_s40747_024_01443_x crossref_primary_10_20965_jaciii_2023_p0886 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104589 crossref_primary_10_1016_j_compag_2025_110577 crossref_primary_10_3390_app12083835 crossref_primary_10_1007_s00521_022_07475_z crossref_primary_10_1007_s10845_024_02418_y crossref_primary_10_1109_ACCESS_2024_3427378 crossref_primary_10_1155_2022_7600669 crossref_primary_10_3390_s25175318 crossref_primary_10_1016_j_aei_2025_103199 crossref_primary_10_1016_j_compind_2022_103689 crossref_primary_10_1016_j_compag_2025_110462 crossref_primary_10_1109_ACCESS_2020_3046496 crossref_primary_10_1109_TSC_2024_3520867 crossref_primary_10_1109_TIM_2025_3546395 crossref_primary_10_1088_1361_6501_ac8e22 crossref_primary_10_1117_1_JRS_16_044526 crossref_primary_10_3390_math11194174 crossref_primary_10_1016_j_neucom_2025_130993 crossref_primary_10_1049_ipr2_12824 crossref_primary_10_12677_SEA_2023_123051 crossref_primary_10_1016_j_icte_2024_05_006 crossref_primary_10_1080_02726351_2023_2268567 crossref_primary_10_3390_biomimetics8040371 crossref_primary_10_1007_s12524_022_01601_z crossref_primary_10_1016_j_autcon_2024_105778 crossref_primary_10_3390_s24248080 crossref_primary_10_1007_s11119_021_09846_3 crossref_primary_10_1016_j_measurement_2025_117926 crossref_primary_10_1016_j_autcon_2023_104937 crossref_primary_10_1177_03611981231198842 crossref_primary_10_1038_s42256_023_00776_5 |
| Cites_doi | 10.1007/3-540-47979-1_8 10.1007/978-3-319-10602-1_48 10.1109/TIP.2010.2050625 10.1109/IVS.2018.8500621 10.1109/CVPR.2017.472 10.1109/CVPRW.2017.66 10.1109/CVPR.2013.417 10.1109/TPAMI.2017.2775623 10.1109/CVPR.2017.774 10.1109/ICCV.2017.447 10.1007/978-3-030-01219-9_25 10.23915/distill.00021 10.1109/ICCV.2017.539 10.1109/CVPR.2016.343 10.1109/ICCV.2017.324 10.1109/CVPR.2015.7298965 10.1109/CVPR.2016.89 10.5244/C.21.100 10.1109/CVPR.2017.305 10.1109/CVPR.2016.350 10.1109/ICCV.2013.42 10.1109/ICCV.2003.1238663 10.1109/ICCV.2011.6126343 10.l007/978-3-319-46448-0_2 10.1109/ICCV.2017.89 10.1109/CVPR.2010.5540018 10.1109/CVPR.2018.00422 10.1109/CVPR.2017.690 10.1109/ICCV.2019.00925 10.1109/CVPR.2019.00904 10.1109/CVPR.2009.5206848 10.1007/978-3-319-46466-4_32 10.1109/CVPR.2017.100 10.1109/CVPR42600.2020.01221 10.1109/CVPR.2016.91 10.1109/CVPR.2018.00913 10.1109/TPAMI.2016.2644615 10.1109/CVPR.2016.90 10.1007/s11263-009-0275-4 10.1109/ICCV.2017.322 10.1109/CVPR.2019.00953 10.1109/CVPR.2019.00657 10.1109/CVPR.2017.448 10.1109/CVPR.2017.106 10.1109/CVPR.2012.6248074 10.1023/A:1011126920638 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2020.3014297 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 1121 |
| ExternalDocumentID | 32755851 10_1109_TPAMI_2020_3014297 9159935 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: ARO grantid: YIP W911NF17-1-0410 – fundername: National Science Foundation grantid: IIS-1751206; IIS-1812850 funderid: 10.13039/100000001 – fundername: AWS ML Research Award – fundername: Google Cloud Platform research credits – fundername: XSEDE grantid: IRI180001 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM PKN RIC RIG RNI RZB VH1 XJT Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c266t-d630c14b2913eb3530906b8c2b7985aac60d84f5d91954965e9ed4be566f95383 |
| IEDL.DBID | RIE |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Sep 28 06:14:04 EDT 2025 Mon Jun 30 06:15:10 EDT 2025 Wed Feb 19 02:27:02 EST 2025 Sat Nov 29 05:15:59 EST 2025 Tue Nov 18 22:11:21 EST 2025 Wed Aug 27 03:02:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c266t-d630c14b2913eb3530906b8c2b7985aac60d84f5d91954965e9ed4be566f95383 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0223-3599 0000-0002-9776-7739 0000-0002-9839-1139 0000-0001-9863-1270 |
| PMID | 32755851 |
| PQID | 2617492432 |
| PQPubID | 85458 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2617492432 proquest_miscellaneous_2430980335 crossref_citationtrail_10_1109_TPAMI_2020_3014297 ieee_primary_9159935 pubmed_primary_32755851 crossref_primary_10_1109_TPAMI_2020_3014297 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Newell (ref23) Paszke (ref31) 2016 ref51 ref50 ref46 Redmon (ref1) 2018 ref45 ref48 Ren (ref4) ref47 ref42 ref44 ref43 ref49 ref8 ref7 ref3 ref6 Dai (ref5) ref40 ref35 ref34 ref37 ref36 ref33 ref32 ref2 ref39 ref38 Benbarka (ref9) 2020 Fathi (ref26) 2017 ref24 ref25 ref20 ref22 ref21 Leung (ref41) 2001; 43 ref28 ref27 ref29 Treml (ref30); 2 Fu (ref53) 2019 |
| References_xml | – ident: ref46 doi: 10.1007/3-540-47979-1_8 – ident: ref11 doi: 10.1007/978-3-319-10602-1_48 – ident: ref43 doi: 10.1109/TIP.2010.2050625 – ident: ref35 doi: 10.1109/IVS.2018.8500621 – ident: ref3 doi: 10.1109/CVPR.2017.472 – ident: ref25 doi: 10.1109/CVPRW.2017.66 – year: 2020 ident: ref9 article-title: FourierNet: Compact mask representation for instance segmentation using differentiable shape decoders – ident: ref48 doi: 10.1109/CVPR.2013.417 – start-page: 379 volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst. ident: ref5 article-title: R-FCN: Object detection via region-based fully convolutional networks – ident: ref21 doi: 10.1109/TPAMI.2017.2775623 – start-page: 91 volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst. ident: ref4 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks – start-page: 2274 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref23 article-title: Associative embedding: End-to-end learning for joint detection and grouping – ident: ref19 doi: 10.1109/CVPR.2017.774 – ident: ref32 doi: 10.1109/ICCV.2017.447 – ident: ref33 doi: 10.1007/978-3-030-01219-9_25 – ident: ref51 doi: 10.23915/distill.00021 – ident: ref24 doi: 10.1109/ICCV.2017.539 – ident: ref55 doi: 10.1109/CVPR.2016.343 – ident: ref27 doi: 10.1109/ICCV.2017.324 – ident: ref49 doi: 10.1109/CVPR.2015.7298965 – ident: ref52 doi: 10.1109/CVPR.2016.89 – year: 2016 ident: ref31 article-title: ENet: A deep neural network architecture for real-time semantic segmentation – ident: ref47 doi: 10.5244/C.21.100 – ident: ref20 doi: 10.1109/CVPR.2017.305 – ident: ref38 doi: 10.1109/CVPR.2016.350 – ident: ref45 doi: 10.1109/ICCV.2013.42 – ident: ref42 doi: 10.1109/ICCV.2003.1238663 – ident: ref37 doi: 10.1109/ICCV.2011.6126343 – ident: ref6 doi: 10.l007/978-3-319-46448-0_2 – ident: ref13 doi: 10.1109/ICCV.2017.89 – year: 2017 ident: ref26 article-title: Semantic instance segmentation via deep metric learning – ident: ref44 doi: 10.1109/CVPR.2010.5540018 – ident: ref18 doi: 10.1109/CVPR.2018.00422 – ident: ref7 doi: 10.1109/CVPR.2017.690 – ident: ref12 doi: 10.1109/ICCV.2019.00925 – year: 2018 ident: ref1 article-title: YOLOv3: An incremental improvement – ident: ref40 doi: 10.1109/CVPR.2019.00904 – ident: ref54 doi: 10.1109/CVPR.2009.5206848 – ident: ref17 doi: 10.1007/978-3-319-46466-4_32 – ident: ref22 doi: 10.1109/CVPR.2017.100 – ident: ref8 doi: 10.1109/CVPR42600.2020.01221 – ident: ref28 doi: 10.1109/CVPR.2016.91 – ident: ref15 doi: 10.1109/CVPR.2018.00913 – ident: ref29 doi: 10.1109/TPAMI.2016.2644615 – ident: ref10 doi: 10.1109/CVPR.2016.90 – ident: ref36 doi: 10.1007/s11263-009-0275-4 – ident: ref2 doi: 10.1109/ICCV.2017.322 – ident: ref14 doi: 10.1109/CVPR.2019.00953 – ident: ref16 doi: 10.1109/CVPR.2019.00657 – volume: 2 issue: 7 volume-title: MLITS, NIPS Workshop ident: ref30 article-title: Speeding up semantic segmentation for autonomous driving – ident: ref34 doi: 10.1109/CVPR.2017.448 – ident: ref50 doi: 10.1109/CVPR.2017.106 – ident: ref39 doi: 10.1109/CVPR.2012.6248074 – volume: 43 start-page: 29 year: 2001 ident: ref41 article-title: Representing and recognizing the visual appearance of materials using three-dimensional textons publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1011126920638 – year: 2019 ident: ref53 article-title: RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free |
| SSID | ssj0014503 |
| Score | 2.7392452 |
| Snippet | We present a simple, fully-convolutional model for real-time (<inline-formula><tex-math notation="LaTeX">>30</tex-math>... We present a simple, fully-convolutional model for real-time ( fps) instance segmentation that achieves competitive results on MS COCO evaluated on a single... We present a simple, fully-convolutional model for real-time ([Formula Omitted] fps) instance segmentation that achieves competitive results on MS COCO... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1108 |
| SubjectTerms | Aspect ratio Computer networks Detectors Formability Image segmentation Instance segmentation Masks Mathematical models Object detection Prototypes Real time Real-time systems Shape Stability analysis Task analysis |
| Title | YOLACT++ Better Real-Time Instance Segmentation |
| URI | https://ieeexplore.ieee.org/document/9159935 https://www.ncbi.nlm.nih.gov/pubmed/32755851 https://www.proquest.com/docview/2617492432 https://www.proquest.com/docview/2430980335 |
| Volume | 44 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UPOjBV33UFxG81dhkH0n2WEWxULVolXoKm92NCJqKtv5-Z7dJUFDBWyCTTZhH5pudnRmAQ8oTqvOc-3mYCZ_lKvQl59Q3PCe5RIQfub4F97346ioZDkV_Bo7qWhhjjDt8Zo7tpcvl65Ga2K2ytkDfKyifhdk4jqe1WnXGgHE3BRkRDFo4hhFVgUwg2oN-57KLoSDBCBUJibCT9yiJuU2JffNHbsDK71jT-Zzz5f997QosldjS60yVYRVmTLEGy9XcBq804zVY_NKEsAHth-te53TQanknrrTHu0Hs6NvSEK_rsKMy3q15fCmLlIp1uDs_G5xe-OUYBV-h9x37OqKBCllGREgxdOY0EEGUJYpksUi4lCoKdMJyroXt_iYiboTRLDMI9HKB_0O6AXPFqDBb4GlNNCeCZBi1sCzkUqMPpJGhUnIZMdmEsGJmqsoe43bUxXPqYo1ApE4WqZVFWsqiCa36mddph40_qRuW0zVlyeQm7FYyS0sjfE9ts3mG8SUlTTiob6P52JyILMxogjQM2ZEE1C6xOZV1vXalIts_v3MHFoithXBHuHdhbvw2MXswrz7GT-9v-6ijw2Tf6egnhe_b3A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB68QH3wPuoZwbcam-yRZh-rKBZrFa2iT2GzuxFBU9HW3-_sNgkKKvgWyORgZifzfZmdGYB9ymOqs4z7WZgKn2Uq9CXn1Dc8I5lEhB-5vgV3nWa3G9_fi6sxOKhqYYwxbvOZObSHLpev-2pof5U1BMZeQfk4THLGSDiq1qpyBoy7OciIYdDHkUiUJTKBaPSuWhdtJIMEOSoKEmFn71HS5DYp9i0iuRErv6NNF3VO5__3vgswV6BLrzVaDoswZvIlmC8nN3iFIy_B7Jc2hMvQeLjstI579bp35Ip7vGtEj74tDvHaDj0q492Yx5eiTClfgdvTk97xmV8MUvAVxt-BryMaqJClRIQUyTOngQiiNFYkbYqYS6miQMcs41rY_m8i4kYYzVKDUC8T-EWkqzCR93OzDp7WRHMiSIq8haUhlxqjII0MlZLLiMkahKUyE1V0GbfDLp4TxzYCkThbJNYWSWGLGtSra15HPTb-lF62mq4kCyXXYKu0WVK44Xti280zZJiU1GCvOo0OZLMiMjf9IcowVEccUHuLtZGtq3uXS2Tj52fuwvRZ76KTdNrd802YIbYywm3o3oKJwdvQbMOU-hg8vb_tuJX6CfRU3js |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLACT%2B%2B+Better+Real-Time+Instance+Segmentation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Bolya%2C+Daniel&rft.au=Zhou%2C+Chong&rft.au=Xiao%2C+Fanyi&rft.au=Lee%2C+Yong+Jae&rft.date=2022-02-01&rft.eissn=1939-3539&rft.volume=44&rft.issue=2&rft.spage=1108&rft_id=info:doi/10.1109%2FTPAMI.2020.3014297&rft_id=info%3Apmid%2F32755851&rft.externalDocID=32755851 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |