Coding for Gaussian Two-Way Channels: Linear and Learning-Based Approaches
Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability. In this work, we aim to enhance and balance the communication reliability in GTWCs by minimizing the sum of error probabilities via joint desi...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 71; no. 7; pp. 4976 - 5012 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.07.2025
|
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability. In this work, we aim to enhance and balance the communication reliability in GTWCs by minimizing the sum of error probabilities via joint design of encoders and decoders at the users. We first formulate general encoding/decoding functions, where the user cooperation is captured by the coupling of user encoding processes. The coupling effect renders the encoder/decoder design non-trivial, requiring effective decoding to capture this effect, as well as efficient power management at the encoders within power constraints. To address these challenges, we propose two different two-way coding strategies: linear coding and learning-based coding. For linear coding, we propose optimal linear decoding and discuss new insights on encoding regarding user cooperation to balance reliability. We then propose an efficient algorithm for joint encoder/decoder design. For learning-based coding, we introduce a novel recurrent neural network (RNN)-based coding architecture, where we propose interactive RNNs and a power control layer for encoding, and we incorporate bi-directional RNNs with an attention mechanism for decoding. Through simulations, we show that our two-way coding methodologies outperform conventional channel coding schemes (that do not utilize user cooperation) significantly in sum-error performance. We also demonstrate that our linear coding excels at high signal-to-noise ratios (SNRs), while our RNN-based coding performs best at low SNRs. We further investigate our two-way coding strategies in terms of power distribution, two-way coding benefit, different coding rates, and block-length gain. |
|---|---|
| AbstractList | Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability. In this work, we aim to enhance and balance the communication reliability in GTWCs by minimizing the sum of error probabilities via joint design of encoders and decoders at the users. We first formulate general encoding/decoding functions, where the user cooperation is captured by the coupling of user encoding processes. The coupling effect renders the encoder/decoder design non-trivial, requiring effective decoding to capture this effect, as well as efficient power management at the encoders within power constraints. To address these challenges, we propose two different two-way coding strategies: linear coding and learning-based coding. For linear coding, we propose optimal linear decoding and discuss new insights on encoding regarding user cooperation to balance reliability. We then propose an efficient algorithm for joint encoder/decoder design. For learning-based coding, we introduce a novel recurrent neural network (RNN)-based coding architecture, where we propose interactive RNNs and a power control layer for encoding, and we incorporate bi-directional RNNs with an attention mechanism for decoding. Through simulations, we show that our two-way coding methodologies outperform conventional channel coding schemes (that do not utilize user cooperation) significantly in sum-error performance. We also demonstrate that our linear coding excels at high signal-to-noise ratios (SNRs), while our RNN-based coding performs best at low SNRs. We further investigate our two-way coding strategies in terms of power distribution, two-way coding benefit, different coding rates, and block-length gain. |
| Author | Kim, Taejoon Das, Anindya Bijoy Love, David J. Kim, Junghoon Hosseinalipour, Seyyedali Brinton, Christopher G. |
| Author_xml | – sequence: 1 givenname: Junghoon orcidid: 0000-0002-6900-6772 surname: Kim fullname: Kim, Junghoon email: junghoon@motorola.com organization: Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 2 givenname: Taejoon orcidid: 0000-0002-4017-9530 surname: Kim fullname: Kim, Taejoon email: taejoonkim@asu.edu organization: Motorola Mobility LLC, Chicago, IL, USA – sequence: 3 givenname: Anindya Bijoy orcidid: 0000-0002-3615-7400 surname: Das fullname: Das, Anindya Bijoy email: adas@uakron.edu organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA – sequence: 4 givenname: Seyyedali orcidid: 0000-0003-4266-4000 surname: Hosseinalipour fullname: Hosseinalipour, Seyyedali email: alipour@buffalo.edu organization: Department of Electrical and Computer Engineering, The University of Akron, Akron, OH, USA – sequence: 5 givenname: David J. orcidid: 0000-0001-5922-4787 surname: Love fullname: Love, David J. email: djlove@purdue.edu organization: Department of Electrical Engineering, University at Buffalo-SUNY, Buffalo, NY, USA – sequence: 6 givenname: Christopher G. orcidid: 0000-0003-2771-3521 surname: Brinton fullname: Brinton, Christopher G. email: cgb@purdue.edu organization: Department of Electrical Engineering, University at Buffalo-SUNY, Buffalo, NY, USA |
| BookMark | eNp9kD1PwzAQhi1UJNrCzsDgP5Dij9iO2UoEpSgSSxBjdLEdalScyg5C_fekagfEwHR3w3Ov3meGJqEPDqFrShaUEn1br-sFI0wsuJCSs_wMTakQKtNS5BM0JYQWmc7z4gLNUvoYz1xQNkXPZW99eMddH_EKvlLyEHD93WdvsMflBkJw23SHKx8cRAzB4mpcwohk95CcxcvdLvZgNi5dovMOtsldneYcvT4-1OVTVr2s1uWyygyTcsha7qxVlGrSGq1oLm0OTtlWF6YzxAEzRAKMHVpRAOlAUsWU4dw6ZoEC43NEjn9N7FOKrmt20X9C3DeUNAcXzeiiObhoTi5GRP5BjB9g8H0YIvjtf-DNEfTOuV85uqCKC_4D2QVuPQ |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1109_LCOMM_2025_3588133 |
| Cites_doi | 10.1109/26.539767 10.1109/TIT.2024.3426509 10.1109/Allerton49937.2022.9929416 10.1109/TIT.2017.2648821 10.1007/978-0-85729-652-8_1 10.1109/TIT.2023.3260807 10.1023/A:1008316327038 10.1109/TIT.1969.1054302 10.1109/JSAIT.2020.2986752 10.1017/CBO9780511807213 10.1007/s00158-009-0460-7 10.1109/JPROC.2015.2497203 10.1109/TCOM.1986.1096498 10.1109/TIT.1966.1053879 10.1109/TAC.2004.834119 10.1109/TIT.2021.3066855 10.1109/JSAIT.2022.3223901 10.1109/COMST.2015.2403614 10.1109/TIT.2010.2043769 10.1109/ICNN.1993.298725 10.1109/TIT.1982.1056454 10.1109/TIT.2011.2165796 10.1109/Allerton.2011.6120278 10.1109/TIT.1984.1056847 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TIT.2025.3566324 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 5012 |
| ExternalDocumentID | 10_1109_TIT_2025_3566324 10981735 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF and Office of the Under Secretary of Defense (OUSD)–Research and Engineering, as part of the NSF Convergence Accelerator Track G: Securely Operating Through 5G Infrastructure Program grantid: ITE2515378 – fundername: NSF grantid: ITE2226447; CNS2514415; CNS2451268; EEC1941529; CNS2146171 – fundername: the Office of Naval Research (ONR) grantid: N000142112472 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION |
| ID | FETCH-LOGICAL-c266t-b3edd71190bc97146d4ae7db98cfc0ea2c06aa663b58a0fa61727c33de2da1a23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001513211100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 |
| IngestDate | Sat Nov 29 07:49:54 EST 2025 Tue Nov 18 22:53:27 EST 2025 Wed Aug 27 01:46:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c266t-b3edd71190bc97146d4ae7db98cfc0ea2c06aa663b58a0fa61727c33de2da1a23 |
| ORCID | 0000-0003-2771-3521 0000-0002-4017-9530 0000-0003-4266-4000 0000-0002-6900-6772 0000-0001-5922-4787 0000-0002-3615-7400 |
| PageCount | 37 |
| ParticipantIDs | ieee_primary_10981735 crossref_citationtrail_10_1109_TIT_2025_3566324 crossref_primary_10_1109_TIT_2025_3566324 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 Proakis (ref19) 2008 ref34 ref15 ref14 ref30 ref11 ref33 Shannon (ref4) ref10 ref32 Vasal (ref7) 2021 Bahdanau (ref29) 2014 ref2 ref1 ref17 Kim (ref18) Billingsley (ref36) 2012 ref23 ref20 Goodfellow (ref27) 2016 ref22 (ref24) 2021 ref21 (ref31) 2010 Ferziger (ref26) 1998 ref28 ref8 ref9 ref3 ref6 ref5 Chong (ref25) 2013; 75 Robert Safavi (ref16) 2021 |
| References_xml | – ident: ref34 doi: 10.1109/26.539767 – year: 2021 ident: ref7 article-title: A dynamic program for linear sequential coding for two way Gaussian channel – ident: ref33 doi: 10.1109/TIT.2024.3426509 – volume-title: Digital Communications year: 2008 ident: ref19 – ident: ref1 doi: 10.1109/Allerton49937.2022.9929416 – ident: ref14 doi: 10.1109/TIT.2017.2648821 – ident: ref21 doi: 10.1007/978-0-85729-652-8_1 – ident: ref13 doi: 10.1109/TIT.2023.3260807 – volume: 75 volume-title: An Introduction to Optimization year: 2013 ident: ref25 – ident: ref23 doi: 10.1023/A:1008316327038 – ident: ref9 doi: 10.1109/TIT.1969.1054302 – ident: ref15 doi: 10.1109/JSAIT.2020.2986752 – ident: ref20 doi: 10.1017/CBO9780511807213 – start-page: 611 volume-title: Proc. 4th Berkeley Symp. Math. Statist. Probab. ident: ref4 article-title: Two-way communication channels – ident: ref22 doi: 10.1007/s00158-009-0460-7 – year: 2014 ident: ref29 article-title: Neural machine translation by jointly learning to align and translate publication-title: arXiv:1409.0473 – ident: ref2 doi: 10.1109/JPROC.2015.2497203 – ident: ref30 doi: 10.1109/TCOM.1986.1096498 – ident: ref8 doi: 10.1109/TIT.1966.1053879 – ident: ref12 doi: 10.1109/TAC.2004.834119 – volume-title: MATLAB Optimization Toolbox year: 2021 ident: ref24 – start-page: 16599 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref18 article-title: Robust non-linear feedback coding via power-constrained deep learning – ident: ref6 doi: 10.1109/TIT.2021.3066855 – ident: ref17 doi: 10.1109/JSAIT.2022.3223901 – ident: ref3 doi: 10.1109/COMST.2015.2403614 – ident: ref32 doi: 10.1109/TIT.2010.2043769 – volume-title: Probability and Measure year: 2012 ident: ref36 – year: 2021 ident: ref16 article-title: Deep extended feedback codes publication-title: arXiv:2105.01365 – ident: ref28 doi: 10.1109/ICNN.1993.298725 – volume-title: LTE: Evolved Universal Terrestrial Radio Access (E-UTRA): Multiplexing and Channel Coding year: 2010 ident: ref31 – ident: ref35 doi: 10.1109/TIT.1982.1056454 – ident: ref10 doi: 10.1109/TIT.2011.2165796 – ident: ref11 doi: 10.1109/Allerton.2011.6120278 – volume-title: Numerical Methods for Engineering Application year: 1998 ident: ref26 – volume-title: Deep Learning year: 2016 ident: ref27 – ident: ref5 doi: 10.1109/TIT.1984.1056847 |
| SSID | ssj0014512 |
| Score | 2.4879825 |
| Snippet | Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability.... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 4976 |
| SubjectTerms | Codes communication reliability Couplings Electronic mail Encoding Error probability Gaussian two-way channels linear coding neural coding Noise Power control Receivers Reliability Symbols user cooperation |
| Title | Coding for Gaussian Two-Way Channels: Linear and Learning-Based Approaches |
| URI | https://ieeexplore.ieee.org/document/10981735 |
| Volume | 71 |
| WOSCitedRecordID | wos001513211100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBQimivOSBhcFtEjtxwlYqymOoGIroFl1sByGhBPUB4t9zdtKqDCCxRZEtRffd-bvL-e4IuZBxxhMIEQHpayZUELLM08BMhMoj89DztHbDJuRoFE8myWNdrO5qYYwx7vKZ6dpHl8vXpVrYX2Vo4UnsSx5ukk0po6pYa5UyEKFftQb30YIx6FjmJL2kN74fYyQYhF2OzgsPxA8OWhuq4jhl2Pzn1-yR3dp5pP0K7X2yYYoWaS4HM9DaTltkZ63L4AF5GJSWoCi6p_QWFjNbNknHnyV7hi9qqwsK5McrilEpaj2FQtO66eoLu0aO07Rf9x03szZ5Gt6MB3esHqHAFDLvnGXcaC19ZP1MJRJPRS3ASJ0lscqVZyBQXgSAQsnCGLwcnD-jONcm0OBDwA9JoygLc0SoDwLRjtDliLnIFEAOhke54MIEKlKyQ3pLoaaq7i9ux1y8pS7O8JIUYUgtDGkNQ4dcrna8V701_ljbtgisrauEf_zL-xOybbdXF2tPSWM-XZgzsqU-5q-z6bnTnG_2L8Bo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCB5xBvcuDCoZA2adNyG4jxnjgUwa1ykxQhoQ6xDcS_x2k7NA4gcauqpKr82f3sOrYB9lWciwRDQkD5xpM6CL2cG_RsRMqjipBzY6phE6rbjR8fk7umWL2qhbHWVofP7KG7rHL5pqeH7lcZWXgS-0qEkzAdShnwulzrO2kgQ79uDu6TDVPYMcpK8uQovUwpFgzCQ0HuiwjkDxYaG6tSsUpn8Z_vswQLjfvI2jXeyzBhyxVYHI1mYI2lrsD8WJ_BVbg67TmKYuSgsnMc9l3hJEs_et4DfjJXX1ASQx4ziktJ7xmWhjVtV5-8E2I5w9pN53Hbb8F95yw9vfCaIQqeJu4deLmwxiifeD_XiaLvopFolcmTWBeaWww0jxBJKHkYIy-w8mi0EMYGBn0MxBpMlb3SrgPzURLeETkdsZC5RizQiqiQQtpAR1ptwNFIqJluOoy7QRcvWRVp8CQjGDIHQ9bAsAEH3zte6-4af6xtOQTG1tXC3_zl_h7MXqS3N9nNZfd6C-bco-pjttswNXgb2h2Y0e-D5_7bbqVFXyTSw68 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coding+for+Gaussian+Two-Way+Channels%3A+Linear+and+Learning-Based+Approaches&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Kim%2C+Junghoon&rft.au=Kim%2C+Taejoon&rft.au=Das%2C+Anindya+Bijoy&rft.au=Hosseinalipour%2C+Seyyedali&rft.date=2025-07-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=71&rft.issue=7&rft.spage=4976&rft.epage=5012&rft_id=info:doi/10.1109%2FTIT.2025.3566324&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2025_3566324 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |