Distributed Data-Driven Control for a Connected Autonomous Vehicle Platoon Subjected to False Data Injection Attacks
In this paper, we consider the need for deployment in the long-distance safe longitudinal formation control task when the connected autonomous vehicle (CAV) platoon is subjected to malicious cyber attacks. To ensure the safe, orderly, stable and efficient driving performance of the vehicle platoon,...
Uložené v:
| Vydané v: | IEEE transactions on automation science and engineering Ročník 21; číslo 4; s. 7527 - 7538 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.10.2024
|
| Predmet: | |
| ISSN: | 1545-5955, 1558-3783 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we consider the need for deployment in the long-distance safe longitudinal formation control task when the connected autonomous vehicle (CAV) platoon is subjected to malicious cyber attacks. To ensure the safe, orderly, stable and efficient driving performance of the vehicle platoon, a novel distributed data-driven control (DDDC) approach for a homogeneous connected autonomous vehicle platoon under false data injection (FDI) attacks is investigated. First, an FDI attacks detection and compensation mechanism is designed to detect whether the received position signals are under attack or not and compensate the attacked position signals. Then, a novel DDDC approach for the vehicle platoon longitudinal formation control is developed by using the compensation data from the designed attack compensation mechanism and a dynamic linearization data model. Theoretical analysis verifies that the proposed DDDC method can ensure the internal stability (IS) and string stability (SS) of the homogeneous platoon subjected to FDI attacks. Finally, the effectiveness and practicality of the proposed DDDC approach are validated through a group of comparative simulations subjected to random FDI attacks of equal frequency and magnitude. Note to Practitioners-This work aims to solve the vehicle platoon long-distance safe longitudinal formation control task subjected to malicious FDI attacks. FDI attacks can achieve their destructive purposes by processing intercepted information and injecting false data into the original information. Existing literature overly relies on a priori knowledge of network attacks, yet in practice it is difficult to capture the true intentions of attackers in advance. For multi-channel V2V communication networks, it is even more important to design a resilient and accurate distributed controller strategy for such unpredictable and specific network attacks. Therefore, this paper proposes a data-driven distributed longitudinal formation control strategy with attack detection and compensation mechanism. The proposed strategy is shown to be able to ensure the safe longitudinal formation control task for the homogeneous CAV platoon suffering from FDI attacks. In addition, the stability of the CAV platoon is then investigated while the attacked signals are detected and cleaned, and it is shown to guarantee the internal stability of a single vehicle and the string stability of the platoon. |
|---|---|
| AbstractList | In this paper, we consider the need for deployment in the long-distance safe longitudinal formation control task when the connected autonomous vehicle (CAV) platoon is subjected to malicious cyber attacks. To ensure the safe, orderly, stable and efficient driving performance of the vehicle platoon, a novel distributed data-driven control (DDDC) approach for a homogeneous connected autonomous vehicle platoon under false data injection (FDI) attacks is investigated. First, an FDI attacks detection and compensation mechanism is designed to detect whether the received position signals are under attack or not and compensate the attacked position signals. Then, a novel DDDC approach for the vehicle platoon longitudinal formation control is developed by using the compensation data from the designed attack compensation mechanism and a dynamic linearization data model. Theoretical analysis verifies that the proposed DDDC method can ensure the internal stability (IS) and string stability (SS) of the homogeneous platoon subjected to FDI attacks. Finally, the effectiveness and practicality of the proposed DDDC approach are validated through a group of comparative simulations subjected to random FDI attacks of equal frequency and magnitude. Note to Practitioners-This work aims to solve the vehicle platoon long-distance safe longitudinal formation control task subjected to malicious FDI attacks. FDI attacks can achieve their destructive purposes by processing intercepted information and injecting false data into the original information. Existing literature overly relies on a priori knowledge of network attacks, yet in practice it is difficult to capture the true intentions of attackers in advance. For multi-channel V2V communication networks, it is even more important to design a resilient and accurate distributed controller strategy for such unpredictable and specific network attacks. Therefore, this paper proposes a data-driven distributed longitudinal formation control strategy with attack detection and compensation mechanism. The proposed strategy is shown to be able to ensure the safe longitudinal formation control task for the homogeneous CAV platoon suffering from FDI attacks. In addition, the stability of the CAV platoon is then investigated while the attacked signals are detected and cleaned, and it is shown to guarantee the internal stability of a single vehicle and the string stability of the platoon. |
| Author | Hou, Zhongsheng Bu, Xuhui Zhu, Panpan Jin, Shangtai |
| Author_xml | – sequence: 1 givenname: Panpan orcidid: 0000-0002-6821-3796 surname: Zhu fullname: Zhu, Panpan email: zhupanpan@bjtu.edu.cn organization: School of Electronic and Information Engineering, Institute of Advanced Control System, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Shangtai orcidid: 0000-0003-0986-6604 surname: Jin fullname: Jin, Shangtai email: shtjin@bjtu.edu.cn organization: School of Electronic and Information Engineering, Institute of Advanced Control System, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Xuhui orcidid: 0000-0001-5752-1091 surname: Bu fullname: Bu, Xuhui email: bxhtong@126.com organization: School of Electrical Engineering and Automation, Henan Polytechnic University, Henan, China – sequence: 4 givenname: Zhongsheng orcidid: 0000-0001-5278-3420 surname: Hou fullname: Hou, Zhongsheng email: zhshhou@bjtu.edu.cn organization: School of Automation, Qingdao University, Qingdao, China |
| BookMark | eNp9kMtKAzEUhoNUsK0-gOAiLzA1mUwmk2XpRQsFhVa3Q5ImmDpNJMkIvr2N7UJcuDq3_zuc84_AwHmnAbjFaIIx4vfb6WYxKVFJJoRUlNT8AgwxpU1BWEMGOa9oQTmlV2AU4x6hsmo4GoI0tzEFK_ukd3AukijmwX5qB2fepeA7aHyAIldOq6yZ9sk7f_B9hK_6zapOw-dOJO8d3PRyfxIlD5eii_pnI1y53LZHxTQlod7jNbg0eXxzjmPwslxsZ4_F-ulhNZuuC1XWdSoUprXCXEmmkEGSSYqFxA2VpjI7LtiOIFkx3jRESnJ8iEnODDUlNVowrjUZA3baq4KPMWjTKptEviQFYbsWozab12bz2mxeezbvSOI_5EewBxG-_mXuTozVWv_SE1Yh3pBvxJ9-5A |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1109_TASE_2025_3543411 crossref_primary_10_3390_computers14030084 crossref_primary_10_1109_TASE_2025_3564331 crossref_primary_10_1109_TASE_2025_3586138 crossref_primary_10_1109_TVT_2024_3524644 crossref_primary_10_1109_TASE_2025_3597153 crossref_primary_10_3390_math12213313 crossref_primary_10_1109_ACCESS_2025_3569807 crossref_primary_10_3390_math13050742 crossref_primary_10_1007_s12239_024_00193_6 crossref_primary_10_1109_TASE_2025_3583888 crossref_primary_10_1002_asjc_3828 crossref_primary_10_1002_rnc_7699 crossref_primary_10_1016_j_ins_2025_122118 crossref_primary_10_1109_TASE_2025_3593929 crossref_primary_10_3390_math13132151 crossref_primary_10_1109_TASE_2024_3493136 |
| Cites_doi | 10.1109/TSMC.2020.2968606 10.1109/TITS.2019.2939777 10.1109/TII.2022.3221220 10.1109/TII.2022.3217470 10.1109/CoDIT49905.2020.9263935 10.1109/TASE.2021.3128920 10.1109/TITS.2022.3146149 10.1016/j.arcontrol.2019.03.001 10.1109/TCYB.2022.3151880 10.1016/j.tranpol.2022.04.011 10.1109/TITS.2021.3097356 10.1109/TITS.2022.3196183 10.1109/TITS.2014.2342271 10.1109/TITS.2021.3085196 10.1109/tase.2022.3225288 10.1109/TCYB.2020.3015746 10.1109/TITS.2016.2519941 10.1109/JIOT.2014.2327587 10.1109/jas.2023.123507 10.1109/TVT.2023.3257126 10.1109/TNNLS.2021.3104978 10.1109/TITS.2019.2905039 10.1109/MWC.2015.7368833 10.23919/ACC.2018.8431538 10.1109/TITS.2017.2726038 10.1016/j.amc.2021.126874 10.1109/TCST.2010.2093136 10.1109/tfuzz.2023.3271904 10.1109/JIOT.2020.3004573 10.1109/TVT.2022.3177008 10.1016/j.isatra.2022.04.046 10.1109/TGCN.2022.3188674 10.1109/TAC.2019.2894586 10.1109/TASE.2022.3188415 10.1109/MCE.2021.3116415 10.1109/TCYB.2021.3103328 10.1109/TSMC.2017.2734799 10.1109/TII.2021.3071405 10.1016/j.automatica.2023.111250 10.1109/TIV.2022.3213074 10.1109/MITS.2017.2709781 10.1109/TITS.2020.3044221 10.1109/TNNLS.2017.2673020 10.1109/TITS.2015.2402153 10.1109/JIOT.2020.2966672 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TASE.2023.3345369 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 7538 |
| ExternalDocumentID | 10_1109_TASE_2023_3345369 10374098 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Innovative Scientists and Technicians Team of Henan Provincial High Education grantid: 20IRTSTHN019 – fundername: National Natural Science Foundation of China grantid: 62073025; 61833001; 62273133 funderid: 10.13039/501100001809 – fundername: Zhongyuan Youth Top-Notch Talent Support Program grantid: ZYQR201912151 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c266t-c156c19cb7c0f0b7b51ab185bf4fd9a7d30b479883bb30247b97f5f25fea79ee3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001134404400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sat Nov 29 04:12:50 EST 2025 Tue Nov 18 22:41:40 EST 2025 Wed Aug 27 02:15:02 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c266t-c156c19cb7c0f0b7b51ab185bf4fd9a7d30b479883bb30247b97f5f25fea79ee3 |
| ORCID | 0000-0001-5278-3420 0000-0003-0986-6604 0000-0002-6821-3796 0000-0001-5752-1091 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10374098 crossref_primary_10_1109_TASE_2023_3345369 crossref_citationtrail_10_1109_TASE_2023_3345369 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref30 doi: 10.1109/TSMC.2020.2968606 – ident: ref15 doi: 10.1109/TITS.2019.2939777 – ident: ref10 doi: 10.1109/TII.2022.3221220 – ident: ref44 doi: 10.1109/TII.2022.3217470 – ident: ref35 doi: 10.1109/CoDIT49905.2020.9263935 – ident: ref9 doi: 10.1109/TASE.2021.3128920 – ident: ref6 doi: 10.1109/TITS.2022.3146149 – ident: ref26 doi: 10.1016/j.arcontrol.2019.03.001 – ident: ref8 doi: 10.1109/TCYB.2022.3151880 – ident: ref14 doi: 10.1016/j.tranpol.2022.04.011 – ident: ref31 doi: 10.1109/TITS.2021.3097356 – ident: ref19 doi: 10.1109/TITS.2022.3196183 – ident: ref11 doi: 10.1109/TITS.2014.2342271 – ident: ref32 doi: 10.1109/TITS.2021.3085196 – ident: ref43 doi: 10.1109/tase.2022.3225288 – ident: ref18 doi: 10.1109/TCYB.2020.3015746 – ident: ref25 doi: 10.1109/TITS.2016.2519941 – ident: ref1 doi: 10.1109/JIOT.2014.2327587 – ident: ref22 doi: 10.1109/jas.2023.123507 – ident: ref45 doi: 10.1109/TVT.2023.3257126 – ident: ref41 doi: 10.1109/TNNLS.2021.3104978 – ident: ref28 doi: 10.1109/TITS.2019.2905039 – ident: ref2 doi: 10.1109/MWC.2015.7368833 – ident: ref36 doi: 10.23919/ACC.2018.8431538 – ident: ref5 doi: 10.1109/TITS.2017.2726038 – ident: ref34 doi: 10.1016/j.amc.2021.126874 – ident: ref39 doi: 10.1109/TCST.2010.2093136 – ident: ref7 doi: 10.1109/tfuzz.2023.3271904 – ident: ref21 doi: 10.1109/JIOT.2020.3004573 – ident: ref17 doi: 10.1109/TVT.2022.3177008 – ident: ref33 doi: 10.1016/j.isatra.2022.04.046 – ident: ref23 doi: 10.1109/TGCN.2022.3188674 – ident: ref38 doi: 10.1109/TAC.2019.2894586 – ident: ref3 doi: 10.1109/TASE.2022.3188415 – ident: ref13 doi: 10.1109/MCE.2021.3116415 – ident: ref16 doi: 10.1109/TCYB.2021.3103328 – ident: ref40 doi: 10.1109/TSMC.2017.2734799 – ident: ref12 doi: 10.1109/TII.2021.3071405 – ident: ref29 doi: 10.1016/j.automatica.2023.111250 – ident: ref27 doi: 10.1109/TIV.2022.3213074 – ident: ref4 doi: 10.1109/MITS.2017.2709781 – ident: ref20 doi: 10.1109/TITS.2020.3044221 – ident: ref42 doi: 10.1109/TNNLS.2017.2673020 – ident: ref24 doi: 10.1109/TITS.2015.2402153 – ident: ref37 doi: 10.1109/JIOT.2020.2966672 |
| SSID | ssj0024890 |
| Score | 2.5478644 |
| Snippet | In this paper, we consider the need for deployment in the long-distance safe longitudinal formation control task when the connected autonomous vehicle (CAV)... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 7527 |
| SubjectTerms | attack detection and compensation Autonomous vehicles connected autonomous homogeneous (CAV) Cyberattack Detection algorithms Distributed data-driven control (DDDC) Fake news false data injection (FDI) attacks Formation control internal stability (IS) longitudinal formation control Mathematical models Stability criteria string stability (SS) Vehicle dynamics Vehicular ad hoc networks |
| Title | Distributed Data-Driven Control for a Connected Autonomous Vehicle Platoon Subjected to False Data Injection Attacks |
| URI | https://ieeexplore.ieee.org/document/10374098 |
| Volume | 21 |
| WOSCitedRecordID | wos001134404400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxPnFzl4Erq1S7M0x7E5FGQMnGO3kqQJOkYrW-rfb15adRcFb6G8hJBfmvde8n7vIXRLdOzAFO5PM4QGTkOIgMdGB5wYsD5kFHsuzPyJTSbJYsGnNVndc2G01j74THeg6d_ys0KVcFXWBU6b80eSBmow1q_IWj-J9RJ_oQImQUA5pfUTZhTy7mzwfN-BOuEdQmJKILh5SwltVVXxSmV8-M_pHKGD2nrEgwruY7Sj8xO0v5VT8BTZEaTChSpWOsMjYUUwWsOJhodVUDp2VioW2Ae4KJAZlBaIDUW5wXP9CuPi6cq54kWO3amyrIRsgcduo2o_In7Mlz6CK8cDa4Gk30Iv4_vZ8CGoSysEymlkGyjntqmIK8lUaELJJI2EdKpbmthkXLCMhDKGVGZESuLWlknODDU9arRgXGtyhpp5ketzhEWY9QQ3LDLM4R5rITPa51ImPRWxfmbaKPxa61TVeceh_MUq9f5HyFOAJwV40hqeNrr77vJeJd34S7gF0GwJVqhc_PL9Eu257nEVkHeFmnZd6mu0qz7s22Z94_fUJ20JypY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6-QD34rFifOXgStu42iWmOxbZUrEWwFm9Lkk3QUnalpv5-M9lVe1HwtiyTYcmXzcwk880gdEEM9WBK_6dZwiJvIWQkqDWRIBa8D5XQwIUZD_hw2Hp-Fg8VWT1wYYwxIfnMNOAx3OVnhZ7DUdkVcNp8PNJaRquM0mZc0rV-Suu1wpEKOAURE4xVl5hJLK5G7cduAzqFNwihjEB684IZWuirEsxKb_ufH7SDtir_EbdLwHfRksn30OZCVcF95DpQDBf6WJkMd6STUWcGexq-KdPSsfdTscQhxUWDTHvugNpQzN_x2LyAXvww9cF4kWO_r0xKIVfgnl-qJmjEt_kk5HDluO0c0PRr6KnXHd30o6q5QqS9TXaR9oGbToRWXMc2VlyxRCpvvJWlNhOSZyRWFIqZEaWIn1uuBLfMNpk1kgtjyAFayYvcHCIs46wpheWJ5R55aqTK2LVQqtXUCb_ObB3FX3Od6qryODTAmKYhAolFCvCkAE9awVNHl99D3sqyG38J1wCaBcESlaNf3p-j9f7ofpAObod3x2jDq6Jlet4JWnGzuTlFa_rDvb7PzsL6-gQe0s3d |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Data-Driven+Control+for+a+Connected+Autonomous+Vehicle+Platoon+Subjected+to+False+Data+Injection+Attacks&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zhu%2C+Panpan&rft.au=Jin%2C+Shangtai&rft.au=Bu%2C+Xuhui&rft.au=Hou%2C+Zhongsheng&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=21&rft.issue=4&rft.spage=7527&rft.epage=7538&rft_id=info:doi/10.1109%2FTASE.2023.3345369&rft.externalDocID=10374098 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |