Energy Management Based on Mixed-Integer Nonlinear Model Predictive Control for Hybrid Electric Vehicles

Due to the inherently coupled dynamics of vehicle and powertrain levels, this paper proposes an energy management strategy that co-optimizes the power split and operating mode selection for hybrid electric vehicles. A mixed integer nonlinear model predictive control (MPC) problem is formulated to gu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems Vol. 25; no. 11; pp. 17432 - 17451
Main Authors: Hou, Shengyan, Chen, Hong, Yin, Hai, Zhao, Jing, Xu, Fuguo, Gao, Jinwu
Format: Journal Article
Language:English
Published: IEEE 01.11.2024
Subjects:
ISSN:1524-9050, 1558-0016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the inherently coupled dynamics of vehicle and powertrain levels, this paper proposes an energy management strategy that co-optimizes the power split and operating mode selection for hybrid electric vehicles. A mixed integer nonlinear model predictive control (MPC) problem is formulated to guarantee the sub-optimality and robustness of the strategy. The optimization objectives are to achieve minimal fuel consumption, battery degradation inhibition and state-of-charge maintenance within the system physical constraints. However, the existence of logic events and continuous variables poses a significant challenge to solve the optimal control problem. A Pontryagin's Minimum Principle (PMP)-Dynamic Programming (DP) based solution method is presented, avoiding segmented linear approximation to the powertrain model and relaxation approach to the problem. The PMP calculates the optimal control sequence and cost for each mode, then determines the optimal operating mode based on DP. Moreover, the Gaussian process regression (GPR) model is developed for vehicle speed prediction to deal with the stochastic uncertainties of driving conditions. Experimental results are demonstrated that the proposed algorithm offers about 2% to 10% cost reduction compared to the conventional MPC, while still keeping relatively close to the result of DP.
AbstractList Due to the inherently coupled dynamics of vehicle and powertrain levels, this paper proposes an energy management strategy that co-optimizes the power split and operating mode selection for hybrid electric vehicles. A mixed integer nonlinear model predictive control (MPC) problem is formulated to guarantee the sub-optimality and robustness of the strategy. The optimization objectives are to achieve minimal fuel consumption, battery degradation inhibition and state-of-charge maintenance within the system physical constraints. However, the existence of logic events and continuous variables poses a significant challenge to solve the optimal control problem. A Pontryagin's Minimum Principle (PMP)-Dynamic Programming (DP) based solution method is presented, avoiding segmented linear approximation to the powertrain model and relaxation approach to the problem. The PMP calculates the optimal control sequence and cost for each mode, then determines the optimal operating mode based on DP. Moreover, the Gaussian process regression (GPR) model is developed for vehicle speed prediction to deal with the stochastic uncertainties of driving conditions. Experimental results are demonstrated that the proposed algorithm offers about 2% to 10% cost reduction compared to the conventional MPC, while still keeping relatively close to the result of DP.
Author Yin, Hai
Hou, Shengyan
Gao, Jinwu
Chen, Hong
Zhao, Jing
Xu, Fuguo
Author_xml – sequence: 1
  givenname: Shengyan
  orcidid: 0000-0003-4221-9847
  surname: Hou
  fullname: Hou, Shengyan
  email: housy20@mails.jlu.edu.cn
  organization: Department of Control Science and Engineering, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China
– sequence: 2
  givenname: Hong
  orcidid: 0000-0002-1724-8649
  surname: Chen
  fullname: Chen, Hong
  email: chenh@jlu.edu.cn
  organization: Department of Control Science and Engineering, Jilin University, Changchun, China
– sequence: 3
  givenname: Hai
  surname: Yin
  fullname: Yin, Hai
  email: yinhai@jlu.edu.cn
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China
– sequence: 4
  givenname: Jing
  orcidid: 0000-0002-6912-9019
  surname: Zhao
  fullname: Zhao, Jing
  email: jzhao@um.edu.mo
  organization: Department of Electromechanical Engineering, University of Macau, Taipa, Macau
– sequence: 5
  givenname: Fuguo
  surname: Xu
  fullname: Xu, Fuguo
  email: fuguoxu@ieee.org
  organization: Graduate School of Engineering, Chiba University, Chiba, Japan
– sequence: 6
  givenname: Jinwu
  orcidid: 0000-0003-2745-1920
  surname: Gao
  fullname: Gao, Jinwu
  email: gaojw@jlu.edu.cn
  organization: Department of Control Science and Engineering, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China
BookMark eNp9kMFKAzEQhoMo2FYfQPCQF9g6yW423aOWagutClavSzaZtJFtItkg9u3tUg_iwdMMw_8NM9-QnPrgkZArBmPGoLpZL9YvYw68GOdFzqUUJ2TAhJhkAKw87XteZBUIOCfDrns_TAvB2IBsZx7jZk9XyqsN7tAneqc6NDR4unJfaLKFT7jBSB-Db51HFekqGGzpc0TjdHKfSKfBpxhaakOk830TnaGzFnWKTtM33DrdYndBzqxqO7z8qSPyej9bT-fZ8ulhMb1dZpqXZcoarHJbNLJUgArASCssMNFoIQtuKq4P71USLKDlOMml5Y0xIIFbWxrObD4i8rhXx9B1EW2tXVLJ9Scq19YM6l5Y3Qure2H1j7ADyf6QH9HtVNz_y1wfGYeIv_IlzwWr8m-dcno8
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_energy_2025_135249
crossref_primary_10_3390_electronics14163176
Cites_doi 10.1016/j.energy.2022.125971
10.1109/TCST.2015.2476799
10.1109/TITS.2021.3085710
10.1109/TVT.2020.3000471
10.1109/TVT.2019.2910728
10.1016/j.enconman.2020.113721
10.1109/TITS.2022.3215607
10.1016/j.energy.2020.117101
10.1109/TCST.2022.3171083
10.1109/TCST.2014.2359176
10.1016/j.apenergy.2020.114873
10.1109/TTE.2023.3238101
10.1109/TITS.2020.3037884
10.1088/1748-9326/abef8c
10.1109/TITS.2022.3215073
10.1109/TVT.2022.3196113
10.1109/TITS.2022.3178151
10.1016/j.apenergy.2018.12.032
10.1109/TVT.2012.2203836
10.1109/TCST.2008.919447
10.1016/j.apenergy.2022.119098
10.1109/TTE.2022.3202792
10.1016/j.apenergy.2016.05.094
10.1016/j.energy.2018.08.116
10.24425/bpasts.2021.137064
10.1109/TCST.2021.3111538
10.1109/TVT.2020.3030088
10.1109/TVT.2022.3167435
10.1109/TTE.2021.3116883
10.1109/TVT.2023.3289961
10.1016/j.apenergy.2015.12.031
10.1016/j.apenergy.2021.117869
10.1109/TITS.2018.2874092
10.1016/j.mechatronics.2011.12.001
10.1109/TITS.2023.3310481
10.1109/TTE.2015.2471180
10.1109/tcst.2010.2061232
10.1007/978-3-8348-8202-8
10.1109/TVT.2013.2240326
10.1016/j.jpowsour.2010.11.134
10.1016/j.energy.2022.126466
10.1109/TTE.2021.3127142
10.1016/j.electacta.2017.10.153
10.1109/TITS.2022.3229254
10.1016/j.apenergy.2014.05.013
10.1109/TCST.2020.3048129
10.1016/j.energy.2022.123219
10.1017/S0962492913000032
10.1016/j.renene.2019.08.018
10.1109/TITS.2018.2868518
10.1109/LCSYS.2019.2920164
10.1016/j.apenergy.2022.119353
10.1016/j.apenergy.2022.120599
10.3390/en10010074
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2024.3432775
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 17451
ExternalDocumentID 10_1109_TITS_2024_3432775
10623519
Genre orig-research
GrantInformation_xml – fundername: Major Science and Technology Project of Jilin Province
  grantid: 20220301010GX
  funderid: 10.13039/501100013072
– fundername: International Scientific and Technological Cooperation
  grantid: 20240402071GH
  funderid: 10.13039/501100001744
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-be93f4b76a0ea00d7f5f015bc5742d92c343970f0ef2e837f2bdd0702ff6d21f3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001288412400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sat Nov 29 06:35:08 EST 2025
Tue Nov 18 22:33:19 EST 2025
Wed Aug 27 03:06:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-be93f4b76a0ea00d7f5f015bc5742d92c343970f0ef2e837f2bdd0702ff6d21f3
ORCID 0000-0002-6912-9019
0000-0003-4221-9847
0000-0002-1724-8649
0000-0003-2745-1920
PageCount 20
ParticipantIDs ieee_primary_10623519
crossref_citationtrail_10_1109_TITS_2024_3432775
crossref_primary_10_1109_TITS_2024_3432775
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref31
  doi: 10.1016/j.energy.2022.125971
– ident: ref25
  doi: 10.1109/TCST.2015.2476799
– ident: ref39
  doi: 10.1109/TITS.2021.3085710
– ident: ref18
  doi: 10.1109/TVT.2020.3000471
– ident: ref23
  doi: 10.1109/TVT.2019.2910728
– ident: ref36
  doi: 10.1016/j.enconman.2020.113721
– ident: ref8
  doi: 10.1109/TITS.2022.3215607
– ident: ref37
  doi: 10.1016/j.energy.2020.117101
– ident: ref35
  doi: 10.1109/TCST.2022.3171083
– ident: ref49
  doi: 10.1109/TCST.2014.2359176
– ident: ref51
  doi: 10.1016/j.apenergy.2020.114873
– ident: ref13
  doi: 10.1109/TTE.2023.3238101
– ident: ref17
  doi: 10.1109/TITS.2020.3037884
– ident: ref20
  doi: 10.1088/1748-9326/abef8c
– ident: ref6
  doi: 10.1109/TITS.2022.3215073
– ident: ref2
  doi: 10.1109/TVT.2022.3196113
– ident: ref16
  doi: 10.1109/TITS.2022.3178151
– ident: ref46
  doi: 10.1016/j.apenergy.2018.12.032
– ident: ref42
  doi: 10.1109/TVT.2012.2203836
– ident: ref11
  doi: 10.1109/TCST.2008.919447
– ident: ref9
  doi: 10.1016/j.apenergy.2022.119098
– ident: ref1
  doi: 10.1109/TTE.2022.3202792
– ident: ref50
  doi: 10.1016/j.apenergy.2016.05.094
– ident: ref24
  doi: 10.1016/j.energy.2018.08.116
– ident: ref27
  doi: 10.24425/bpasts.2021.137064
– ident: ref33
  doi: 10.1109/TCST.2021.3111538
– ident: ref29
  doi: 10.1109/TVT.2020.3030088
– ident: ref4
  doi: 10.1109/TVT.2022.3167435
– ident: ref19
  doi: 10.1109/TTE.2021.3116883
– ident: ref32
  doi: 10.1109/TVT.2023.3289961
– ident: ref12
  doi: 10.1016/j.apenergy.2015.12.031
– ident: ref48
  doi: 10.1016/j.apenergy.2021.117869
– ident: ref3
  doi: 10.1109/TITS.2018.2874092
– ident: ref52
  doi: 10.1016/j.mechatronics.2011.12.001
– ident: ref21
  doi: 10.1109/TITS.2023.3310481
– ident: ref43
  doi: 10.1109/TTE.2015.2471180
– ident: ref15
  doi: 10.1109/tcst.2010.2061232
– ident: ref26
  doi: 10.1007/978-3-8348-8202-8
– ident: ref53
  doi: 10.1109/TVT.2013.2240326
– ident: ref41
  doi: 10.1016/j.jpowsour.2010.11.134
– ident: ref7
  doi: 10.1016/j.energy.2022.126466
– ident: ref5
  doi: 10.1109/TTE.2021.3127142
– ident: ref38
  doi: 10.1016/j.electacta.2017.10.153
– ident: ref34
  doi: 10.1109/TITS.2022.3229254
– ident: ref54
  doi: 10.1016/j.apenergy.2014.05.013
– ident: ref10
  doi: 10.1109/TCST.2020.3048129
– ident: ref14
  doi: 10.1016/j.energy.2022.123219
– ident: ref22
  doi: 10.1017/S0962492913000032
– ident: ref45
  doi: 10.1016/j.renene.2019.08.018
– ident: ref47
  doi: 10.1109/TITS.2018.2868518
– ident: ref30
  doi: 10.1109/LCSYS.2019.2920164
– ident: ref44
  doi: 10.1016/j.apenergy.2022.119353
– ident: ref40
  doi: 10.1016/j.apenergy.2022.120599
– ident: ref28
  doi: 10.3390/en10010074
SSID ssj0014511
Score 2.4438677
Snippet Due to the inherently coupled dynamics of vehicle and powertrain levels, this paper proposes an energy management strategy that co-optimizes the power split...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 17432
SubjectTerms Batteries
battery lifetime
Energy management
Engines
Gaussian process regression
Gears
hybrid electric vehicles
Mechanical power transmission
mixed-integer optimal control problem
Optimization
Real-time systems
Title Energy Management Based on Mixed-Integer Nonlinear Model Predictive Control for Hybrid Electric Vehicles
URI https://ieeexplore.ieee.org/document/10623519
Volume 25
WOSCitedRecordID wos001288412400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjBZ8X6IgdPwtZs9pHNUUtLPVgKVult2U0mtlC2srai_95Mdq29KHhblgSW_ZLMTGa-bwi5MnabgcxCT4CyAYrJhJcnEjweBOCHQsUmz12zCTEYJOOxHNZkdceFAQBXfAZtfHS5fD1XS7wqszvcGusIRT43hYgrstYqZYBCW04clYeeZNF3CtNn8mZ0P3q0oSAP20ijFFhTuGaE1rqqOKPS2_vn5-yT3dp7pLcV3AdkA4pDsrOmKXhEJl3H5qM_dS30zloqTecFfZh-gPbwEvAFSjqoVDKykmJDtBkdlpi0weOPdqoCdmo9Wtr_RFIX7bp-OVNFn2HiSuma5KnXHXX6Xt1OwVPWCi-8HGRgwlzEGYOMMS1MZKwzkKvIhsdachWgc8IMA8PBxq2G51rbE4EbE2vum-CYNIp5ASeEmjiy0DKwGzoJNZeZryLIpI09_EwpnbQI-_6_qaq1xrHlxSx1MQeTKUKSIiRpDUmLXK-mvFZCG38NbiIcawMrJE5_eX9GtnG64xAG56SxKJdwQbbU-2L6Vl66dfQFW4fGUg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA4yBfXBnxPnzzz4JHSmabsujzo2NtzGwCl7K21ycYPRSd1E_3tzaTf3ouBbKWkp_ZLcXe6-7wi50WaZgYh9JwRpAhQdh05SF-BwzwPXD2VNJ4ltNhH2-_XRSAwKsrrlwgCALT6DKl7aXL6ayQUelZkVbox1gCKfm4Hvc5bTtVZJA5TasvKo3HcEC5ZJTJeJu2Fn-GSCQe5XkUgZYlXhmhla66tizUpr_58fdED2Cv-R3ueAH5INSI_I7pqq4DEZNy2fj_5UttAHY6sUnaW0N_kE5eAx4CtktJ_rZMQZxZZoUzrIMG2DGyBt5CXs1Pi0tP2FtC7atB1zJpK-wNgW05XJc6s5bLSdoqGCI40dnjsJCE_7SViLGcSMqVAH2rgDiQxMgKwElx66J0wz0BxM5Kp5opTZE7jWNcVd7Z2QUjpL4ZRQXQsMuAzMkq77iovYlQHEwkQfbiylqlcIW_7fSBZq49j0YhrZqIOJCCGJEJKogKRCblePvOVSG38NLiMcawNzJM5-uX9NttvDXjfqdvqP52QHX5UzCi9IaZ4t4JJsyY_55D27snPqG9dDyZc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Management+Based+on+Mixed-Integer+Nonlinear+Model+Predictive+Control+for+Hybrid+Electric+Vehicles&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Hou%2C+Shengyan&rft.au=Chen%2C+Hong&rft.au=Yin%2C+Hai&rft.au=Zhao%2C+Jing&rft.date=2024-11-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=25&rft.issue=11&rft.spage=17432&rft.epage=17451&rft_id=info:doi/10.1109%2FTITS.2024.3432775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2024_3432775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon