Energy Management Based on Mixed-Integer Nonlinear Model Predictive Control for Hybrid Electric Vehicles
Due to the inherently coupled dynamics of vehicle and powertrain levels, this paper proposes an energy management strategy that co-optimizes the power split and operating mode selection for hybrid electric vehicles. A mixed integer nonlinear model predictive control (MPC) problem is formulated to gu...
Saved in:
| Published in: | IEEE transactions on intelligent transportation systems Vol. 25; no. 11; pp. 17432 - 17451 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.11.2024
|
| Subjects: | |
| ISSN: | 1524-9050, 1558-0016 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Due to the inherently coupled dynamics of vehicle and powertrain levels, this paper proposes an energy management strategy that co-optimizes the power split and operating mode selection for hybrid electric vehicles. A mixed integer nonlinear model predictive control (MPC) problem is formulated to guarantee the sub-optimality and robustness of the strategy. The optimization objectives are to achieve minimal fuel consumption, battery degradation inhibition and state-of-charge maintenance within the system physical constraints. However, the existence of logic events and continuous variables poses a significant challenge to solve the optimal control problem. A Pontryagin's Minimum Principle (PMP)-Dynamic Programming (DP) based solution method is presented, avoiding segmented linear approximation to the powertrain model and relaxation approach to the problem. The PMP calculates the optimal control sequence and cost for each mode, then determines the optimal operating mode based on DP. Moreover, the Gaussian process regression (GPR) model is developed for vehicle speed prediction to deal with the stochastic uncertainties of driving conditions. Experimental results are demonstrated that the proposed algorithm offers about 2% to 10% cost reduction compared to the conventional MPC, while still keeping relatively close to the result of DP. |
|---|---|
| AbstractList | Due to the inherently coupled dynamics of vehicle and powertrain levels, this paper proposes an energy management strategy that co-optimizes the power split and operating mode selection for hybrid electric vehicles. A mixed integer nonlinear model predictive control (MPC) problem is formulated to guarantee the sub-optimality and robustness of the strategy. The optimization objectives are to achieve minimal fuel consumption, battery degradation inhibition and state-of-charge maintenance within the system physical constraints. However, the existence of logic events and continuous variables poses a significant challenge to solve the optimal control problem. A Pontryagin's Minimum Principle (PMP)-Dynamic Programming (DP) based solution method is presented, avoiding segmented linear approximation to the powertrain model and relaxation approach to the problem. The PMP calculates the optimal control sequence and cost for each mode, then determines the optimal operating mode based on DP. Moreover, the Gaussian process regression (GPR) model is developed for vehicle speed prediction to deal with the stochastic uncertainties of driving conditions. Experimental results are demonstrated that the proposed algorithm offers about 2% to 10% cost reduction compared to the conventional MPC, while still keeping relatively close to the result of DP. |
| Author | Yin, Hai Hou, Shengyan Gao, Jinwu Chen, Hong Zhao, Jing Xu, Fuguo |
| Author_xml | – sequence: 1 givenname: Shengyan orcidid: 0000-0003-4221-9847 surname: Hou fullname: Hou, Shengyan email: housy20@mails.jlu.edu.cn organization: Department of Control Science and Engineering, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China – sequence: 2 givenname: Hong orcidid: 0000-0002-1724-8649 surname: Chen fullname: Chen, Hong email: chenh@jlu.edu.cn organization: Department of Control Science and Engineering, Jilin University, Changchun, China – sequence: 3 givenname: Hai surname: Yin fullname: Yin, Hai email: yinhai@jlu.edu.cn organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China – sequence: 4 givenname: Jing orcidid: 0000-0002-6912-9019 surname: Zhao fullname: Zhao, Jing email: jzhao@um.edu.mo organization: Department of Electromechanical Engineering, University of Macau, Taipa, Macau – sequence: 5 givenname: Fuguo surname: Xu fullname: Xu, Fuguo email: fuguoxu@ieee.org organization: Graduate School of Engineering, Chiba University, Chiba, Japan – sequence: 6 givenname: Jinwu orcidid: 0000-0003-2745-1920 surname: Gao fullname: Gao, Jinwu email: gaojw@jlu.edu.cn organization: Department of Control Science and Engineering, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China |
| BookMark | eNp9kMFKAzEQhoMo2FYfQPCQF9g6yW423aOWagutClavSzaZtJFtItkg9u3tUg_iwdMMw_8NM9-QnPrgkZArBmPGoLpZL9YvYw68GOdFzqUUJ2TAhJhkAKw87XteZBUIOCfDrns_TAvB2IBsZx7jZk9XyqsN7tAneqc6NDR4unJfaLKFT7jBSB-Db51HFekqGGzpc0TjdHKfSKfBpxhaakOk830TnaGzFnWKTtM33DrdYndBzqxqO7z8qSPyej9bT-fZ8ulhMb1dZpqXZcoarHJbNLJUgArASCssMNFoIQtuKq4P71USLKDlOMml5Y0xIIFbWxrObD4i8rhXx9B1EW2tXVLJ9Scq19YM6l5Y3Qure2H1j7ADyf6QH9HtVNz_y1wfGYeIv_IlzwWr8m-dcno8 |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_135249 crossref_primary_10_3390_electronics14163176 |
| Cites_doi | 10.1016/j.energy.2022.125971 10.1109/TCST.2015.2476799 10.1109/TITS.2021.3085710 10.1109/TVT.2020.3000471 10.1109/TVT.2019.2910728 10.1016/j.enconman.2020.113721 10.1109/TITS.2022.3215607 10.1016/j.energy.2020.117101 10.1109/TCST.2022.3171083 10.1109/TCST.2014.2359176 10.1016/j.apenergy.2020.114873 10.1109/TTE.2023.3238101 10.1109/TITS.2020.3037884 10.1088/1748-9326/abef8c 10.1109/TITS.2022.3215073 10.1109/TVT.2022.3196113 10.1109/TITS.2022.3178151 10.1016/j.apenergy.2018.12.032 10.1109/TVT.2012.2203836 10.1109/TCST.2008.919447 10.1016/j.apenergy.2022.119098 10.1109/TTE.2022.3202792 10.1016/j.apenergy.2016.05.094 10.1016/j.energy.2018.08.116 10.24425/bpasts.2021.137064 10.1109/TCST.2021.3111538 10.1109/TVT.2020.3030088 10.1109/TVT.2022.3167435 10.1109/TTE.2021.3116883 10.1109/TVT.2023.3289961 10.1016/j.apenergy.2015.12.031 10.1016/j.apenergy.2021.117869 10.1109/TITS.2018.2874092 10.1016/j.mechatronics.2011.12.001 10.1109/TITS.2023.3310481 10.1109/TTE.2015.2471180 10.1109/tcst.2010.2061232 10.1007/978-3-8348-8202-8 10.1109/TVT.2013.2240326 10.1016/j.jpowsour.2010.11.134 10.1016/j.energy.2022.126466 10.1109/TTE.2021.3127142 10.1016/j.electacta.2017.10.153 10.1109/TITS.2022.3229254 10.1016/j.apenergy.2014.05.013 10.1109/TCST.2020.3048129 10.1016/j.energy.2022.123219 10.1017/S0962492913000032 10.1016/j.renene.2019.08.018 10.1109/TITS.2018.2868518 10.1109/LCSYS.2019.2920164 10.1016/j.apenergy.2022.119353 10.1016/j.apenergy.2022.120599 10.3390/en10010074 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TITS.2024.3432775 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 17451 |
| ExternalDocumentID | 10_1109_TITS_2024_3432775 10623519 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Major Science and Technology Project of Jilin Province grantid: 20220301010GX funderid: 10.13039/501100013072 – fundername: International Scientific and Technological Cooperation grantid: 20240402071GH funderid: 10.13039/501100001744 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION |
| ID | FETCH-LOGICAL-c266t-be93f4b76a0ea00d7f5f015bc5742d92c343970f0ef2e837f2bdd0702ff6d21f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001288412400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Sat Nov 29 06:35:08 EST 2025 Tue Nov 18 22:33:19 EST 2025 Wed Aug 27 03:06:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c266t-be93f4b76a0ea00d7f5f015bc5742d92c343970f0ef2e837f2bdd0702ff6d21f3 |
| ORCID | 0000-0002-6912-9019 0000-0003-4221-9847 0000-0002-1724-8649 0000-0003-2745-1920 |
| PageCount | 20 |
| ParticipantIDs | ieee_primary_10623519 crossref_citationtrail_10_1109_TITS_2024_3432775 crossref_primary_10_1109_TITS_2024_3432775 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref31 doi: 10.1016/j.energy.2022.125971 – ident: ref25 doi: 10.1109/TCST.2015.2476799 – ident: ref39 doi: 10.1109/TITS.2021.3085710 – ident: ref18 doi: 10.1109/TVT.2020.3000471 – ident: ref23 doi: 10.1109/TVT.2019.2910728 – ident: ref36 doi: 10.1016/j.enconman.2020.113721 – ident: ref8 doi: 10.1109/TITS.2022.3215607 – ident: ref37 doi: 10.1016/j.energy.2020.117101 – ident: ref35 doi: 10.1109/TCST.2022.3171083 – ident: ref49 doi: 10.1109/TCST.2014.2359176 – ident: ref51 doi: 10.1016/j.apenergy.2020.114873 – ident: ref13 doi: 10.1109/TTE.2023.3238101 – ident: ref17 doi: 10.1109/TITS.2020.3037884 – ident: ref20 doi: 10.1088/1748-9326/abef8c – ident: ref6 doi: 10.1109/TITS.2022.3215073 – ident: ref2 doi: 10.1109/TVT.2022.3196113 – ident: ref16 doi: 10.1109/TITS.2022.3178151 – ident: ref46 doi: 10.1016/j.apenergy.2018.12.032 – ident: ref42 doi: 10.1109/TVT.2012.2203836 – ident: ref11 doi: 10.1109/TCST.2008.919447 – ident: ref9 doi: 10.1016/j.apenergy.2022.119098 – ident: ref1 doi: 10.1109/TTE.2022.3202792 – ident: ref50 doi: 10.1016/j.apenergy.2016.05.094 – ident: ref24 doi: 10.1016/j.energy.2018.08.116 – ident: ref27 doi: 10.24425/bpasts.2021.137064 – ident: ref33 doi: 10.1109/TCST.2021.3111538 – ident: ref29 doi: 10.1109/TVT.2020.3030088 – ident: ref4 doi: 10.1109/TVT.2022.3167435 – ident: ref19 doi: 10.1109/TTE.2021.3116883 – ident: ref32 doi: 10.1109/TVT.2023.3289961 – ident: ref12 doi: 10.1016/j.apenergy.2015.12.031 – ident: ref48 doi: 10.1016/j.apenergy.2021.117869 – ident: ref3 doi: 10.1109/TITS.2018.2874092 – ident: ref52 doi: 10.1016/j.mechatronics.2011.12.001 – ident: ref21 doi: 10.1109/TITS.2023.3310481 – ident: ref43 doi: 10.1109/TTE.2015.2471180 – ident: ref15 doi: 10.1109/tcst.2010.2061232 – ident: ref26 doi: 10.1007/978-3-8348-8202-8 – ident: ref53 doi: 10.1109/TVT.2013.2240326 – ident: ref41 doi: 10.1016/j.jpowsour.2010.11.134 – ident: ref7 doi: 10.1016/j.energy.2022.126466 – ident: ref5 doi: 10.1109/TTE.2021.3127142 – ident: ref38 doi: 10.1016/j.electacta.2017.10.153 – ident: ref34 doi: 10.1109/TITS.2022.3229254 – ident: ref54 doi: 10.1016/j.apenergy.2014.05.013 – ident: ref10 doi: 10.1109/TCST.2020.3048129 – ident: ref14 doi: 10.1016/j.energy.2022.123219 – ident: ref22 doi: 10.1017/S0962492913000032 – ident: ref45 doi: 10.1016/j.renene.2019.08.018 – ident: ref47 doi: 10.1109/TITS.2018.2868518 – ident: ref30 doi: 10.1109/LCSYS.2019.2920164 – ident: ref44 doi: 10.1016/j.apenergy.2022.119353 – ident: ref40 doi: 10.1016/j.apenergy.2022.120599 – ident: ref28 doi: 10.3390/en10010074 |
| SSID | ssj0014511 |
| Score | 2.4438677 |
| Snippet | Due to the inherently coupled dynamics of vehicle and powertrain levels, this paper proposes an energy management strategy that co-optimizes the power split... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 17432 |
| SubjectTerms | Batteries battery lifetime Energy management Engines Gaussian process regression Gears hybrid electric vehicles Mechanical power transmission mixed-integer optimal control problem Optimization Real-time systems |
| Title | Energy Management Based on Mixed-Integer Nonlinear Model Predictive Control for Hybrid Electric Vehicles |
| URI | https://ieeexplore.ieee.org/document/10623519 |
| Volume | 25 |
| WOSCitedRecordID | wos001288412400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjBZ8X6IgdPwtZs9pHNUUtLPVgKVult2U0mtlC2srai_95Mdq29KHhblgSW_ZLMTGa-bwi5MnabgcxCT4CyAYrJhJcnEjweBOCHQsUmz12zCTEYJOOxHNZkdceFAQBXfAZtfHS5fD1XS7wqszvcGusIRT43hYgrstYqZYBCW04clYeeZNF3CtNn8mZ0P3q0oSAP20ijFFhTuGaE1rqqOKPS2_vn5-yT3dp7pLcV3AdkA4pDsrOmKXhEJl3H5qM_dS30zloqTecFfZh-gPbwEvAFSjqoVDKykmJDtBkdlpi0weOPdqoCdmo9Wtr_RFIX7bp-OVNFn2HiSuma5KnXHXX6Xt1OwVPWCi-8HGRgwlzEGYOMMS1MZKwzkKvIhsdachWgc8IMA8PBxq2G51rbE4EbE2vum-CYNIp5ASeEmjiy0DKwGzoJNZeZryLIpI09_EwpnbQI-_6_qaq1xrHlxSx1MQeTKUKSIiRpDUmLXK-mvFZCG38NbiIcawMrJE5_eX9GtnG64xAG56SxKJdwQbbU-2L6Vl66dfQFW4fGUg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA4yBfXBnxPnzzz4JHSmabsujzo2NtzGwCl7K21ycYPRSd1E_3tzaTf3ouBbKWkp_ZLcXe6-7wi50WaZgYh9JwRpAhQdh05SF-BwzwPXD2VNJ4ltNhH2-_XRSAwKsrrlwgCALT6DKl7aXL6ayQUelZkVbox1gCKfm4Hvc5bTtVZJA5TasvKo3HcEC5ZJTJeJu2Fn-GSCQe5XkUgZYlXhmhla66tizUpr_58fdED2Cv-R3ueAH5INSI_I7pqq4DEZNy2fj_5UttAHY6sUnaW0N_kE5eAx4CtktJ_rZMQZxZZoUzrIMG2DGyBt5CXs1Pi0tP2FtC7atB1zJpK-wNgW05XJc6s5bLSdoqGCI40dnjsJCE_7SViLGcSMqVAH2rgDiQxMgKwElx66J0wz0BxM5Kp5opTZE7jWNcVd7Z2QUjpL4ZRQXQsMuAzMkq77iovYlQHEwkQfbiylqlcIW_7fSBZq49j0YhrZqIOJCCGJEJKogKRCblePvOVSG38NLiMcawNzJM5-uX9NttvDXjfqdvqP52QHX5UzCi9IaZ4t4JJsyY_55D27snPqG9dDyZc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Management+Based+on+Mixed-Integer+Nonlinear+Model+Predictive+Control+for+Hybrid+Electric+Vehicles&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Hou%2C+Shengyan&rft.au=Chen%2C+Hong&rft.au=Yin%2C+Hai&rft.au=Zhao%2C+Jing&rft.date=2024-11-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=25&rft.issue=11&rft.spage=17432&rft.epage=17451&rft_id=info:doi/10.1109%2FTITS.2024.3432775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2024_3432775 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |