Distributed Data-Driven Control for a Connected Autonomous Vehicle Platoon Subjected to False Data Injection Attacks

In this paper, we consider the need for deployment in the long-distance safe longitudinal formation control task when the connected autonomous vehicle (CAV) platoon is subjected to malicious cyber attacks. To ensure the safe, orderly, stable and efficient driving performance of the vehicle platoon,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automation science and engineering Ročník 21; číslo 4; s. 7527 - 7538
Hlavní autori: Zhu, Panpan, Jin, Shangtai, Bu, Xuhui, Hou, Zhongsheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2024
Predmet:
ISSN:1545-5955, 1558-3783
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we consider the need for deployment in the long-distance safe longitudinal formation control task when the connected autonomous vehicle (CAV) platoon is subjected to malicious cyber attacks. To ensure the safe, orderly, stable and efficient driving performance of the vehicle platoon, a novel distributed data-driven control (DDDC) approach for a homogeneous connected autonomous vehicle platoon under false data injection (FDI) attacks is investigated. First, an FDI attacks detection and compensation mechanism is designed to detect whether the received position signals are under attack or not and compensate the attacked position signals. Then, a novel DDDC approach for the vehicle platoon longitudinal formation control is developed by using the compensation data from the designed attack compensation mechanism and a dynamic linearization data model. Theoretical analysis verifies that the proposed DDDC method can ensure the internal stability (IS) and string stability (SS) of the homogeneous platoon subjected to FDI attacks. Finally, the effectiveness and practicality of the proposed DDDC approach are validated through a group of comparative simulations subjected to random FDI attacks of equal frequency and magnitude. Note to Practitioners-This work aims to solve the vehicle platoon long-distance safe longitudinal formation control task subjected to malicious FDI attacks. FDI attacks can achieve their destructive purposes by processing intercepted information and injecting false data into the original information. Existing literature overly relies on a priori knowledge of network attacks, yet in practice it is difficult to capture the true intentions of attackers in advance. For multi-channel V2V communication networks, it is even more important to design a resilient and accurate distributed controller strategy for such unpredictable and specific network attacks. Therefore, this paper proposes a data-driven distributed longitudinal formation control strategy with attack detection and compensation mechanism. The proposed strategy is shown to be able to ensure the safe longitudinal formation control task for the homogeneous CAV platoon suffering from FDI attacks. In addition, the stability of the CAV platoon is then investigated while the attacked signals are detected and cleaned, and it is shown to guarantee the internal stability of a single vehicle and the string stability of the platoon.
AbstractList In this paper, we consider the need for deployment in the long-distance safe longitudinal formation control task when the connected autonomous vehicle (CAV) platoon is subjected to malicious cyber attacks. To ensure the safe, orderly, stable and efficient driving performance of the vehicle platoon, a novel distributed data-driven control (DDDC) approach for a homogeneous connected autonomous vehicle platoon under false data injection (FDI) attacks is investigated. First, an FDI attacks detection and compensation mechanism is designed to detect whether the received position signals are under attack or not and compensate the attacked position signals. Then, a novel DDDC approach for the vehicle platoon longitudinal formation control is developed by using the compensation data from the designed attack compensation mechanism and a dynamic linearization data model. Theoretical analysis verifies that the proposed DDDC method can ensure the internal stability (IS) and string stability (SS) of the homogeneous platoon subjected to FDI attacks. Finally, the effectiveness and practicality of the proposed DDDC approach are validated through a group of comparative simulations subjected to random FDI attacks of equal frequency and magnitude. Note to Practitioners-This work aims to solve the vehicle platoon long-distance safe longitudinal formation control task subjected to malicious FDI attacks. FDI attacks can achieve their destructive purposes by processing intercepted information and injecting false data into the original information. Existing literature overly relies on a priori knowledge of network attacks, yet in practice it is difficult to capture the true intentions of attackers in advance. For multi-channel V2V communication networks, it is even more important to design a resilient and accurate distributed controller strategy for such unpredictable and specific network attacks. Therefore, this paper proposes a data-driven distributed longitudinal formation control strategy with attack detection and compensation mechanism. The proposed strategy is shown to be able to ensure the safe longitudinal formation control task for the homogeneous CAV platoon suffering from FDI attacks. In addition, the stability of the CAV platoon is then investigated while the attacked signals are detected and cleaned, and it is shown to guarantee the internal stability of a single vehicle and the string stability of the platoon.
Author Hou, Zhongsheng
Bu, Xuhui
Zhu, Panpan
Jin, Shangtai
Author_xml – sequence: 1
  givenname: Panpan
  orcidid: 0000-0002-6821-3796
  surname: Zhu
  fullname: Zhu, Panpan
  email: zhupanpan@bjtu.edu.cn
  organization: School of Electronic and Information Engineering, Institute of Advanced Control System, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Shangtai
  orcidid: 0000-0003-0986-6604
  surname: Jin
  fullname: Jin, Shangtai
  email: shtjin@bjtu.edu.cn
  organization: School of Electronic and Information Engineering, Institute of Advanced Control System, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Xuhui
  orcidid: 0000-0001-5752-1091
  surname: Bu
  fullname: Bu, Xuhui
  email: bxhtong@126.com
  organization: School of Electrical Engineering and Automation, Henan Polytechnic University, Henan, China
– sequence: 4
  givenname: Zhongsheng
  orcidid: 0000-0001-5278-3420
  surname: Hou
  fullname: Hou, Zhongsheng
  email: zhshhou@bjtu.edu.cn
  organization: School of Automation, Qingdao University, Qingdao, China
BookMark eNp9kMtKAzEUhoNUsK0-gOAiLzA1mUwmk2XpRQsFhVa3Q5ImmDpNJMkIvr2N7UJcuDq3_zuc84_AwHmnAbjFaIIx4vfb6WYxKVFJJoRUlNT8AgwxpU1BWEMGOa9oQTmlV2AU4x6hsmo4GoI0tzEFK_ukd3AukijmwX5qB2fepeA7aHyAIldOq6yZ9sk7f_B9hK_6zapOw-dOJO8d3PRyfxIlD5eii_pnI1y53LZHxTQlod7jNbg0eXxzjmPwslxsZ4_F-ulhNZuuC1XWdSoUprXCXEmmkEGSSYqFxA2VpjI7LtiOIFkx3jRESnJ8iEnODDUlNVowrjUZA3baq4KPMWjTKptEviQFYbsWozab12bz2mxeezbvSOI_5EewBxG-_mXuTozVWv_SE1Yh3pBvxJ9-5A
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_TASE_2025_3543411
crossref_primary_10_3390_computers14030084
crossref_primary_10_1109_TASE_2025_3564331
crossref_primary_10_1109_TASE_2025_3586138
crossref_primary_10_1109_TVT_2024_3524644
crossref_primary_10_1109_TASE_2025_3597153
crossref_primary_10_3390_math12213313
crossref_primary_10_1109_ACCESS_2025_3569807
crossref_primary_10_3390_math13050742
crossref_primary_10_1007_s12239_024_00193_6
crossref_primary_10_1109_TASE_2025_3583888
crossref_primary_10_1002_asjc_3828
crossref_primary_10_1002_rnc_7699
crossref_primary_10_1016_j_ins_2025_122118
crossref_primary_10_1109_TASE_2025_3593929
crossref_primary_10_3390_math13132151
crossref_primary_10_1109_TASE_2024_3493136
Cites_doi 10.1109/TSMC.2020.2968606
10.1109/TITS.2019.2939777
10.1109/TII.2022.3221220
10.1109/TII.2022.3217470
10.1109/CoDIT49905.2020.9263935
10.1109/TASE.2021.3128920
10.1109/TITS.2022.3146149
10.1016/j.arcontrol.2019.03.001
10.1109/TCYB.2022.3151880
10.1016/j.tranpol.2022.04.011
10.1109/TITS.2021.3097356
10.1109/TITS.2022.3196183
10.1109/TITS.2014.2342271
10.1109/TITS.2021.3085196
10.1109/tase.2022.3225288
10.1109/TCYB.2020.3015746
10.1109/TITS.2016.2519941
10.1109/JIOT.2014.2327587
10.1109/jas.2023.123507
10.1109/TVT.2023.3257126
10.1109/TNNLS.2021.3104978
10.1109/TITS.2019.2905039
10.1109/MWC.2015.7368833
10.23919/ACC.2018.8431538
10.1109/TITS.2017.2726038
10.1016/j.amc.2021.126874
10.1109/TCST.2010.2093136
10.1109/tfuzz.2023.3271904
10.1109/JIOT.2020.3004573
10.1109/TVT.2022.3177008
10.1016/j.isatra.2022.04.046
10.1109/TGCN.2022.3188674
10.1109/TAC.2019.2894586
10.1109/TASE.2022.3188415
10.1109/MCE.2021.3116415
10.1109/TCYB.2021.3103328
10.1109/TSMC.2017.2734799
10.1109/TII.2021.3071405
10.1016/j.automatica.2023.111250
10.1109/TIV.2022.3213074
10.1109/MITS.2017.2709781
10.1109/TITS.2020.3044221
10.1109/TNNLS.2017.2673020
10.1109/TITS.2015.2402153
10.1109/JIOT.2020.2966672
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2023.3345369
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 7538
ExternalDocumentID 10_1109_TASE_2023_3345369
10374098
Genre orig-research
GrantInformation_xml – fundername: Innovative Scientists and Technicians Team of Henan Provincial High Education
  grantid: 20IRTSTHN019
– fundername: National Natural Science Foundation of China
  grantid: 62073025; 61833001; 62273133
  funderid: 10.13039/501100001809
– fundername: Zhongyuan Youth Top-Notch Talent Support Program
  grantid: ZYQR201912151
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-c156c19cb7c0f0b7b51ab185bf4fd9a7d30b479883bb30247b97f5f25fea79ee3
IEDL.DBID RIE
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001134404400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sat Nov 29 04:12:50 EST 2025
Tue Nov 18 22:41:40 EST 2025
Wed Aug 27 02:15:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-c156c19cb7c0f0b7b51ab185bf4fd9a7d30b479883bb30247b97f5f25fea79ee3
ORCID 0000-0001-5278-3420
0000-0003-0986-6604
0000-0002-6821-3796
0000-0001-5752-1091
PageCount 12
ParticipantIDs ieee_primary_10374098
crossref_primary_10_1109_TASE_2023_3345369
crossref_citationtrail_10_1109_TASE_2023_3345369
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref30
  doi: 10.1109/TSMC.2020.2968606
– ident: ref15
  doi: 10.1109/TITS.2019.2939777
– ident: ref10
  doi: 10.1109/TII.2022.3221220
– ident: ref44
  doi: 10.1109/TII.2022.3217470
– ident: ref35
  doi: 10.1109/CoDIT49905.2020.9263935
– ident: ref9
  doi: 10.1109/TASE.2021.3128920
– ident: ref6
  doi: 10.1109/TITS.2022.3146149
– ident: ref26
  doi: 10.1016/j.arcontrol.2019.03.001
– ident: ref8
  doi: 10.1109/TCYB.2022.3151880
– ident: ref14
  doi: 10.1016/j.tranpol.2022.04.011
– ident: ref31
  doi: 10.1109/TITS.2021.3097356
– ident: ref19
  doi: 10.1109/TITS.2022.3196183
– ident: ref11
  doi: 10.1109/TITS.2014.2342271
– ident: ref32
  doi: 10.1109/TITS.2021.3085196
– ident: ref43
  doi: 10.1109/tase.2022.3225288
– ident: ref18
  doi: 10.1109/TCYB.2020.3015746
– ident: ref25
  doi: 10.1109/TITS.2016.2519941
– ident: ref1
  doi: 10.1109/JIOT.2014.2327587
– ident: ref22
  doi: 10.1109/jas.2023.123507
– ident: ref45
  doi: 10.1109/TVT.2023.3257126
– ident: ref41
  doi: 10.1109/TNNLS.2021.3104978
– ident: ref28
  doi: 10.1109/TITS.2019.2905039
– ident: ref2
  doi: 10.1109/MWC.2015.7368833
– ident: ref36
  doi: 10.23919/ACC.2018.8431538
– ident: ref5
  doi: 10.1109/TITS.2017.2726038
– ident: ref34
  doi: 10.1016/j.amc.2021.126874
– ident: ref39
  doi: 10.1109/TCST.2010.2093136
– ident: ref7
  doi: 10.1109/tfuzz.2023.3271904
– ident: ref21
  doi: 10.1109/JIOT.2020.3004573
– ident: ref17
  doi: 10.1109/TVT.2022.3177008
– ident: ref33
  doi: 10.1016/j.isatra.2022.04.046
– ident: ref23
  doi: 10.1109/TGCN.2022.3188674
– ident: ref38
  doi: 10.1109/TAC.2019.2894586
– ident: ref3
  doi: 10.1109/TASE.2022.3188415
– ident: ref13
  doi: 10.1109/MCE.2021.3116415
– ident: ref16
  doi: 10.1109/TCYB.2021.3103328
– ident: ref40
  doi: 10.1109/TSMC.2017.2734799
– ident: ref12
  doi: 10.1109/TII.2021.3071405
– ident: ref29
  doi: 10.1016/j.automatica.2023.111250
– ident: ref27
  doi: 10.1109/TIV.2022.3213074
– ident: ref4
  doi: 10.1109/MITS.2017.2709781
– ident: ref20
  doi: 10.1109/TITS.2020.3044221
– ident: ref42
  doi: 10.1109/TNNLS.2017.2673020
– ident: ref24
  doi: 10.1109/TITS.2015.2402153
– ident: ref37
  doi: 10.1109/JIOT.2020.2966672
SSID ssj0024890
Score 2.5478644
Snippet In this paper, we consider the need for deployment in the long-distance safe longitudinal formation control task when the connected autonomous vehicle (CAV)...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 7527
SubjectTerms attack detection and compensation
Autonomous vehicles
connected autonomous homogeneous (CAV)
Cyberattack
Detection algorithms
Distributed data-driven control (DDDC)
Fake news
false data injection (FDI) attacks
Formation control
internal stability (IS)
longitudinal formation control
Mathematical models
Stability criteria
string stability (SS)
Vehicle dynamics
Vehicular ad hoc networks
Title Distributed Data-Driven Control for a Connected Autonomous Vehicle Platoon Subjected to False Data Injection Attacks
URI https://ieeexplore.ieee.org/document/10374098
Volume 21
WOSCitedRecordID wos001134404400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxPnFzl4Erq1S7M0x7E5FGQMnGO3kqQJOkYrW-rfb15adRcFb6G8hJBfmvde8n7vIXRLdOzAFO5PM4QGTkOIgMdGB5wYsD5kFHsuzPyJTSbJYsGnNVndc2G01j74THeg6d_ys0KVcFXWBU6b80eSBmow1q_IWj-J9RJ_oQImQUA5pfUTZhTy7mzwfN-BOuEdQmJKILh5SwltVVXxSmV8-M_pHKGD2nrEgwruY7Sj8xO0v5VT8BTZEaTChSpWOsMjYUUwWsOJhodVUDp2VioW2Ae4KJAZlBaIDUW5wXP9CuPi6cq54kWO3amyrIRsgcduo2o_In7Mlz6CK8cDa4Gk30Iv4_vZ8CGoSysEymlkGyjntqmIK8lUaELJJI2EdKpbmthkXLCMhDKGVGZESuLWlknODDU9arRgXGtyhpp5ketzhEWY9QQ3LDLM4R5rITPa51ImPRWxfmbaKPxa61TVeceh_MUq9f5HyFOAJwV40hqeNrr77vJeJd34S7gF0GwJVqhc_PL9Eu257nEVkHeFmnZd6mu0qz7s22Z94_fUJ20JypY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6-QD34rFifOXgStu42iWmOxbZUrEWwFm9Lkk3QUnalpv5-M9lVe1HwtiyTYcmXzcwk880gdEEM9WBK_6dZwiJvIWQkqDWRIBa8D5XQwIUZD_hw2Hp-Fg8VWT1wYYwxIfnMNOAx3OVnhZ7DUdkVcNp8PNJaRquM0mZc0rV-Suu1wpEKOAURE4xVl5hJLK5G7cduAzqFNwihjEB684IZWuirEsxKb_ufH7SDtir_EbdLwHfRksn30OZCVcF95DpQDBf6WJkMd6STUWcGexq-KdPSsfdTscQhxUWDTHvugNpQzN_x2LyAXvww9cF4kWO_r0xKIVfgnl-qJmjEt_kk5HDluO0c0PRr6KnXHd30o6q5QqS9TXaR9oGbToRWXMc2VlyxRCpvvJWlNhOSZyRWFIqZEaWIn1uuBLfMNpk1kgtjyAFayYvcHCIs46wpheWJ5R55aqTK2LVQqtXUCb_ObB3FX3Od6qryODTAmKYhAolFCvCkAE9awVNHl99D3sqyG38J1wCaBcESlaNf3p-j9f7ofpAObod3x2jDq6Jlet4JWnGzuTlFa_rDvb7PzsL6-gQe0s3d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Data-Driven+Control+for+a+Connected+Autonomous+Vehicle+Platoon+Subjected+to+False+Data+Injection+Attacks&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zhu%2C+Panpan&rft.au=Jin%2C+Shangtai&rft.au=Bu%2C+Xuhui&rft.au=Hou%2C+Zhongsheng&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=21&rft.issue=4&rft.spage=7527&rft.epage=7538&rft_id=info:doi/10.1109%2FTASE.2023.3345369&rft.externalDocID=10374098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon