Coding for Gaussian Two-Way Channels: Linear and Learning-Based Approaches

Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability. In this work, we aim to enhance and balance the communication reliability in GTWCs by minimizing the sum of error probabilities via joint desi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 71; no. 7; pp. 4976 - 5012
Main Authors: Kim, Junghoon, Kim, Taejoon, Das, Anindya Bijoy, Hosseinalipour, Seyyedali, Love, David J., Brinton, Christopher G.
Format: Journal Article
Language:English
Published: IEEE 01.07.2025
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability. In this work, we aim to enhance and balance the communication reliability in GTWCs by minimizing the sum of error probabilities via joint design of encoders and decoders at the users. We first formulate general encoding/decoding functions, where the user cooperation is captured by the coupling of user encoding processes. The coupling effect renders the encoder/decoder design non-trivial, requiring effective decoding to capture this effect, as well as efficient power management at the encoders within power constraints. To address these challenges, we propose two different two-way coding strategies: linear coding and learning-based coding. For linear coding, we propose optimal linear decoding and discuss new insights on encoding regarding user cooperation to balance reliability. We then propose an efficient algorithm for joint encoder/decoder design. For learning-based coding, we introduce a novel recurrent neural network (RNN)-based coding architecture, where we propose interactive RNNs and a power control layer for encoding, and we incorporate bi-directional RNNs with an attention mechanism for decoding. Through simulations, we show that our two-way coding methodologies outperform conventional channel coding schemes (that do not utilize user cooperation) significantly in sum-error performance. We also demonstrate that our linear coding excels at high signal-to-noise ratios (SNRs), while our RNN-based coding performs best at low SNRs. We further investigate our two-way coding strategies in terms of power distribution, two-way coding benefit, different coding rates, and block-length gain.
AbstractList Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability. In this work, we aim to enhance and balance the communication reliability in GTWCs by minimizing the sum of error probabilities via joint design of encoders and decoders at the users. We first formulate general encoding/decoding functions, where the user cooperation is captured by the coupling of user encoding processes. The coupling effect renders the encoder/decoder design non-trivial, requiring effective decoding to capture this effect, as well as efficient power management at the encoders within power constraints. To address these challenges, we propose two different two-way coding strategies: linear coding and learning-based coding. For linear coding, we propose optimal linear decoding and discuss new insights on encoding regarding user cooperation to balance reliability. We then propose an efficient algorithm for joint encoder/decoder design. For learning-based coding, we introduce a novel recurrent neural network (RNN)-based coding architecture, where we propose interactive RNNs and a power control layer for encoding, and we incorporate bi-directional RNNs with an attention mechanism for decoding. Through simulations, we show that our two-way coding methodologies outperform conventional channel coding schemes (that do not utilize user cooperation) significantly in sum-error performance. We also demonstrate that our linear coding excels at high signal-to-noise ratios (SNRs), while our RNN-based coding performs best at low SNRs. We further investigate our two-way coding strategies in terms of power distribution, two-way coding benefit, different coding rates, and block-length gain.
Author Kim, Taejoon
Das, Anindya Bijoy
Love, David J.
Kim, Junghoon
Hosseinalipour, Seyyedali
Brinton, Christopher G.
Author_xml – sequence: 1
  givenname: Junghoon
  orcidid: 0000-0002-6900-6772
  surname: Kim
  fullname: Kim, Junghoon
  email: junghoon@motorola.com
  organization: Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Taejoon
  orcidid: 0000-0002-4017-9530
  surname: Kim
  fullname: Kim, Taejoon
  email: taejoonkim@asu.edu
  organization: Motorola Mobility LLC, Chicago, IL, USA
– sequence: 3
  givenname: Anindya Bijoy
  orcidid: 0000-0002-3615-7400
  surname: Das
  fullname: Das, Anindya Bijoy
  email: adas@uakron.edu
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 4
  givenname: Seyyedali
  orcidid: 0000-0003-4266-4000
  surname: Hosseinalipour
  fullname: Hosseinalipour, Seyyedali
  email: alipour@buffalo.edu
  organization: Department of Electrical and Computer Engineering, The University of Akron, Akron, OH, USA
– sequence: 5
  givenname: David J.
  orcidid: 0000-0001-5922-4787
  surname: Love
  fullname: Love, David J.
  email: djlove@purdue.edu
  organization: Department of Electrical Engineering, University at Buffalo-SUNY, Buffalo, NY, USA
– sequence: 6
  givenname: Christopher G.
  orcidid: 0000-0003-2771-3521
  surname: Brinton
  fullname: Brinton, Christopher G.
  email: cgb@purdue.edu
  organization: Department of Electrical Engineering, University at Buffalo-SUNY, Buffalo, NY, USA
BookMark eNp9kD1PwzAQhi1UJNrCzsDgP5Dij9iO2UoEpSgSSxBjdLEdalScyg5C_fekagfEwHR3w3Ov3meGJqEPDqFrShaUEn1br-sFI0wsuJCSs_wMTakQKtNS5BM0JYQWmc7z4gLNUvoYz1xQNkXPZW99eMddH_EKvlLyEHD93WdvsMflBkJw23SHKx8cRAzB4mpcwohk95CcxcvdLvZgNi5dovMOtsldneYcvT4-1OVTVr2s1uWyygyTcsha7qxVlGrSGq1oLm0OTtlWF6YzxAEzRAKMHVpRAOlAUsWU4dw6ZoEC43NEjn9N7FOKrmt20X9C3DeUNAcXzeiiObhoTi5GRP5BjB9g8H0YIvjtf-DNEfTOuV85uqCKC_4D2QVuPQ
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_LCOMM_2025_3588133
Cites_doi 10.1109/26.539767
10.1109/TIT.2024.3426509
10.1109/Allerton49937.2022.9929416
10.1109/TIT.2017.2648821
10.1007/978-0-85729-652-8_1
10.1109/TIT.2023.3260807
10.1023/A:1008316327038
10.1109/TIT.1969.1054302
10.1109/JSAIT.2020.2986752
10.1017/CBO9780511807213
10.1007/s00158-009-0460-7
10.1109/JPROC.2015.2497203
10.1109/TCOM.1986.1096498
10.1109/TIT.1966.1053879
10.1109/TAC.2004.834119
10.1109/TIT.2021.3066855
10.1109/JSAIT.2022.3223901
10.1109/COMST.2015.2403614
10.1109/TIT.2010.2043769
10.1109/ICNN.1993.298725
10.1109/TIT.1982.1056454
10.1109/TIT.2011.2165796
10.1109/Allerton.2011.6120278
10.1109/TIT.1984.1056847
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIT.2025.3566324
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 5012
ExternalDocumentID 10_1109_TIT_2025_3566324
10981735
Genre orig-research
GrantInformation_xml – fundername: NSF and Office of the Under Secretary of Defense (OUSD)–Research and Engineering, as part of the NSF Convergence Accelerator Track G: Securely Operating Through 5G Infrastructure Program
  grantid: ITE2515378
– fundername: NSF
  grantid: ITE2226447; CNS2514415; CNS2451268; EEC1941529; CNS2146171
– fundername: the Office of Naval Research (ONR)
  grantid: N000142112472
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-b3edd71190bc97146d4ae7db98cfc0ea2c06aa663b58a0fa61727c33de2da1a23
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001513211100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sat Nov 29 07:49:54 EST 2025
Tue Nov 18 22:53:27 EST 2025
Wed Aug 27 01:46:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-b3edd71190bc97146d4ae7db98cfc0ea2c06aa663b58a0fa61727c33de2da1a23
ORCID 0000-0003-2771-3521
0000-0002-4017-9530
0000-0003-4266-4000
0000-0002-6900-6772
0000-0001-5922-4787
0000-0002-3615-7400
PageCount 37
ParticipantIDs ieee_primary_10981735
crossref_citationtrail_10_1109_TIT_2025_3566324
crossref_primary_10_1109_TIT_2025_3566324
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
Proakis (ref19) 2008
ref34
ref15
ref14
ref30
ref11
ref33
Shannon (ref4)
ref10
ref32
Vasal (ref7) 2021
Bahdanau (ref29) 2014
ref2
ref1
ref17
Kim (ref18)
Billingsley (ref36) 2012
ref23
ref20
Goodfellow (ref27) 2016
ref22
(ref24) 2021
ref21
(ref31) 2010
Ferziger (ref26) 1998
ref28
ref8
ref9
ref3
ref6
ref5
Chong (ref25) 2013; 75
Robert Safavi (ref16) 2021
References_xml – ident: ref34
  doi: 10.1109/26.539767
– year: 2021
  ident: ref7
  article-title: A dynamic program for linear sequential coding for two way Gaussian channel
– ident: ref33
  doi: 10.1109/TIT.2024.3426509
– volume-title: Digital Communications
  year: 2008
  ident: ref19
– ident: ref1
  doi: 10.1109/Allerton49937.2022.9929416
– ident: ref14
  doi: 10.1109/TIT.2017.2648821
– ident: ref21
  doi: 10.1007/978-0-85729-652-8_1
– ident: ref13
  doi: 10.1109/TIT.2023.3260807
– volume: 75
  volume-title: An Introduction to Optimization
  year: 2013
  ident: ref25
– ident: ref23
  doi: 10.1023/A:1008316327038
– ident: ref9
  doi: 10.1109/TIT.1969.1054302
– ident: ref15
  doi: 10.1109/JSAIT.2020.2986752
– ident: ref20
  doi: 10.1017/CBO9780511807213
– start-page: 611
  volume-title: Proc. 4th Berkeley Symp. Math. Statist. Probab.
  ident: ref4
  article-title: Two-way communication channels
– ident: ref22
  doi: 10.1007/s00158-009-0460-7
– year: 2014
  ident: ref29
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: arXiv:1409.0473
– ident: ref2
  doi: 10.1109/JPROC.2015.2497203
– ident: ref30
  doi: 10.1109/TCOM.1986.1096498
– ident: ref8
  doi: 10.1109/TIT.1966.1053879
– ident: ref12
  doi: 10.1109/TAC.2004.834119
– volume-title: MATLAB Optimization Toolbox
  year: 2021
  ident: ref24
– start-page: 16599
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref18
  article-title: Robust non-linear feedback coding via power-constrained deep learning
– ident: ref6
  doi: 10.1109/TIT.2021.3066855
– ident: ref17
  doi: 10.1109/JSAIT.2022.3223901
– ident: ref3
  doi: 10.1109/COMST.2015.2403614
– ident: ref32
  doi: 10.1109/TIT.2010.2043769
– volume-title: Probability and Measure
  year: 2012
  ident: ref36
– year: 2021
  ident: ref16
  article-title: Deep extended feedback codes
  publication-title: arXiv:2105.01365
– ident: ref28
  doi: 10.1109/ICNN.1993.298725
– volume-title: LTE: Evolved Universal Terrestrial Radio Access (E-UTRA): Multiplexing and Channel Coding
  year: 2010
  ident: ref31
– ident: ref35
  doi: 10.1109/TIT.1982.1056454
– ident: ref10
  doi: 10.1109/TIT.2011.2165796
– ident: ref11
  doi: 10.1109/Allerton.2011.6120278
– volume-title: Numerical Methods for Engineering Application
  year: 1998
  ident: ref26
– volume-title: Deep Learning
  year: 2016
  ident: ref27
– ident: ref5
  doi: 10.1109/TIT.1984.1056847
SSID ssj0014512
Score 2.4879825
Snippet Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability....
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 4976
SubjectTerms Codes
communication reliability
Couplings
Electronic mail
Encoding
Error probability
Gaussian two-way channels
linear coding
neural coding
Noise
Power control
Receivers
Reliability
Symbols
user cooperation
Title Coding for Gaussian Two-Way Channels: Linear and Learning-Based Approaches
URI https://ieeexplore.ieee.org/document/10981735
Volume 71
WOSCitedRecordID wos001513211100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBQimivOSBhcFtEjtxwlYqymOoGIroFl1sByGhBPUB4t9zdtKqDCCxRZEtRffd-bvL-e4IuZBxxhMIEQHpayZUELLM08BMhMoj89DztHbDJuRoFE8myWNdrO5qYYwx7vKZ6dpHl8vXpVrYX2Vo4UnsSx5ukk0po6pYa5UyEKFftQb30YIx6FjmJL2kN74fYyQYhF2OzgsPxA8OWhuq4jhl2Pzn1-yR3dp5pP0K7X2yYYoWaS4HM9DaTltkZ63L4AF5GJSWoCi6p_QWFjNbNknHnyV7hi9qqwsK5McrilEpaj2FQtO66eoLu0aO07Rf9x03szZ5Gt6MB3esHqHAFDLvnGXcaC19ZP1MJRJPRS3ASJ0lscqVZyBQXgSAQsnCGLwcnD-jONcm0OBDwA9JoygLc0SoDwLRjtDliLnIFEAOhke54MIEKlKyQ3pLoaaq7i9ux1y8pS7O8JIUYUgtDGkNQ4dcrna8V701_ljbtgisrauEf_zL-xOybbdXF2tPSWM-XZgzsqU-5q-z6bnTnG_2L8Bo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCB5xBvcuDCoZA2adNyG4jxnjgUwa1ykxQhoQ6xDcS_x2k7NA4gcauqpKr82f3sOrYB9lWciwRDQkD5xpM6CL2cG_RsRMqjipBzY6phE6rbjR8fk7umWL2qhbHWVofP7KG7rHL5pqeH7lcZWXgS-0qEkzAdShnwulzrO2kgQ79uDu6TDVPYMcpK8uQovUwpFgzCQ0HuiwjkDxYaG6tSsUpn8Z_vswQLjfvI2jXeyzBhyxVYHI1mYI2lrsD8WJ_BVbg67TmKYuSgsnMc9l3hJEs_et4DfjJXX1ASQx4ziktJ7xmWhjVtV5-8E2I5w9pN53Hbb8F95yw9vfCaIQqeJu4deLmwxiifeD_XiaLvopFolcmTWBeaWww0jxBJKHkYIy-w8mi0EMYGBn0MxBpMlb3SrgPzURLeETkdsZC5RizQiqiQQtpAR1ptwNFIqJluOoy7QRcvWRVp8CQjGDIHQ9bAsAEH3zte6-4af6xtOQTG1tXC3_zl_h7MXqS3N9nNZfd6C-bco-pjttswNXgb2h2Y0e-D5_7bbqVFXyTSw68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coding+for+Gaussian+Two-Way+Channels%3A+Linear+and+Learning-Based+Approaches&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Kim%2C+Junghoon&rft.au=Kim%2C+Taejoon&rft.au=Das%2C+Anindya+Bijoy&rft.au=Hosseinalipour%2C+Seyyedali&rft.date=2025-07-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=71&rft.issue=7&rft.spage=4976&rft.epage=5012&rft_id=info:doi/10.1109%2FTIT.2025.3566324&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2025_3566324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon